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Abstract—The performance of all proactive edge-caching poli-
cies is largely influenced by the content popularity prediction
algorithm, which in turn relies on having a good understanding
of the underlying request process. However, due to the non-
deterministic and time-varying nature of popularities, prediction
is not a trivial task. In this work, we suggest a probabilistic
dynamic factor analysis model to describe content requests for
real-world time-varying scenarios. The dynamic factor analyzer
is a flexible model to capture common patterns among content
requests through temporal stochastic processes, which lay in a
low-dimensional latent space. Modeling these common dynamic
patterns provides a better accuracy for tracking and predicting
the evolution of content popularities. Model learning is performed
from the Bayesian aspect which provides a systematic mechanism
to incorporate uncertainty for robust prediction. Due to the model
complexity, we derive a simple approximation method based on
variational Bayes (VB) to infer the model parameters. Finally,
we show simulation results where the proposed popularity pre-
diction method outperforms the traditional ones available in the
literature on a real-world dataset.

Index Terms—Popularity prediction, Proactive Caching, Dy-
namic Scenario, Bayesian Learning

I. INTRODUCTION

Due to the emergence of communities with a massive
number of users, the demands for content (e.g., video) are
explosively growing [1]. This explosive growth is challenging
the capability of current network architectures in satisfying
users’ demands with acceptable quality of service. A promis-
ing approach to mitigate this challenge is to offload network
traffic by caching popular contents at the network edge [2].
The motivation behind caching is that typically the majority
of data traffic is caused by only a small number of popular
contents, as indicated by the Zipf-law content behavior [3].
Caching these highly popular contents at the edge bypasses
the need for fetching these contents from the content provider
through the backhaul links for every request. Therefore, this
reduces latency and downloading time.

A central problem in caching systems is content placement
i.e., selecting which proper contents to cache. Several algo-
rithms that select contents for caching or ejection have been
proposed [4]. For example, least recently used (LRU) policy
keeps a record of the recent time request for each content,
and when there is not enough space it replaces contents with
the longest idle time with newly requested ones. Likewise,
the least frequently used (LFU) approach ejects the least
frequently used contents. These traditional policies and their
variants are widely used in practice due to their simplicity.
Nevertheless, they disregard patterns in content requests, and
therefore, do not have a satisfactory performance. The limita-
tions in cache storage and backhaul bandwidth highlight the

need for efficient proactive caching policies with the ability to
predict the popularity of contents.

While significant volume of results have been published on
edge-caching, there exist only a few for popularity prediction.
The authors of [5] model the caching policy as a multi-
armed-bandit problem and the content popularity is learned
online. In [6], the required training time is derived to obtain
an acceptable prediction accuracy and to improve it transfer
learning is proposed. The authors of [7] used neural networks
for the prediction task. In [8], popularity prediction is modeled
as a matrix completion problem where the missing entries are
estimated by a matrix factorization technique. A binary logistic
classification method was introduced in [9] to classify user
interests based on content features. In [10], content features are
used to improve the prediction accuracy within the Bayesian
framework. The authors of [11] introduce a Bayesian factor
analysis model to model the correlations between contents.
A main assumption of the aforementioned studies is that
the popularity does not change over time or it changes very
slowly. Nevertheless, in practice, content popularity is far from
stationary and might change even within a few hours e.g. for
viral contents.

To tackle the time-varying nature of content popularity,
several time-series analysis methods have been used in the
literature to model the view count dynamics of videos. As
one of the most popular models for time series, auto-regressive
moving-average (ARMA) model is utilized in [12], [13] for
video popularity prediction. However, ARMA modeling suf-
fers from three important weaknesses. Firstly, this model can
only handle continuous data, which is not the case for content
request, secondly the assumed model is linear which is quite
restrictive. Also, it ignores the correlation among contents.
More specifically, in reality, requests for some contents may
be highly correlated and exhibit similar patterns. For example,
some contents may have the same features or are interesting
for the same user community. Modeling the discrete nature of
and the correlation among requests can provide much more
accuracy, and as a result, a better caching performance.

In this paper, we extend the factor analysis introduced
in [11] to a time-varying scenario. More precisely, in factor
analysis the correlation is modeled by some hidden random
variables which are shared among all contents. In the station-
ary scenario, the assumption is that these random variables
are independently and identically distributed. For the dynamic
scenario, we assume that they follow a first order Markov pro-
cess and their evolutions can explain the evolution of content
popularities over time. We then perform model fitting within
the Bayesian framework. Since the local caches may not ob-



serve enough requests [14], traditional estimation techniques,
e.g. Maximum Likelihood Estimator (MLE), may not provide
a satisfactory performance and also suffer from overfitting.
On the other hand, Bayesian methods have the capability to
mitigate the overfitting problem efficiently. Additionally, a fast
and scalable VB technique is developed to learn this Bayesian
model. Finally, in the simulation results, we show the accuracy
of the VB method and the caching performance on a real-world
dataset.

The rest of the paper is organized as follows. In Section
I, we describe the system model and present a proactive
caching policy at base station (BS) of cellular networks.
The probabilistic dynamic factor analyzer and its inference
are described in Section III. In Section IV, we present the
simulation results and conclude the paper in Section V .

II. SYSTEM MODEL

In this work, we focus on content request prediction in a
single region in a cellular network within the service area of
a central BS. We assume that the time axis is in divided non-
overlapping intervals with equal durations of, for example, a
day or a week. At time interval ¢, t = 1,2,...,T, each user
in the cell requests a content from the library content C £
{c1,...,epr} with M contents, where the size of content ¢,
is denoted as s,,, for m = 1,2,..., M. The BS is equipped
with a cache of C; memory units which stores a subset of the
content library C. At time ¢, upon receiving the user requests,
those contents that are already stored in the cache, will be
directly sent to the requesting users and those contents that
are not available in the cache will be fetched from the content
provider via a back-haul link.

At the end of time interval 7T, the task is to predict the
requests in the next time slot 7 = 7'+ 1 given the past request
history Dy = {dt}z;l, where d; is the M x 1 request vector
whose m-th element, denoted as d,,;, represents the total
number of requests from all users for content c,, during time
interval ¢t. After the prediction, suitable contents are stored
in the cache depending on the caching policy. At time ¢, a
caching policy is represented by the M x 1 vector p; of only
zeros and ones. If the m-th element of p; is 1, then ¢, is
stored in the cache, otherwise the cache does not contain c,,.

Here, we design the caching policy by solving the following
optimization problem:

max pZ&T (1a)

p-
subject to pfs <C (1b)
p; (s©(1-pr)) < Co (10)
p- € {0, 1} (1d)

where we define s £ [s; sy ... sy ,and d, = E{d,|Dp}
is the conditional mean estimate of the request vector at time
7 and p, is the decision variable for updating the cache at
the beginning of time interval 7. The objective function is
the average cache hit ratio at time slot 7. Constraint (1b)
denotes the cache size limitation as pl's measures number
of the memory units required by policy p,. Constraint (1c)
ensures the total number of data units required to fetch new

contents from the back-haul link does not exceed Cs and
constraint (1d) denotes the space restriction for p.. Solving
problem (1) requires the knowledge of &T, which is unknown
and has to predicted. To obtain d,, we specifically focus
on Bayesian modeling which consists of three steps. First,
by making some assumptions about the hidden patterns that
govern the content requests a probabilistic is built. Second,
in the inference, the posterior distribution of the hidden
patterns given the requests is computed. Third, we compute
the posterior predictive distribution to acquire d,. These three
steps are the subject of the next section.

III. PROBABILISTIC DEMAND MODEL

In this section, we introduce a probabilistic model to accu-
rately capture the evolution of the content requests over time.
In practice, the content requests often exhibit similar patterns
leading to the belief that they might be driven by common
factors. Similar to [11], in order to capture the correlation
among the requests for different contents, we assume the
content request at time ¢ is a Poisson stochastic process:

dyy ~ Pois (eWTan) Ct=1,...T )

From (2), the request rate (the popularity) for content m at
time ¢, 7, is defined by eVm*t, where x; € IR¥*!, with
K < M, is a low-dimensional vector of hidden factors
that are common among all contents and w,, is called the
factor loading for content m . The assumption in (2) is
that the natural parameter of the Poisson distributed demands
for each content is a linear combination of the low dimen-
sional vector x; of hidden factors with weights being the
element of w,,. We mention the factor loading matrix as
W 2 [w; wy .. WM]T. The hidden factors which are
shared among all contents model their correlations. To model
the time-varying nature of the content popularities, we assume
that x; follows a first order Markov process:

Xy =ax;_1+e, t=1,..T 3)

starting from initial state xy, where a is a known constant and
e; ~ N(0,Q). We assume |a| < 1 to ensure the covariance
of x; is norm-bounded, otherwise for |a| > 1, the norm
of this matrix becomes unbounded as time progresses [15].
In (2) and (3), time dependencies in the content requests
are materialized by allowing x; be a correlated with x;_1.
Therefore, requests at time ¢ are usually more similar to
requests at time ¢ — 1 than any other previous values. We
should also note that (2) and (3) form a state-space model
where (2) is the observation model and (3) is the unobserved
state model.

Additionally, the covariance matrix Q can be absorbed
into the factor loading matrix without affecting the popularity
evolution. More specifically, the natural parameter of the
Poisson process d,,;, denoted as y,,; is also a stochastic

t
process and can be expressed as y,,,; = w% > a'e; + X
i=1

t
wlQw,, > a®.

i=1
This implies that we can define a new factor loading w,, =

with E (ym¢) = wlxo and var (y,s) =



Q!?w,, and a new initial state X, = Q~/?x, without

changing process ;. Therefore, without loss of generality,
we can assume Q = L.

A. Inference

Here, our goal is to fit the model (2)-(3) to the content
requests from a Bayesian perspective. To do so, we set up
prior distributions for the unknown parameters, i.e., for the
factor loading matrix W in (2) and the initial value xq in
(3). For simplicity, the columns of factor loading matrix are
assumed to be:

~N(0,%), Ym=1,.,M 4)

Wm

where 3 = diag (0%, ..., 0% ) with o7 denotes the variance of
column k of factor loading matrix W. The value of variance
o? signifies the importance of the k-th column of W. When o7
goes to zero, it means that the corresponding column of W is
irrelevant and can be pruned out. Since importance of different
columns of W is unknown, we assign a sparsity promoting
prior to o%. Doing so, the importance of different columns
of W can be automatically determined. This framework is
known as automatic relevance determination (ARD) technique
[16]. Similar to [17], we use the heavy-tailed half-Cauchy
distribution with scale parameter A as a prior for the variance
of each column o, ~ CT (0, A). The half-Cauchy distribution
can also be represented as a mixture of inverse Gamma’s
as [18]:

1 1
(91;1)7 O ~ 5»?)
We will use the representation in (5) since it facilitates the
mathematical operations. Moreover, we assume that the prior
distribution for the initial state xg is p(xg) = N (0, Qq). The
graphical representation of the Bayesian model is shown in
Fig. 1.

The inference problem is then to compute the posterior
distribution of all unknown quantities given by the Bayes rule
which is

o} ~T6(; 7( ®)

p(b/Dr) < p(h,Dr) =

T M
H H p (dm,t|w'rru Xt)p (Wm) p (Xt‘Xt—l)p (XO)

tlml

H

410x) p (Ox) (6)

2 K T
where h = {W, {ak,ek}kzl Axet—o
ally intractable to compute (6). Therefore, we invoke an
approximation method in the next subsection.

}. It is computation-

B. Posterior Approximation

In this subsection, we present a low complexity inference
method based on the VB approach [16]. Variational inference
performs the inference task as the problem of minimizing
the Kullback-Leibler (KL) divergence between an approximate
distribution and the true posterior.

Fig. 1: The graphical representation of the probabilistic time-varying content
request model.

More formally, true posterior p(h|Dr) is approximated by a
family of distributions ¢(h) that minimize the KL divergence

min KL(g() || p(aiDr)), st [adn=1 ()
A

where KL (¢ (h) || p (h|Dr)) 2 E, {m%}. One of

the most popular forms of VB is the mean field approximation.

In this scheme, the assumption is that the variational distribu-

tion is factorized as:

h) = Hq(h»- (8)

where h; is part of h with (Jh; = h and (h; = . With

this approximation, it has been shown that prozblem (7) can be
solved by the coordinate decent method where at each update
the optimal solution for ¢ (h;) is given by [16]:

log g (h;) o< E_q(n,) {logp (h,Dr)} ©)

where the notation ., {.} means to take the expectation
with respect to all the variables except h;.

Accordingly, we assume that the approximating family for
the posterior in (6) has the following form:

M T K
p(h|Dr) ~q(h)=]] ¢(wm) [Ja(x H q (1) (10)
m=1 t=0 k=1

Later on we will see that, by applying (9), we can derive
closed-form densities for 013,91@ and x( automatically. How-
ever, due to non-conjugacy for W and x;-o which is resulted
from having Poisson and normal distributions, it is not trivial
to update them. Therefore, for simplicity, we assume ¢ (W, )
and ¢ (x4>0) can be approximated by normals as:

q (Wm) ~ N (Nwma Ewm) ,q (Xt) ~ N (l‘l’:pt7 Ezt) .

Then, the goal is to find suitable values for the means and the
covariances that fit well to ¢ (w,,,) and ¢ (x;). In the following,
the update rules and a simple approximation method for (11)
are given.

Y

o Updating ¢ (oi)



The optimal form for ¢ (0}) is obtained by averaging
over W and 6;:

log q (0,3) x

Eqwya(o){—

M
M+ 1 5 1 w2,
— log o}, — 3 Z O"%

m=1

=7G (ay,, By, ), Where

One can show that ¢ (o7)

M+1 1 X 1
Oy, = + 76[% :72 E{w?nk}—‘,—E{a} (13)

m:l

Updating ¢ (6%)

The optimal form for g (6y) is given by

1 1
Q(Qk)<XIQAUg){“§' 5;;2'—';1552}

=74 (Ozgk , Bp,,) where

log o3 — (14)

It can be recognized that ¢ (6x)

1
0. = ,59k: 5+ E{ 2} (15)
Updating g (w,,)
The optimal form for g (w,,) is given by
T
log g (W) ZEQ(X, { WX, — eWm ‘}
W'mEq(Z) {2 } Wm (16)

2
which can be simplified as
T

x Z dmtwﬁu‘wt - ewz:L”mt+%wz:L2mtw”yL

t=1

Wi By {27} win
- 2
Due to the non-conjugacy which results from the Poisson
and normal distributions, there is no closed form expres-
sion for (17). As an approximation for (17), we use a
quadratic function around its maximum value with the
help of the second order Taylor approximation i.e.

log q (W)

a7

log (¢ (wm)) ~ log (¢ (wy,)) +

1 * * *

i(wm - Wm)Tv2 log (q (Wm)) (wm - Wm) (18)
where w7, is the maximum of (17). Hence, the mean

and the covariance of w,, are glven by p,, = wy, and
S, = —[V?log (g (w m))] . We also note that (17) is
a strongly concave function therefore the Hessian matrix
is always positive definite and invertible.

Updating ¢ (x¢)

The update rule is derived similarly to the one of ¢ (w,;),
where the optimal form:

M
log q (x;) o > dupaty, Xy — eHomH X0 Bunxe
m=1
T T
2Xt Xt — 2a’xt (l‘l'wt71 + l‘l’a:t+1)

> 19)

is approximated by a normal distribution with mean
B, = x; and covariance 3., = —[V2log (¢ (x}))]
where xj is the maximum of (19).

« Updating ¢ (xq)
The optimal form for x; is easily obtained by ¢ (xg) =
N (pg,, Ea,) where:

l‘l’zo = 210“9:17210 = (I+ Qal)_l

To compute the required expectations in (13) (15) and (16),
we note from (13), (15) and (11) that they are given by

(20)

B{s } O““ { )= g @1
E {wmk} = Ul + [Ewm]kk (22)
{E 1} = dlag Bak . Z::) (23)

To implement the coordinate descent method, we initialize
the parameters of the variational distributions and iteratively
updating them, according to their derivations as in the above,
until convergence. Moreover, in order to compute the maxi-
mum values of (17) and (19), since they are strongly concave
functions, we use Newton’s method to speed up the conver-
gence rate.

C. Prediction

Once the model is fit, the goal is to predict the requests at
future time slot 7 = T'+1. This can be achieved by computing
the posterior predictive distribution:

p o= [ [ nﬁlmdmwm,x»

p (x:|x7) p (W, xp|Dp) dWdxrdx,  (24)

where p(W,xr|Dr) is the marginal posterior of W' and
xr which was approximated by H q (W) q (xr) in (10).

Nevertheless, (24) is a multldlmenswnal integral and difficult
to compute. However, using the mean square error criterion
as a risk function, the optimal point estimate is given by
the conditional expectation of d, = E {d,|Dr}. To compute
it, we apply the law of total probability for expectation and
obtain:

-1 —1
N T#W'mzzum“’wm
dm‘r :e—
(27T)K |Ewm
/6 5 W (Z_ -3 )w,,Ler (p,L,,,+)3w7nuwm)dwm
(25)
where

By =ap,, B, =a’S,, +1L (26)

It can be seen that (25) is a multidimensional Gaussian inte-
5 1

gr;al [19] and can be computed as d,,, = Wegm
where
—1 1
Imr = 7u’wmzwmu’wm

1 _
+§(Na:7 + E;,l,Ll'l’wm)T(E;,ln - 2937) ' (l’l‘wT + E:ui#’w,,,) :



This conditional mean prediction can be used for the caching
policy defined in (1).

IV. SIMULATION RESULTS

In this section, we test the performance of the proposed
probabilistic dynamic model on synthetic and real-world data.
The experiments on synthetic data are performed to show the
accuracy of the VB method used to approximate the model
parameters. For the real-world dataset, we investigate the
caching performance of the model since parameter estimation
accuracy cannot be assessed. The parameters A, Qg and a are
set to 1, 10I and 0.99 respectively and they are common for
all simulations.

A. Synthetic data

To generate the synthetic data, model (2)-(3) is used where
the number of contents M is set to 100. Moreover, Q is chosen
to be diagonal, ¢I, and the number of latent dimensions K is
10, where relevant and irrelevant dimensions, K, and K;, re-
spectively, have to sum to K. Simulation results are presented
for different ¢ values and K,-Kj;, configurations. The factor
loadings of the relevant dimensions are independently drawn
from a normal distribution with zero mean and variance 0.05
and of the irrelevant dimensions are set to zero. Additionally,
the initial values for the hidden factors are generated from
xo ~ N (0,10I). In total, 20 synthetic datasets are utilized.

Fig. 2 shows the model parameter estimation accuracy
versus the number of time slots, i.e. the number of observed
request vectors, for different state noise variances g. The

> flre—t?
accuracy is measured by the error metric =

bl

L 2
32 lrel]
t=1

where T is the inferred mean of requests at time i.e. 7, =

E {ewaxﬂDT} and 7, = eWmXt is the true value. In this
simulation part, we assume that /. = 2. This figure shows that
as T increases the accuracy gets better and that as the noise
variance increases the estimation error increases as well.

Now, we investigate the learning accuracy for detecting
the relevant hidden state dimensions, K. In this simulation
part, we set ¢ = 0.5. Fig. 3 shows the average number of
the inferred relevant dimensions, K,., over all datasets for
K, = 2 and K, = 5. This figure shows that as 7" increases
the proposed learning method converges to the true K, values.
Furthermore, we note that when 7' is small usually the number
of inferred dimensions is less than that the true ones. This
means that for small number of observations only a few factors
will be enough to explain the request pattern.

For the same simulation parameter configuration and only
for 1 dataset, we depict in Fig. 4 the trajectories of the true and
the estimated popularities for two different contents along with
their observed requests. It can be seen that our proposed VB
method can accurately estimate the true underlying popularity
trajectory.

B. Real data

In this subsection, we examine the effect of the prediction
accuracy of the suggested dynamic model on the caching

0.16

0.14

0.12 I I I I I I I
20 40 60 80 100 120 140

Fig. 2: Parameter estimation error vs number of observations
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K,

1 I I I I I I I
20 10 60 80 100 120 140
T

Fig. 3: Average number of the inferred K,

policy defined in (1). We consider the MovieLens 20M as a
real-world dataset example [20]. From this, we choose ratings
over 6 years, from 1997 to 2002, where we select the most
popular M = 5000 movies. Similar to [11] and [5], a movie’s
rate is considered as one request for this movie. Since the
dataset does not contain the movie sizes, the elements of s
are uniformly randomly generated within (0, 100). Throughout
the simulations, cache capacity C; and back-haul constraint
constant C'y are chosen as percentages of the sum of content
sizes. Furthermore, the length of the time slots is considered
as two weeks.

The following popularity estimation methods are compared:

o« MLE-AIl: the popularity of a content is estimated by

Content ¢y

20

B0 30 10 50 60 70 80 " 100

Fig. 4: Requests, true and estimated popularity trajectories for 2 contents
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Fig. 6: The average CHR over time vs cache capacity C

taking the average of all the historical observations.
o« MLE-Recent: the popularity is the request frequency
during the last time slot.

I
o ARMA: requests are modeled as dp,y = > @idm t—; +
i=1

J
Yajnmy—jfort =1,...,Tand m =1,..., M, where I

=1
;nd J specify the order of the model, ¢; and «; are the
parameters, and n,, ; is white noise error term. We set [ =
J = 7 which is also used in [12]. For its implementation,
we used the econometrics MATLAB toolbox.

Fig. 5 illustrates the CHR variation over time for all pre-
diction approaches and for different back-haul costs. For these
simulations, we set C7 = 0.2. In this figure, we can see that
the our dynamic model outperforms other baselines especially
when C5 is large. The figure shows that as C decreases the
CHR decreases as well. This is expected, since as Cy decreases
the cache has more limitation to update its contents. Hence,
some contents whose popularities are outdated will be kept in
the cache which results in CHR reduction. In addition, we can
see that the ARMA performs poorly with respect to the other
approaches.

In Fig. 6, we show the average over time CHR versus
the cache capacity. We see that our model performs better
compared to the other methods for all Cy values. Moreover,
it can be observed that, for a fixed Cs, as C; increases the
CHR also increases. Therefore, in order to compensate the
CHR reduction due to the back-haul limitation one way is to
increase the cache capacity.

V. CONCLUSION

In this paper, we introduced a probabilistic model for
content popularity prediction in time-varying scenarios. The
model can capture the correlations among contents and there-
fore can improve the prediction accuracy. Further, we pro-
vided a fully Bayesian approach for accurate prediction under
uncertainty. To learn the model, we developed a VB based
approximation method which is scalable for large datasets.
In the simulation results, we showed that the VB approxi-
mation can learn the model parameters efficiently. We also
investigated how the prediction accuracy affects the caching
performance on a real-world dataset and we showed that our
model outperforms the state-of-the-art approaches.
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