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Abstract—Energy hub scheduling plays a vital role in optimally
integrating multiple energy vectors, e.g., electricity and gas, to
meet both heat and electricity demand. A scalable scheduling
model is needed to adapt to various energy sources and operating
conditions. This paper proposes a conditional random field
(CRF) method to analyse the intrinsic characteristics of energy
hub scheduling problems. Building on these characteristics, a
reinforcement learning (RL) model is designed to strategically
schedule power and natural gas exchanges as well as the energy
dispatch of energy hub. Case studies are performed by using
real-time digital simulator that enables dynamic interactions be-
tween scheduling decisions and operating conditions. Simulation
results show that the CRF-based RL method can approach the
theoretical optimal scheduling solution after 50 days training.
Scheduling decisions are particularly more dependent on received
price information during peak-demand period. The proposed
method can reduce 9.76% of operating cost and 1.388 ton of
carbon emissions per day, respectively.

Index Terms—Energy hub, price elasticity, real-time digital
simulator (RTDS), reinforcement learning (RL), conditional ran-
dom field, carbon reduction.

I. INTRODUCTION

Scheduling multiple energy carriers/vectors, e.g., coupled
electricity and gas networks, has received much attention in
recent years [1]–[4]. Motivation behind the scheduling is that
the electricity, natural gas, and distributed renewable energy
sources can be systematically and optimally integrated to
improve operating performance, e.g., carbon reduction [1],
cost minimization, reliability [2], and stability [3]. Model-
based optimization is an efficient tool to solve the scheduling
problem, under which the scheduling objective is designed
according to certain criteria, subject to technical constraints
[4]. Although designing energy hub scheduling as an opti-
mization problem yields a theoretically optimal solution, there
are still several major challenges. First, the scale of energy
hub may vary depending on network structures and types of
energy sources. The model-based optimization problem with
predefined parameters may not perform well if the practical
conditions cannot be accurately evaluated by model param-
eters. Second, the scheduling requires accurate prediction of
energy hub inputs and outputs, e.g., renewable generation and
energy demand. An off-line optimization may lose system
fidelity as this method fails to dynamically adapt with the
uncertainties of supply and demand. Third, the intrinsic char-
acteristics of energy dispatch responding to price signal, i.e.

price elasticity of power supply, is not captured by existing
optimization methods.

With respect to the first two challenges, model-free schedul-
ing becomes an alternative solution [5]. The reinforcement
learning (RL), as a typical model-free solution, can dynami-
cally optimize a control policy by updating a state-action value
function (Q-function) through interacting with systems [6].
From implementation and operational perspectives of energy
hub, the RL outperforms the model-based optimization in
terms of following aspects: 1) Instead of requiring predefined
parameters and assumptions, RL is simply based on historical
data, which enables the model to be more scalable and
compatible for various scales of energy hubs. Both compu-
tational and economical burdens of optimization tool can be
addressed; 2) When the problem is formulated as a multi-
objective optimization, objective functions do not always share
the same dimension, such as carbon emissions and operating
cost, whereas this dimensional difference can be eliminated
from historical data by using RL. In the literature [7], [8], the
RL was implemented for solving scheduling problems to assist
or replace model-based methods. Nonetheless, a common
method to obtain Q-function for power system scheduling
was based on off-line historical data. This off-line method
cannot dynamically adapt with system operating conditions
and update scheduling decisions.

In order to dynamically balance supply and demand, real-
time pricing scheme was studied in [9]. Given real-time pricing
scheme, energy hub operators face a challenging decision of
either importing electricity and natural gas from main grid or
energy dispatch within the energy hub. If this decision-making
is cleverly designed, it can enable energy hub to operate with
a minimal cost, by exploring the intrinsic characteristics of
energy hub operators, e.g., price elasticity. Although the price
responding strategies were well studied in existing literature
[10], [11], little progress has been made on the analysis of
price elasticity.

In this paper, a linear conditional random field (CRF)
method [12] is adopted as a logistic regression approach
to capture the temporal variations of scheduling behaviours
influenced by energy prices. This linear CRF provides a
statistical model for RL to make optimal decisions through
dynamically interacting with system operations. Compared
with naive Bayes methods [13], the logistic regression of



linear CRF is capable of modelling the energy hub scheduling
due to the discrete decisions of importing energy from main
grids and inside dispatch. Additionally, the linear CRF can be
accommodated by the RL through modelling the Q-function
as an expectation of operating cost with the merit of minimal
assumption for system model, such as statistical distribution
of energy prices.

In brief, this paper focuses on solving energy hub scheduling
problems by addressing several limitations in existing studies:

• The scalability of energy hub scheduling has to be ad-
dressed to better adapt with dynamic system conditions.

• The dependency of scheduling decisions on the energy
prices and their variations has not been studied by exist-
ing scheduling methods.

• The impacts of price elasticity variation on the scheduling
decisions have not been carefully studied.

To fill these research gaps, this paper makes the following
contributions:

• We propose a new CRF method to analyse dynamic price
elasticity of energy sources. Dependency of scheduling
decisions on energy prices and decision transient are
captured.

• RL model is developed to provide scalability guarantee
with minimal assumptions on model structures. Testbed
is developed using RTDS to dynamically interact between
the learning model and system operation.

• Carbon emissions caused by electricity and gas exchanges
and transmission loss within energy hub are considered
during scheduling to reduce total carbon emissions.

• Simulation results show that the proposed CRF method
successfully describes the dependency of scheduling de-
cisions on energy prices and the dependency of transient
action through real-time recursively updating weighting
factors. Both costs and carbon emission can be reduced
using this proposed method.

The remainder of this work is summarized as follows.
In Section II, the system model for energy hub scheduling
is introduced considering carbon mitigation. The CRF-based
RL for price elasticity modelling is presented in Section III.
Section IV conducts case studies to evaluate the proposed
method. Section V draws the conclusions.

II. SYSTEM MODEL

In this section, the overall energy hub model is illustrated
and the technical constraints involving carbon mitigation are
introduced as a preliminary for the proposed algorithm.

A. Energy Hub Components

To study the energy hub scheduling, You’s model [3] is
considered, which optimizes dispatch of multiple sources in
energy carriers with the objective of reducing operating costs
and improving system stability. In our proposed method, this
model is extended to involve the effects of dynamic price
elasticity on scheduling decisions and the carbon mitigation
during the operating process. We will first briefly discuss

energy hub components in You’s model, and readers can refer
to [3] for further details.

Fig. 1. Energy hub with electricity and natural gas networks.

The energy hub consists of power conditioning system
(PCS), combined heat and power (CHP) unit, boiler, photo-
voltaic (PV) panels, and electricity network as shown in Fig.
1. The PCS is installed at PV and CHP as a voltage source
inverter to improve grid voltage stability. The CHP converts
natural gas into electricity and recovers the generated heat
for supplying heat load. The boiler converts natural gas into
heat through heating contained fluid with higher efficiency
than CHP. The PV is a renewable energy source commonly
used in consumers’ domain to convert solar energy into direct
current (DC) electricity. The electricity network transmits the
electricity to demand side within the energy hub.

B. Technical Constraints

During the energy hub operations, some basic constraints
should be taken into account from technical perspective as
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The PCS controls active and reactive power as a voltage
source inverter through injecting or ejecting reactive power
constrained by real power and apparent power capacity as (1).
Electrical and thermal outputs of CHP are given by (2)-(3), in
which the real power, reactive power and heat are constrained
by (4)-(6). The heat power output of boiler is given by (7)
and constrained by maximum capacity as (8). The PV output
is given by (9) and constrained by (10) when PCS converts
DC to alternating current (AC).

C. Carbon Emissions Evaluation

Based on You’s model, carbon emissions during energy hub
operation are considered into the scheduling. The carbon emis-
sions are primarily caused by the electricity and natural gas
exchanges from main energy networks and the transmission
line loss within the energy hub, which results in an additional
cost due to purchasing the carbon tax. Thus, the goal is to
evaluate these portions of carbon emissions and introduce
an additional constraint for carbon mitigation. The carbon
emissions caused by electricity and natural gas exchanges can
be quantified through using carbon intensity I which is defined
as the amount of carbon emissions per unit of power/heat flow
with the unit of tCO2/MWh [14] as

I =
R

P
(11)

where I is carbon intensity, P is power or heat flow, and R
is carbon emission rate which quantifies the amount of carbon
emission per unit of time with the unit of tCO2/h.

With respect to carbon emissions caused by the transmission
line loss within the energy hub, the topology structure of
power networks needs to be considered. Given that power flow
distribution is based on proportional sharing principle [14],
the carbon emission distribution follows the same principle.
Denote i and j as inflow and outflow branches of bus z,
respectively. The carbon emission rate of outflow branch can
be expressed as the sum of carbon emissions of inflow branch
and bus-connected source

Rj =
X

i2z

Pi,jei +
X

s2z

Pses, (12)

where ei and es are carbon intensities in branch i and bus-
connected source s, respectively, and Pi,j is the share of power
flow in jth branch coming from ith branch Pi. According
to proportional sharing principle, Pi,j

Pj
= PiP

i2z Pi,j+
P

s2z Ps
.

Hence, the additional constraint for carbon mitigation is that
the total carbon emission rate from natural gas Rg , electricity
Re, and transmission loss Rj during the scheduling horizon
T is less than carbon emission limit as

TX

t=1

Rgt+Ret+Rjt  Emax, (13)

where Re and Rg are carbon emission rates for electricity and
natural gas, respectively, and Emax is carbon emission limit.

III. PROPOSED ALGORITHM

This section describes the proposed algorithm of CRF-based
RL for price elasticity modelling. The action space A for
energy hub scheduling consists of: decisions for electricity
exchange from main grid Ae, decisions for natural gas ex-
change from gas network Ag , decisions for dispatching gas to
CHP for producing electricity Ae,CHP and heat Ah,CHP, and
decisions for dispatching gas to boiler ABoiler. The control
actions for energy hub scheduling are binary variables, rep-
resenting the corresponding components to be switched on or
off: ae, ag, ae,CHP, ah,CHP, aBoiler 2 {0, 1}. The action vector a
is subsequently defined as a = (ae, ag, ae,CHP, ah,CHP, aBoiler).
The state space S of energy hub scheduling consists of: the
price of electricity Se and the price of natural gas Sg . The
state vector is subsequently defined by electricity price ⇡e and
natural gas price ⇡g as s = (⇡e,⇡g).

At the beginning of each scheduling interval t, market
operator announces the electricity and gas prices st =
(⇡t

e,⇡
t
g) to energy hub operator. Energy hub operator

then decides and dispatches the scheduling results at =
(ate, a

t
g, a

t
e,CHP, a

t
h,CHP, a

t
Boiler) at the end of scheduling interval

t. The goal of proposed algorithm is to introduce the dynamic
price elasticity of energy sources in energy hub so that given
observed states {s1, ..., st} and past actions {a1, ...,at�1}, the
probability of energy hub operator’ s decisions for energy
exchanges from main networks and inside dispatch at at t
can be analysed. With this analysis, the RL is performed to
obtain an optimal control policy for energy hub scheduling.

A. CRF for Elasticity Modelling

In our proposed algorithm, the linear CRF [12] is adopted
to describe the price elasticity of energy sources and action
transient dependency. Unlike the Hidden Markov Model [15]
to assume that the observed state variables are independent
with each other, in linear CRF, the action at current time t is
dependent on all the observed states {s1, ..., st}. This is more
suitable for considering practical scheduling problem, because
energy hub operator may make strategically decisions respond-
ing to price signal variations so as to minimize total daily op-
erating cost. The linear CRF obeys the Markov property [12],
which means that conditioned on st, action at at time t is inde-
pendent of action ak at time k, (k 6= t), given at+1 and at�1,
as p(at | a1, ...at, s1, ...st) = p(at | at�1,at+1, s1, ..., st).
Hence, the conditional probability p(at | st) is modelled as

p(at | st) = 1

Z(st)

Y

t

eµ
t�t(at,st)

Y

t�1

e�
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(14)
where �t(at, st) := atst is the state feature function to
describe the dependency of action at on state st at time
t,  t,t�1(at,at�1) := atat�1 is the transient feature func-
tion to describe the dependency of action at at time t on
action at�1 at time t � 1, µt and �t,t�1 are weighting
factors to describe the strength of these dependencies, and
Z(st) :=

P
at
Q

t e
µt�t(at,st)

Q
t�1 e

�t,t�1 t,t�1(at,at�1) is a



normalization factor. Motivated by the state feature function
and transient feature function, the weighting factors µt and
�t,t�1 can be defined as

µt :=
fst(at)

t
,�t,t�1 :=

fat�1(at)

t
, (15)

where fst(at) is the total amount of time in which the
action at is performed as on (at=1) given state st and
fat�1(at) is the total amount of time in which the action
at is performed as on (at=1) given that action at�1 is
performed as on (at�1=1). µt and �t,t�1 can be updated
at each time step when receiving new pieces of information
�st(at) and �at�1(at) as fst(at) = fst�1(at�1) + �st(at)
and fat�1(at) = fat�2(at�1) + �at�1(at). Hence, weighting
factors µt and �t,t�1 can be updated recursively as

µt =
fst�1(at�1) + �st(at)

t� 1
· t� 1

t
= µt�1+

1

t
[�st(a

t)�µt�1],

(16)
�t,t�1 = �t�1,t�2 +

1

t
[�at�1(at)� �t�1,t�2]. (17)

B. Reinforcement Learning

Fig. 2. Flowchart of the proposed algorithm.

Unlike You’s model [3] which only considers the cost
of importing energy from main network, our research also
involves the revenue from providing electricity and heat ser-
vices inside the energy hub as a compensation of cost, and
assumes that the electricity and gas prices of providing these
services are the same as the energy prices of importing.
Hence, considering aforementioned CRF-based price elasticity,
minimal cost of current state can be defined as the expectation

with respect to p(at | st) when the probability of importing
power from main grids becomes minimum p(at = 0 | st),
and the probability of inside dispatch of energy hub becomes
maximum p(at = 1 | st) as
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The objective of RL is to find a control policy h : S ! A

to minimize the total cost from state s1 to current state st,
which can be defined by Q-function as

Qh(at, st) = E{c(s0)+⇠c(s1)+⇠2c(s2)+ ...+⇠tc(st)} (19)

where ⇠ is discounting factor. The Q-function is a discounted
cumulative reward following policy h. Considering the objec-
tive of cost minimization, the optimal policy h⇤ is obtained
from minimized Q-function which is subject to constraints (1)-
(13) as

h⇤ 2 arg min
at,Pe,Pg,QCHP

e ,QPV
e

Q⇤(at, st) (20)

In the conclusion, the flowchart of proposed algorithm is
presented in Fig. 2 to visually represent the process of CRF-
based RL.

IV. NUMERICAL RESULTS

The performance of proposed method is evaluated through
numerical tests using real-time simulations. We used a modi-
fied 4-bus medium voltage distribution system [3] as shown in
Fig. 3. The electricity network and gas network are coupled at
bus 3 with a CHP and a boiler installed. The PV is installed at
bus 2. The data of hourly electricity load and PV generation
are obtained from Gridwatch [16] and the data of hourly heat
load is obtained from [17]. Both electricity and heat data are
scaled to energy hub model by proportion. For comparison,
we used the same parameters setting with You’s model [3]
and compared the performances on cost and carbon emissions.
The U.K. real-time price data was obtained from [18].

A. Simulator Set Up

In order to provide a real-time scheduling and performance
evaluation, the proposed energy hub scheduling model was
implemented on RTDS as shown in Fig. 4. Compared with
off-line simulators [19], [20] for establishing mathematical
representation of power system operation, the RTDS is capable
of interacting with real power system components. It operates
continuously to provide an ideal environment for testing
energy hub. The smart meters and controllers were modelled
by Data Acquisition and Actuator module, which provides an
interface between control commands and RTDS. After per-
forming CRF-based RL by Matlab, the scheduling results were
transmitted from Matlab back to RTDS by Giga-Transceiver
Analogue Input Card whereas the real-time operating signals



Fig. 3. 4-bus energy hub system on RTDS.

were transmitted from RTDS to Matlab by Giga-Transceiver
Analogue Output Card.

Fig. 4. Interactions Setup of Matlab/PC, RTDS and DAA.

B. Evaluation of Reinforcement Learning

1) Benchmark: To evaluate the effects of RL, a benchmark
is designed as the minimization of daily costs with the same

decision variables and constraints of (18) as below
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(21)
The optimization is solved by Matlab optimization toolbox.
This benchmark optimization yields a theoretically optimal
scheduling with predefined cost coefficients and carbon in-
tensities. The goal of our proposed algorithm is to obtain a
learning policy that approximates the optimal solution.

2) Learning Results: The simulations consist of 50 days of
historical hourly data. The weighting factors µt and �t,t�1 are
updated at each new time step recursively according to (16)
and (17) to describe the strength of state-action dependency
and state-transient dependency. The probability distribution of
weighting factors µt and �t,t�1 at each interval for electricity
and gas prices until day 50 is presented in Fig. 5. Each column
represents the distribution of the dependency for each control
action on various price levels from low to high. Each row
represents the difference of the dependency for various control
actions responding to the same price level. The dark blue
colour represents a lower value of dependency whereas the
bright yellow colour represents a higher value of dependency.
It can be seen that the probability of µt is higher during the
peak price period corresponding to peak demand, which means
that the action at is more dependent on received price infor-
mation. By contrast, �t,t�1 is relatively independent of the
price fluctuation, and thus presents homogeneous distribution
because it is only relevant to the transient between states.

ae ae a a aBoiler
Action Type

[min,20]
(20,24]
(24,28]
(28,32]
(32,36]
(36,40]
(40,44]
(44,48]
(48,52]
(52,56]
(56,60]
(60,64]
(64,68]

(68, max]

E
le

ct
ric

ity
 P

ric
e 

In
te

rv
al

 (£
/M

W
h)

(a)

0.1

0.2

0.3

0.4

0.5

0.6

ae ae a a aBoiler
Action Type

[min,20]
(20,24]
(24,28]
(28,32]
(32,36]
(36,40]
(40,44]
(44,48]
(48,52]
(52,56]
(56,60]
(60,64]
(64,68]

(68, max]

G
as

 p
ric

e 
In

te
rv

al
 (£

/M
W

h)

(b)

0.1

0.2

0.3

0.4

0.5

0.6

ae ae a a aBoiler
Action Type

[min,20]
(20,24]
(24,28]
(28,32]
(32,36]
(36,40]
(40,44]
(44,48]
(48,52]
(52,56]
(56,60]
(60,64]
(64,68]

(68, max]

E
le

ct
ric

ity
 P

ric
e 

In
te

rv
al

 (£
/M

W
h)

(c)

0.1

0.15

0.2

0.25

ae ae a a aBoiler
Action Type

[min,20]
(20,24]
(24,28]
(28,32]
(32,36]
(36,40]
(40,44]
(44,48]
(48,52]
(52,56]
(56,60]
(60,64]
(64,68]

(68, max]

G
as

 p
ric

e 
In

te
rv

al
 (£

/M
W

h)

0.1

0.15

0.2

(d)

Fig. 5. Probability distribution of weighting factors of µt and �t,t�1 at each
interval for (a) µt with ⇡e, (b) µt with ⇡g , (c) �t,t�1 with ⇡e, and (d)
�t,t�1 with ⇡g . The x-axis represents action type and the y-axis represents
price interval.

The results of RL after 10 days, 30 days, and 50 days for
various electricity prices are presented in Fig. 6. The outputs
of CHP electricity, power exchange, and corresponding real-
time electricity prices are selected as examples to compare the
learning results with benchmark optimization as (21). It can
be seen that with historical data accumulation, the learning
results are approaching to optimal solutions irrespective of
price information.
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Fig. 6. Illustration of learning process for electricity generated by CHP
(a)(b)(c), power exchange (d)(e)(f) with electricity prices (g)(h)(i). The day
number is indicated at the top of each column.

C. Evaluation of Cost and Carbon Reduction

We compare our proposed algorithm with the cost mini-
mization formulation in You’s work [3] as

min
Pe,Pg,QCHP

e ,QPV
e

ce(Pe) + cg(Pg), (22)

where Pe and Pg are electricity and natural gas importing
from main energy networks, respectively, and ce and cg are
corresponding costs. The cost minimization problem is sub-
ject to the same constraints (1)-(13). The scheduling outputs
and corresponding average carbon intensity are presented in
Fig. 7. Our proposed model realises 1.388 ton of daily carbon
reduction, i.e., from 6.956 ton to 5.568 ton per day. This
is primarily due to the peak electricity demand reduction by
using increasing proportion of gas, as the energy hub operator
is more sensitive to the peak-time price with considered price
elasticity. In addition, the daily costs are reduced by 9.76 %
from £ 3,012 to £ 2,718 considering the revenue from internal
energy supply.
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Fig. 7. Comparison of energy scheduling and carbon intensity for (a)
Scheduling from (22) and (b) proposed algorithm.

V. CONCLUSION

To improve the scalability of energy hub scheduling, this
paper proposed a new CRF-based RL method that is dif-
ferent from the existing model-based optimization methods.
In addition to the consideration of intrinsic price elasticity,
the proposed method explored the use of state action feature
and action transient feature; Hence the temporal variations
of scheduling behaviours influenced by energy prices can
be incorporated in the learning process. The learning was

implemented in a real-time digital simulation environment, ca-
pable of dynamically adapting the system operating conditions.
Simulations show that the weighting factors can accurately
capture the dependency features. During peak demand period,
the scheduling decisions were more dependent on price signal.
The RL can approximate the theoretical optimal scheduling
after 50 days of training. The carbon emissions and operating
cost can be significantly reduced using this proposed method.

VI. ACKNOWLEDGMENTS

This work was supported by the European Regional De-
velopment Fund (ERDF) project “Solid Wall Insulation In-
novation” (https://swiiproject.co.uk). The authors gratefully
acknowledge Durham County Council and Durham Energy
Institute for their strong and timely support.

REFERENCES

[1] M. Majidi, S. Nojavan, and K. Zare, “A cost-emission framework for
hub energy system under demand response program,” Energy, vol. 134,
pp. 157–166, 2017.

[2] Z. Zhou, C. Sun, R. Shi, Z. Chang, S. Zhou, and Y. Li, “Robust energy
scheduling in vehicle-to-grid networks,” IEEE Network, vol. 31, no. 2,
pp. 30–37, March 2017.

[3] M. You, W. Hua, M. Shahbazi, and H. Sun, “Energy hub scheduling
method with voltage stability considerations,” in 2018 IEEE/CIC Int.

Conf. ICCC Workshops. IEEE, 2018, pp. 196–200.
[4] P. S. Georgilakis and N. D. Hatziargyriou, “Unified power flow con-

trollers in smart power systems: models, methods, and future research,”
IET Smart Grid, vol. 2, no. 1, pp. 2–10, 2019.

[5] L. Maharjan, M. Ditsworth, M. Niraula, C. C. Narvaez, and B. Fahimi,
“Machine learning based energy management system for grid disaster
mitigation,” IET Smart Grid, vol. 2, pp. 172–182(10), June 2019.

[6] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[7] S. Vandael, B. Claessens, D. Ernst, T. Holvoet, and G. Deconinck,
“Reinforcement learning of heuristic ev fleet charging in a day-ahead
electricity market,” IEEE Trans. Smart Grid, vol. 6, no. 4, 2015.

[8] E. C. Kara, M. Berges, B. Krogh, and S. Kar, “Using smart devices for
system-level management and control in the smart grid: A reinforcement
learning framework,” in Int. Conf. SmartGridComm. IEEE, 2012.

[9] B. P. Bhattarai and et al., “Big data analytics in smart grids: state-of-
the-art, challenges, opportunities, and future directions,” IET Smart Grid,
vol. 2, pp. 141–154(13), June 2019.

[10] W. E. Elamin and M. F. Shaaban, “New real-time demand-side man-
agement approach for energy management systems,” IET Smart Grid,
vol. 2, pp. 183–191(8), June 2019.

[11] M. Zaery, E. M. Ahmed, and M. Orabi, “Low operational cost distributed
prioritised coordinated control for dc microgrids,” IET Smart Grid,
vol. 2, pp. 233–241(8), June 2019.

[12] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” 2001.

[13] L. Jiang, H. Zhang, and Z. Cai, “A novel bayes model: Hidden naive
bayes,” IEEE Trans. Knowledge and Data Eng., vol. 21, Oct 2009.

[14] C. Kang, T. Zhou, Q. Chen, J. Wang, Y. Sun, Q. Xia, and H. Yan,
“Carbon emission flow from generation to demand: A network-based
model,” IEEE Trans. Smart Grid, vol. 6, pp. 2386–2394, Sep. 2015.

[15] A. M. Gonzalez, A. M. S. Roque, and J. Garcia-Gonzalez, “Modeling
and forecasting electricity prices with input/output hidden markov mod-
els,” IEEE Trans. Power Syst., vol. 20, no. 1, pp. 13–24, Feb 2005.

[16] [Online]. Available: https://www.gridwatch.templar.co.uk/
[17] [Online]. Available: http://www.ukenergywatch.org/
[18] [Online]. Available: https://www.energybrokers.co.uk/electricity
[19] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “Mat-

power: Steady-state operations, planning, and analysis tools for power
systems research and education,” IEEE Trans. power syst., vol. 26, 2011.

[20] O. Anaya-Lara and E. Acha, “Modeling and analysis of custom power
systems by pscad/emtdc,” IEEE trans. power delivery, vol. 17, no. 1,
pp. 266–272, 2002.


