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Abstract-Ravel-XL is a single-board hardware accelerator for 
gate-level digital logic simulation. It uses a standard levelized- 
code approach to statically schedule gate evaluations. However, 
unlike previous approaches based on levelized-code scheduling, it 
is not limited to zero- or unit-delay gate models and can provide 
timing accuracy comparable to that obtained from event-driven 
methods. We review the synchronous waveform algebra that 
forms the basis of the Ravel-XL simulation algorithm, present 
an architecture for its hardware realization, and describe an 
implementation of this architecture as a single VLSI chip. The 
chip has about 900 000 transistors on a die that is approximately 
1.4 cm’, requires a 256 pin package and is designed to run at 
33 MHz. A Ravel-XL board consisting of the processor chip 
and local instruction and data memory can simulate up to 
one billion gates at a rate of approximately 6.6 million gate 
evaluations per second. To better appreciate the tradeoffs made 
in designing Ravel-XL, we compare its capabilities to those of 
other commercial and research software simulators and hardware 
accelerators. 

Index Terms-Hardware accelerators, simulation engines, lev- 
elized compiled code, digital logic simulation, timing analysis, 
design verification, special purpose architectures. 

I. INTRODUCTION 

ESPITE PROMISING advances over the last few years D in correct-by-construction logic synthesis [5] and formal 
(functional) verification [8], logic simulation has yet to be 
dislodged from its role as an indispensable method for de- 
sign verification of large digital systems. Logic simulation 
is utilized by digital integrated-circuit designers at many 
stages of the design process, from early architectural studies 
to final foundry sign-off simulations using back-annotated 
delays and complex switch-level or mixed-signal simulation 
algorithms. While some simulators, notably those for hardware 
description languages (HDL’s) such as Verilog and VHDL, 
are flexible enough to be used at all stages of a design, 
the verification requirements-in terms of abstraction level 
and accuracy-change at each stage. In general, lowering the 
abstraction level increases the model’s accuracy and reduces 
simulation speed. It is, therefore, common to use different 
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simulation point-tools at each stage of the design to address 
the specific requirements of the designer. 

Digital circuit simulators can be classified into two main 
categories based on the scheduling algorithm they employ for 
gate evaluation: statically scheduled levelized-code (LC) [3], 
[6], [27], 1401 versus dynamically scheduled event-driven (ED) 
[22], [28], [29], [39]. LC algorithms arrange the logic gates 
so that they are evaluated according to a partial ordering that 
ensures causality. During simulation, all gates are evaluated 
in each clock cycle, regardless of whether their inputs have 
changed since the last cycle. ED algorithms attempt to reduce 
the number of gat2 evaluations by dynamically scheduling, 
at run-time, only those gates whose inputs have changed. 
Often only a small fraction of the signals in a circuit change 
state each cycle so the savings is potentially large. Such 
savings, however, must be offset by the cost associated with 
the handling and scheduling of these state-change events. To 
maintain efficiency, ED methods require careful design of their 
data structures and event schedulers; their performance is best 
at low levels of circuit activity. 

Orthogonal to the issue of the gate scheduling algorithm 
is the question of whether the simulator is interpreted or 
compiled. An interpreted simulator steps through the circuit 
by traversing a data structure representing the circuit graph, 
generally using time-consuming indirect addressing modes, 
and alternating between graph traversal and gate evaluation 
using subroutine calls and returns. As described by Lewis 
[25], circuit compilation is essentially a preprocessing step 
that symbolically executes the simulation to “uncover” data 
structures that can be statically allocated. This eliminates the 
code required for circuit-graph traversal, which becomes hard- 
coded into the simulator kernel, and replaces most indirect 
memory references with direct references to static addresses. 
Compilation also tends to unroll most loops and “in-line” many 
function calls, thereby reducing context switch overhead and 
increasing the amount of instruction-level parallelism available 
for use by parallel and superscalar processors. Circuit compi- 
lation, thus, tends to increase the efficiency and speed of the 
simulation at the cost of greater pre-processing time and larger 
code size. Historically, most ED simulators were interpreted, 
and most LC simulators were compiled. Recent research on 
threaded-code techniques [22], [28], [29], however, has led to 
the development of compilers for ED algorithms as well. 

The simplest logic simulators incorporate only two-valued 
logic models and make no attempt to simulate circuit timing 
(so-called zero-delay models) [3], [40], [41]. This level of 
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abstraction was traditionally the domain of LC simulators, 
as the zero-delay model most closely matches the single-pass 
levelized gate scheduling algorithm (the presence of circuit 
delays introduces the possibility of hazards on the gate output 
which cannot be simulated in a single pass through the circuit). 
Zero-delay simulation is extremely fast but is useful only in 
the early phases of the design process when the only goal is 
functional verification. The dominance of LC techniques in 
this domain is hard to dispute. 

ED algorithms are more naturally suited to the task of 
simulation with more complex timing models. Their ability 
to follow simulation activity through the circuit allows those 
gates with hazards to be simulated as often as necessary to 
obtain complete output waveforms, and arbitrarily complex 
timing models may be used to calculate the time at which 
fanout gates must be scheduled. Even so, LC simulation with 
circuit delays is possible. Maurer [27] has developed an LC 
algorithm which traces all possible paths through the circuit 
to obtain, for each gate, the set of all times at whch the gate 
couldpossibly change, and schedules the gate for evaluation at 
each of those times. This allows more complex timing models, 
such as unit or assigned (multiple) delay, to be used but at the 
cost of many, often unnecessary, evaluations per gate. Thus, 
such approaches have little chance of obtaining competitive 
simulation speed [2 11. 

Because circuits with asynchronous feedback cannot be 
“levelized,” ED algorithms handle circuits with asynchronous 
feedback much more naturally than LC methods. However, 
iterative LC evaluation techniques can be used to simulate an 
asynchronous circuit until it stabilizes [41]. Often, as in the 
case of the feedback paths in the cross-coupled gates of an 
RS-latch, only one or two iterations are necessary. 

Because of their ability to handle more complex timing 
models, as well as asynchronous feedback, ED algorithms 
are dominant late in the design process when circuit timing 
must be verified. However, this perceived dominance is worth 
questioning. The ED algorithm produces a complete waveform 
at each signal, showing the time and value of every transition 
before the signal stabilizes. Usually this is more information 
than is needed for design validation. Except on signals that are 
used to gate primary clocks, the presence of hazards in well- 
designed synchronous circuits is of little concern. Generally, 
all a designer is concerned with when verifying correct timing 
behavior is whether interface signals and latchlflip-flop inputs 
meet their setup and hold constraints. This implies that there 
are only two signal events which are of interest during each 
clock cycle, thejirst and last, and any time spent evaluating 
the transitions in-between is wasted. The application of delay- 
accurate simulation to verify setup and hold constraints in 
real circuits also leaves no place for arbitrarily chosen timing 
models, such as unit-delay, that have no relation to real circuit 
delays-the simulator must support gate delay values with 
enough resolution to accurately represent the range of lumped 
gatelinterconnect delays provided by circuit back-annotation 
tools. 

We recently described an LC simulation model and algo- 
rithm called Ravel that addresses these observations [31], [32], 
[37]. The Ravel model is an extension of a timing model that 

was developed specifically to analyze and optimize the setup 
and hold constraints in multiphase synchronous circuits that 
employ level-sensitive latches [34], [35]. Ravel is based on a 
synchronous model for logic signals which records two events 
per cycle, the first and last. Using a “waveform” algebra based 
on this two eventkycle assumption, it calculates the stable 
signal values at the beginning and end of each cycle as well 
as the width of the changing interval in between. The event 
times at a gate output are calculated by a combination of min 
and max functions that depend not only on input event times 
but also on their logic values. These times are exact (identical 
to what an ED algorithm computes) as long as all signals in 
the circuit undergo at most two events in each clock period. 
The calculated event times may still be exact even when some 
signals experience three or more events in a clock cycle. 
Generally, though, the computed event times are only bounds 
on the actual event times if the 2 eventkycle assumption is 
violated. 

Historically, the highest performing logic simulation meth- 
ods rely on custom hardware accelerators to boost perfor- 
mance several orders of magnitude beyond what is achievable 
with software simulators [ll,  [21, [41, [91, [151, 1171, [231, 
[33], [43]. More recently, hardware emulators based on field- 
programmable gate arrays (FPGA’s) [30] have become popular 
high-end alternatives because of their faster speeds and their 
reconfigurability. In both cases, however, this performance 
premium comes at a steep cost, and such options are usually 
reserved to the verification of high-volume products such as 
microprocessors. 

The Ravel-XL system described in this paper is a single- 
board hardware realization of the Ravel algorithm designed 
to maximize simulation speed while remaining simple and 
inexpensive. The board consists of a custom CPU chip, an 
asynchronous bus interface to a host processor, and external 
memory. In contrast to ED-based accelerators which require 
sophisticated hardware support for event handling [I], [2], the 
Ravel algorithm leads to a remarkably simple implementation. 
Similar to modern general-purpose CPU’s, the Ravel-XL chip 
features a pipelined datapath that is supported by a two-level 
memory hierarchy optimized for the memory requirements 
of the datapath. In addition, the architecture uses a compact 
representation for data (one 32 b word per signal) and provides 
custom hardware instructions to perform the min and m m  
operations necessary to compute signal waveforms. In its 
current implementation, Ravel-XL can simulate circuits with 
up to four distinct clock phases sharing a common cycle time. 
It has instructions to simulate the basic set of logic gates 
(AND/NAND, O W O R ,  XOR/XNOR, INV/BUF) with a fan- 
in limit of 16 inputs. It also models level-sensitive latches as 
well as edge-triggered flip-flops, and can be enabled to perform 
setup and hold violation checks. As discussed in Section VII- 
A, Ravel-XL is currently limited in its ability to model tri-state 
gates and gated-clocks. 

The Ravel-XL board is designed to operate as a dedicated 
co-processor to a general-purpose host computer using an 
interrupt-driven asynchronous interface. In this configuration, 
the host processor is expected to maintain the user interface 
to the simulation process, to download the “compiled” circuit 
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Fig. 1. Ravel-XL system board 

and test vectors to Ravel-XL and to read back the resulting 
output waveforms. Ravel-XL maintains the simulation data 
and instructions in its own local memory space, enabling 
it to run at a speed that is independent of the host speed 
or that of the interface channel. The architecture allows 
for addressing up to 1 G-word each of physical data and 
instruction memory allowing designs of up to 1 billion gates 
to be modeled. For example, a million gate circuit such as a 
modern microprocessor can be accommodated with 16 4MB 
DRAM chips on the board. 

The custom Ravel-XL chip, designed in a 0.8-p three- 
metal CMOS process, consists of about 900000 transis- 
tors-including a 2 K word data cache-and occupies roughly 
1.4 cm2 of die area in a 256-pin package. Running at 33 
MHz, it dissipates about 1.1 W and runs about 30 times faster 
than the software implementation on a workstation with the 
same clock rate. A prototype system board, shown in Fig. 1, 
will consist of the Ravel-XL chip, external code and data 
memories, an interface to the Digital Equipment Corporation 
(DEC) TURBOchannelTM bus backplane [ 161 realized with 
the DEC TcIATM (TURBOchannel Interface ASIC) chip [14], 
and a small number of glue-logic chips, initialization ROMs, 
and bus-driver chips. It is designed to operate as a peripheral 
device on a DEC workstation. 

The remainder of this paper is organized as follows. Section 
I1 reviews the Ravel simulation model and algorithm. Section 
Ill summarizes the Ravel-XL design goals. Section IV de- 
scribes the architecture of the Ravel-XL chip, including the 
instruction set, pipeline and memory-system design and host 
interface. The implementation of this architecture is discussed 
in Section V. Section VI analyzes the performance of Ravel- 
XL and provides comparisons to representative software sim- 
ulators and hardware accelerators. Section VI1 discusses our 
future plans for the Ravel-XL project, and Section VI11 closes 
the paper with some remarks summarizing our contribution. 

11. RAVEL MODEL OVERVIEW 
A mathematical model of the timing behavior of syn- 

chronous sequential circuits was introduced in [34], 1351 
and used as the basis for efficient timing verification and 
clock schedule optimization algorithms. This general model 
views the circuit as a graph whose vertices are clocked state 
devices-referred to as synchronizers to emphasize their role 
in insuring synchronous operation-which are either edge- 
triggered D flip-flops or level-sensitive D latches. Edges in the 
graph model the combinational logic between synchronizers 
and are labeled with the minimum and maximum path delays 
through the logic. The flow of data signals through the syn- 
chronizers is regulated by a set of periodic signals, collectively 
referred to as the clock, that share a common clock period and 

that provide a time reference for specifying the event times of 
the data signals. Each data signal is described in terms of the 
times of its earliest and latest transition events in one complete 
period of an appropriate clock signal. Data signals are assumed 
to have unspecified stable logic values at the beginning and 
end of each clock period; they are assumed to be changing 
and unknown between their earliest and latest event times. 

The Ravel LC logic simulator [31], [32], [37] extended 
the above model for use in logic simulation by requiring 
the stable values of data signals at the beginning and end 
of each clock cycle to be completely specified. Ravel models 
the circuit as a graph whose vertices represent the logic gates 
as well as the synchronizers. It views each data signal as 
a “waveform” and provides a set of equations for logically 
combining such waveforms. The resulting waveform algebra is 
unique in that it explicitly shows the relationship between the 
logic values and event times of the data signals in a circuit and 
allows the event times to be calculated accurately by a simple 
levelized traversal of the combinational logic. The remainder 
of this section summarizes those features of the Ravel model 
that must be considered in a hardware implementation of its 
simulation algorithm. 

A. Signal Model 

The models for clock and data signals are summarized in 
Fig. 2. The circuit is assumed to have k clock signals, or 
phases, labeled 41, . . . , & that share a common cycle time T,. 
Each clock phase defines a local frame of reference-whose 
origin coincides with its latching edge-for specifying event 
times of corresponding data signals. Phase # j p  is characterized 
by two parameters: Tp, the width of its active interval and 
e p ,  the occurrence time of its latching edge in a suitably 
chosen global frame of reference.’ The phases can overlap 
and are not required to have the same duty cycle, but must 
be numbered so that their latching edges are totally ordered: 
el 5 e2 5 . . .  5 e k .  Furthermore, the global frame of 
reference is chosen so that ek = T,. The duration of the time 
interval between consecutive latching edges of phases p and r 
is referred to as the phase shift Epr [lo] 

if (e, > e,) 
p r  - { (T, + e, - e P )  if (e ,  < .,> (e,  - e p )  E -  

= T, - ( ep - e,) mod T, (1) 

and allows for the translation of event times between these 
two phases. Denoting the occurrence time of a certain event i 
in the current local frame of reference of phase p by t ,  (4,), 
the same event is seen to occur at 

t z (# jr )  = t z ( # j p )  - Epr (2) 

in the next local frame of reference of phase T .  It is important 
to note that the use of phase-relative frames of reference and 
modulo arithmetic restricts data event times to a dynamic range 
with a spread of at most 2T,. 

‘Without loss of generality, level-sensitive latches are assumed to be active 
high and flip-flops are assumed to be negative edge-triggered. Under these 
assumptions, the active interval of a clock phase occurs when the phase IS 

high, and its latching edge is the falling transition 
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Fig. 2. Models for clock (a) and data (b) signals. 

As shown in Fig. 2(b), the waveform of a data signal x, is 
an alternating sequence of stable and changing intervals. In any 
given cycle of operation this waveform is specified by a four- 
tuple (w,, a,  A,, %) where v, and V,  are the stable values at the 
start and end of the cycle, and where a, and A, are the event 
times of the first and last transitions during the cycle in the 
local frame of reference of some clock signal &. The domain of 
v, and V,  is the three-valued set {0,1, STABLE) representing 
the binary logic constants and a stable but unspecified logic 
value. Event times, in general, must be modeled as real 
numbers, but are usually restricted to the integers by choosing 
a suitable resolution. The two event times must obey the 
ordering a, 5 A, and, for correct synchronous operation, 
0 5 A, - a, < T, (the situation A, < a, can be used to indicate 
that a signal is stable throughout the clock cycle, since in this 
case the event times are ambiguous). 

B. Logic Gate Model 
Ravel uses a back-end pure propagation delay model for 

logic gates. Other delay models, such as inertial, rise/fall, and 
front-end delay, are also possible but will not be elaborated 
further. Gate delay is specified by two parameters 0 5 6 5 A 
representing the minimum and maximum signal propagation 
delays through the gate. This delay range can be viewed 
as a statisfical spread over an entire family of gates, or as 
the deterministic difference between the shortest and longest 
signals paths within a single gate. A “nominal” delay model 
is achieved by setting S = A. 

The basic operation performed by Ravel concerns the eval- 
uation of the signal waveform (v,, ay, Ay, V,) at the out- 
put y of a logic-gate in terms of the n signal waveforms 
( V I ,  a l , A I ,  VI), .. . , (U,, a,, A,, V,) at its inputs. It is as- 
sumed that the gate’s input waveforms have been translated 
in time to a common frame of reference using (2). Denoting 
the logic function of the gate by f ,  gate evaluation can be 
summarized by the following set of four equations: 

vy = f ( V l , V 2 , .  . . ,U,) 
v y  = f (Vl , v2, . . . , V,) 

(3) 

where c, and C, are Boolean Bags indicating the presence or 
absence of early and late controlling values2 on input xi, and 

’A controlling value on a gate input is one which always determines the 
output value of the logic gate, regardless of its other inputs. A logic-one is the 
controlling value for ANDNAND gates, and a logic-zero is the controlling 
value for ORNOR gates. The XOR gate has no controlling value. 

a, and AM represent the times of the first and last events 
over all inputs to the gate: 

a,  = min (a,) 
1IzSn 

lLz<n AM = max (A%). (4) 

To avoid confusion, the “+” and “V” symbols in (3) denote, 
respectively, arithmetic addition and logical inclusive OR. 
Juxtaposition in these equations denotes logical AND. 

C. Synchronizer Model 

The Ravel model of a D-type latch or flip-flop expresses 
the next-cycle waveform ( v z ,  a;, A:, V$) at the Q output in 
terms of the current-cycle waveform (VD , U D  , AD, VD) at the 
D input. Both waveforms are specified in a frame of reference 
defined by the controlling clock phase aP. The early and late 
next-cycle Q values for both latches and flip-flops are obtained 
using the familiar next-state equation Q+ = D for D-type 
memory elements: 

On the other hand, the early and late output event times depend 
on the triggering mechanism. For edge-triggered flip-flops, 
these times are calculated according to 

where S and A denote the (back-end) minimum and maximum 
signal propagation delays through the flip-flop. The output 
event times for level-sensitive latches require a slightly more 
complex calculation: 

a: = S + max(aD, T, - Tp) 
A& 1 A + max(AD, T, - TP) (7) 

where Tp is the width of the active interval of phase 4p .  
For either triggering mechanism, the following hold and 

setup constraints must be satisfied for correct latching of input 
data: 

, 

aD ?ff 
A D < T , - S  (8) 

where H and S are specified hold and setup parameters. 

D. Ravel Code Generation 

Equations (1)-(8) form the basis of the Ravel LC simulator. 
Ravel accepts as input a gate-level synchronous sequential 
circuit along with a completely-specified multiphase clock 
schedule, and produces as output a customized “compiled” 
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simulator for this circuit based on the above equations. The 
compilation process involves a levelized traversal of the circuit 
graph from the primary inputs and synchronizer outputs to the 
primary outputs and synchronizer inputs, and the generation 
of a “program” that simulates one clock cycle of operation. 
The code sequence in this program for a single-output combi- 
national circuit fragment sandwiched between a set of source 
synchronizers and a single destination synchronizer is roughly 
as follows.3 

Using the phase shift equations (1) and (2), shift each 
source synchronizer output waveform from its respective 
frame of reference to the frame of reference defined by 
the clock phase of the destination synchronizer. This 
‘change-of-origin is necessary in order to insure that the 
waveforms are properly processed by the combinational 
logic. 
In level order, apply the gate evaluations (3)-(4) to all 
gates in this circuit fragment. 
Check the hold and setup constraints (8) at the input of 
the destination synchronizer. 
Evaluate the waveforms at the outputs of the destination 
synchronizer using (5)-(7). 

As described in [34], clock phases are totally ordered based 
on the occurrence times of their latching edges in a global 
frame of reference. Within the generated simulation program, 
the code sequences corresponding to different destination syn- 
chronizers are arranged in a partial ordering that is consistent 
with this total order on the clock phases. 

111. RAVEL-XL DESIGN GOALS 

The Ravel-XL system implements the Ravel simulation al- 
gorithm in hardware. Its design was guided by three objectives. 
Listed according to their priority, they are the following: 

1) to maximize performance, 
2) to maximize capacity, and 
3) to minimize cost. 

The bulk of this paper describes the design choices we made to 
address the performance objective. Capacity was maximized 
through the use of bit-efficient data and instruction formats, 
and the design of a memory system which does not degrade 
significantly in performance when simulating large circuits, 
making feasible the simulation of circuits with up to a billion 
gates. Cost was minimized indirectly by rejecting expensive 
design options and by requiring the whole system to fit on a 
single printed-circuit board. 

The performance goal is measured in terms of the effective 
number of gates processed pes second, EGPS, and is given by 

- f c  - 
1 

IPG x CPI x Tc x A 
GEPS 

A 

EGPS = 
CPG x A 

(9) - - 

where 
IPG is the average number of instructions required to 

3Primary inputs and outputs can be easily accommodated by inserting 

process one gate; 

fictitious synchronizers. 

CPI is the average number of processor cycles required 
to complete one instruction; 
T, and f c  are, respectively, the processor cycle time in 
seconds and corresponding clock frequency in Hz; 
CPG = IPG x CPI is the average number of processor 
cycles required to process one gate; 
GEPS = fc + CPG is the number of gate evaluations 
performed each second, and is the most prevalent metric 
in the literature; 
A is the activity level of the circuit expressed as the 
percentage of gates that must be processed in each 
simulated cycle of operation. 

Accounting for circuit activity makes (9) a consistent metric 
for comparing the performance of ED as well as LC simulators 
and accelerators. For LC techniques, A should be set to 1 
to reflect the fact that all gates are processed regardless of 
the actual circuit activity. In reporting performance figures 
we will frequently use M-EGPS to denote a million effective 
gate evaluations per second. We should note that IPG usually 
depends on the number of gate inputs. Multiplying EGPS 
by the average number of inputdgate yields the average 
number of evaluated inputs per second (EIPS) which is often 
more meaningful when discussing individual circuits. Unless 
explicitly stated otherwise, when deriving EGPS figures we 
will assume that IPG is based on two-input gate. 

IV. RAVEL-XL ARCHITECTURE 

In this section we develop a hardware architecture for the 
Ravel algorithm that meets the above goals. Specifically, this 
architecture reduces CPG: 1) by minimizing the data storage 
requirements through the use of compact data and instruction 
formats, 2) by exploiting the inherent concurrency in the 
algorithm through the use of pipelined parallel functional units 
in a custom datapath, and 3) by reducing the impact of high 
memory traffic through careful matching of the design of the 
memory system to the data and code access patterns. The other 
factor in the performance equation, namely, the frequency of 
operation, depends on the implementation of this architecture; 
implementation issues are discussed in Section V. 

A. Signal Representation 
The software implementation of Ravel requires four 32 b 

words to represent the waveform (v, , U,, A,, V,) of each gate 
output y: two words to hold the arrival times, and two words 
to hold the logic values. This liberal use of memory space, 
particularly for storing logic values, is dictated primarily by 
the desire to avoid the insertion of performance-degrading bit 
packing and unpacking operations in the instruction stream. 
In contrast, a custom-designed accelerator can have compact 
data formats with no penalty, and possibly some gain, in 
performance. 

Signal waveforms in Ravel-XL are stored as 32 b words 
with 2 b fields for the logic values and 14 b fields for the 
arrival times. The 2 b value fields permit the encoding of the 
binary logic values 0 and 1 as well as the stable unspecified 
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0 

value according to the following table: 

0 0 

1 1 1 0 , l  1 STABLEI 

n n Register Files 

f t  c L___i 
I I 

I Gate Evaluation Unit / vwlatm detection \ 
The use of 14 b time fields is justified by recalling, from 
Section 11-A, that the dynamic range of signal times is at 
most 2T,. Thus, for T, = 10 ns the minimum resolvable time 
in a 14 b representation is about 1.2 ps. The time fields are 
considered to be unsigned integers ranging from 0 to 16384. 
To represent the negative time values that may arise during 
the phase shift calculation at the start of each evaluation cycle 
(see Section 11-D), all signal times are biased so that the most 
negative time that must be represented is mapped to 0. It is 
easy to show that the most negative time value that must be 
considered is - ( m u p  Tp) and that it occurs at the output 
of level-sensitive latches controlled by the clock phase with 
the widest active interval. The bias value is calculated from 
the clock parameters by the host computer which adds it to 
(subtracts it from) the signal times that are downloaded to 
(uploaded from) Ravel-XL. 

B. Custom Hardware Datapath 

The core of the Ravel-XL chip is a gate/synchronizer 
evaluation unit that implements (1)-(8). The gate evaluations 
(3)-(4) are “unrolled” and calculated iteratively using the 
template: 

Y = G(Q,  2 2 ) ;  

for i = 3 to n 

Y = G(Y,G) (10) 

where 9 represents a logic value or event time at the gate 
output, 21, . . . , x, represent the corresponding variables at 
the gate inputs, and G denotes the appropriate inpuv‘output 
transformation (logical, min, or max). Using this algorithm, 
the output waveform of an n-input gate can be computed in 
2(n - 1) + 1 steps: (n  - 1) steps to calculate a, and AM 
from (41, and (n - 1) + 1 = n steps to calculate the zero- 
delay output waveform using (10) and to add the appropriate 
gate delay using (3 ) .  A simple manipulation of the arrival time 
equations in (3) allows a, and AM to be factored out of the 
max and min functions yielding 

al, = S + [ ~ ~ a ~  v cy max ( c , ~ , ) ]  

A, = A + [??,AM v Cy min (E, v A,)] (1 1) 

where cy and Cy =e boolean flags indicating, respectively, the 
presence of one or more inputs with early and late controlling 
values: 

l < z < n  

1<z<n 

cy = c1 v c2 v ’ . . v en 
cy = c1 v cz v . . . v c,. (12) 

Fig. 3. Block diagram of the custom Ravel-XL gate evaluation datapath. 

Use of (11) and (12) instead of (3)  reduces the number of 
required computation steps to just4 n. 

Fig. 3 is a schematic diagram of the gatelsynchronizer 
evaluation unit highlighting its main components. The datapath 
has several register banks that are used to hold the computation 
operands and a set of functional units for performing the 
required operations. The registers can be conveniently divided 
into two groups based on how they are accessed by the 
functional units. 

1) Read-only registers that are loaded with “constant” pa- 
rameters by the host computer before Ravel-XL starts 
the simulation. This group includes a single 14 b register 
T, that holds the cycle time, four 14 b registers that hold 
the occurrence time (T, - TP) of the enabling edge of 
each clock phase, and a bank of 16 14 b registers, PSH, 
that hold the phase shifts between each pair of phases 
as computed by (1). 

2) R e a m r i t e  registers (shown with a shadow in Fig. 3 )  
that are loaded from the code and data memories and 
read by the functional units during the simulation. This 
group includes: 
a) two 14 b registers S and A that hold, respectively, 

the minimum and maximum signal delay of the gate 
or synchronizer being evaluated; 

b) two 14 b registers that contain, respectively, the hold 
time H and the difference between the clock period 
and the setup time (T, - S) for the synchronizer 
being evaluated; 

c) a bank of 16 32 b registers that hold the input 
waveforms for the gate under evaluation. 

The datapath consists of nine independent functional units 
that implement the gate and synchronizer evaluation equations. 
Synchronizer evaluation is handled by three units: 

1) the synchronizer unit which computes the signal wave- 
forms at the outputs of flip-flops and latches using 
(5)-(7), 

2) the phase shift unit which implements (2), and 
3) the violation detection unit which checks for setup and 

The remaining six units handle the evaluation of logic gates: 
1) Unit vy calculates the early logic value at the gate output. 
2)  Unit V, calculates the late logic value at the gate output. 
3) Unit MIN computes Inin(??, V A,) in (1 1) and Cy from 

hold violations using (8). 

(12). 
4Stn~tly speaking, thls i s  true only when n 2 2. For single-input gates, 

the mmimum number of computaaon steps i s  2. 
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Fig. 4. A schematic of the datapath unit that computes min(C, V A , )  in 
(11). Here, “ControIling Value’’ is the binary controlling logic value of the 
gate type being evaluated. During the first cycle “Start” is enabled and two 
operands, (VI, AI 1 and (V2, Az), are brought in. During all other cycles, 
i = 3 . . . n,, “Start” is disabled and the input (V,,  A,) is combined with the 
current cumulative result stored in the output register. 

4) Unit MAX computes max(c,ai) in (1 1) and cy from (12). 
5 )  Unit a, calculates the time of the earliest input event 

6) Unit AM calculates the time of the latest input event 

The gate evaluation units operate in parallel, each using the 
iterative template (10). As an illustration, Fig. 4 shows the 
portion of functional unit M I N  responsible for computing 
min(c,  v A,). 

using (4). 

using (4). 

C. Instruction Set 

Ravel-XL has seven instructions: four to perform the various 
simulation computations, two to handle communication with 
the host computer, and a NOP (No Operation) for debugging, 
Three of the simulation instructions are CISC-style instructions 
that are in one-to-one correspondence with the equations for 
gate evaluation, synchronizer evaluation and phase shifting. 
To reduce code length and still allow full access to a 32 
b word-addressable address space these instructions use a 
base-displacement addressing mode [ 191: the address of a 
word-aligned operand is obtained by concatenating a 16 b 
value from a base register with the 16 b positive displacement 
field in the instruction. The chip has 17 16 b base registers 
that are implicitly paired with the input and output operands 
of gates and synchronizers. The fourth simulation instruction is 
used to reload these base registers when it becomes necessary 
to address operands beyond 64 K-words from the current base. 

The remainder of this section provides a detailed description 
of the instructions; the instruction formats are summarized in 
Fig. 5. 

The four simulation instructions are as follows: GEV for 
- Gate EJaluation, SEV for Synchronizer maluation, PSH for 
- Phase sift calculation, and LDB for LoaDB are registers. 

GEV is a variable-length instruction that computes the 
output signal waveform for gates with up to 16 inputs. For 
an n-input gate the instruction is 2 + [n/21 32 b words long 
and must be padded with zeros so that it is word-aligned when 
the number of gate inputs is odd. The instruction can simulate 
any of the eight basic gate types which are identified by the 
TYPE field. 

SEV computes the signal waveform at the output of a 
synchronizer in terms of the input waveform and the clock 
parameters. The synchronizer type (flip-flop or latch) is in- 
dicated by a 1 b flag FF, and the controlling clock phase is 
specified in a 2 b field PH. The instruction can be enabled to 
perform a setuphold check by setting the 1 b SHC flag. To 
avoid propagating false signal departure times from the outputs 
of synchronizers with setup violations, synchronizer output 
departure times are clipped by the hardware to a maximum 
value of T, + A. 

PSH implements (2). It subtracts the phase shift value stored 
in the indicated PSH register from the event times of the 
indicated signal waveform. 

LDB loads a new base address into the indicated base regis- 
ter. When the ALL flag is set the base address is written to all 
seventeen base registers, which is useful during initialization. 

The two instructions used for host communication are 
ENDS and WAIT. Both cause Ravel-XL to send an interrupt 
to the host and to pause until the host responds with a suitable 
command. ENDS is used to indicate the completion of a 
simulated clock cycle, and that Ravel-XL is ready for the next 
set of input patterns. WAIT instructions can be inserted in 
the simulation code to force breakpoints during execution; 
they are useful for debugging by allowing single-stepping, 
and can also be used for synchronization in a multiprocessor 
implementation of Ravel-XL (see Section VII-C). 

D. Pipeline Design 

For a typical circuit, with many more gates than synchro- 
nizers, simulation code based on the above instruction set 
is clearly dominated by the GEV instruction. This, in turn, 
implies that the overall performance of Ravel-XL is strongly 
dependent on an efficient implementation of GEV. In this 
section we analyze the communication and computational 
requirements of the GEV instruction and describe the design 
of a pipeline that minimizes its execution time. 

The execution of a GEV instruction for an n-input gate is 
naturally decomposed into four steps. These steps, and the 
number of processor clock cycles needed to complete each, 
are readily shown to be the following: 

instruction fetch, requiring ( 2  + rn/21).: cycles; 
input waveforms fetch, requiring ~ L Q  cycles; 
output waveform evaluation, requiring TI cycles; 
output waveform writeback, requiring a cycles. 



120 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL 4, NO. 1, MARCH 1996 

s I H I ....* I 
~ 

I I  6 
OUTPUT DISPLACEMENT 6 OcTTPUi DISPLACEMENT I 

Fig. 5. Instruction formats for the Ravel-XL instruction set. Shaded fields must be set to zero and are reserved for future use. 

where cy is the normalized memory system cycle t imedefined 
as the ratio between the memory and processor cycle 
times-and is typically greater than or equal to one. A baseline 
‘‘serial” execution of the instruction, therefore, leads to a total 
execution time of n + (n  + 3 + rn/21)a cycles. 

The options available for reducing this execution time are 
basically as follows: 

1) overlapping, or pipelining, the execution of the instruc- 

2) minimizing Q through proper choice of memory system 

These options are usually considered when designing any type 
of processor and are not particular to the Ravel-XL design. 
However, for general-purpose processors the two options are 
typically intertwined and must be considered simultaneously. 
Fortunately, the particular “structure” of the GEV instruc- 
tion in Ravel-XL allows these two options to be considered 
somewhat independently. This fact becomes evident upon 
examination of the execution time of a simple four-stage 
pipeline whose stages are in one-to-one correspondence with 
the four instruction steps. In such a pipeline, each GEV 
instruction can be completed in an average of 

tion phases; 

organization and parameters. 

max[(2 + [n/21)a, na, n, a] = a max[2 + rn/21, R] (13) 

cycles. Execution time is clearly dominated by the instruction 
and data fetch steps regardless of the value of a. The rest of 
this section, thus, is devoted to further exploration of option 
1. The tradeoffs involved in option 2 are examined separately 
in Section IV-E. 

This four-stage pipeline implies a three-ported memory 
system with separate ports for 1) code fetch, 2) data fetch, 
and 3) data writeback. Recognizing that code and data can be 
separated into different memory spaces leads to an alternative 

design with a single-ported code memory and a double- 
ported data memory. This split-memory design is simpler, 
cheaper, and potentially faster than the initial design. Further 
simplification is possible by noting that, on average, there are 
n read operations for every write operation to data memory. A 
dedicated write channel to data memory would, thus, be under- 
utilized. Reducing the data memory to a single readwrite 
port amounts to opting for a three-stage pipeline in which 
the waveform fetch and instruction writeback phases are 
conceptually combined. The total instruction execution time 
in this case becomes 

max[(2 + [n/21)a, (n + l )a ,n]  
= Q max[2 + [n/21, n + 11 

3 for n = 1 
n+ 1 for n 2 2. 

= .{ 
The operation of such a three-stage pipeline is illustrated 

in Fig. 6 for a three-input GEV instruction. In this figure, 
CF, DF, and EW refer, respectively, to the code fetch, input 
waveform data fetch, and output waveform evaluation and 
writeback stages. In order to prevent conflicting read and write 
requests to the data memory, the EW stage is deliberately 
skewed with respect to the CF and DF stages. Thus, after 
reading the n input waveforms of gate G,, the channel to data 
memory becomes available for writing the output waveform 
of gate G,-l. This arrangement delays the evaluation of gate 
G, by n - 1 cycles and increases the latency of the pipeline 
to 2(n + 1). Fortunately, unlike the case of general-purpose 
instruction processors, such high latency is not detrimental to 
the performance of Ravel-XL due to the absence of branches 
in the instruction stream. The only data dependency that may 
exist in the pipeline occurs when the waveform to be fetched 
is still being computed in the EW stage (a read-after-write, or 
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CF 

DF 

EW 

**------------Gate evaluation cycle 

Fig. 6. Pipeline operation for a three-input GEV instruction. 

RAW, hazard), and is handled by stalling the pipeline. More 
sophisticated solutions, such as adding data forwarding paths 
to the pipeline, are unwarranted since careful compilation can 
eliminate most data dependencies. 

E. Memory System Design 

Equation (14) shows that, with our three-stage pipeline 
design, simulation time is directly proportional to a, and 
minimized when a = 1. As can be seen in Fig. 6, for a 
three-input gate the pipeline makes one reference to the code 
memory, and one reference to the data memory, each cycle. 
Our basic goal in the design of the memory system is therefore 
to match its effective cycle time to that of the processor in 
order to achieve a transfer rate of one instruction word and 
one data word per processor cycle. Additionally, this transfer 
rate must be sustained even when simulating large circuits. For 
processor frequencies below 100 MHz a simple but expensive 
solution is to use high-speed SRAM’s with Q = 1. However, 
a more practical, and much cheaper, solution for obtaining 
single-cycle access is to design appropriate memory structures 
that allow the use of slower DRAM chips. This goal amounts 
to reducing a given normalized memory cycle time a ,  which 
may be >1, to an effective normalized memory cycle time 
a,ff-= 1. 

To obtain a,ff = 1 when a > 1 the memory system must 
be organized so that it matches the patterns of locality in the 
code and data streams [19]. Locality is expressed in two ways: 
temporal and spatial. The split memory system implied by our 
pipeline design gives us the opportunity to optimize the code 
and data memory architectures differently. This has proven 
useful, since the access patterns to the two memory spaces 
turns out to be markedly different. 

In general-purpose processors, the traditional method for 
capturing locality is with caches. However, Lewis has ob- 
served that the straight-line code produced by compiled sim- 
ulators causes poor hit rates [24]. Instead of instruction and 
data caches Lewis advocates the use of off-chip memories 
and a very deep pipeline-which would have no adverse 
side effects on branchless code-to absorb the long latencies. 
This design would address the latency issues, but would 
have difficulty meeting our bandwidth requirements. Ravel-XL 
requires an average of one memory access to each bank each 

cycle-Lewis’ solution would require a very large multi-ported 
off-chip memory to support this requirement. 

The poor instruction cache hit rate is caused by a complete 
absence of temporal locality. However, we can take advan- 
tage of the high degree of spatial locality provided by the 
branchless nature of the code to obtain a e ~  E 1. Our solution 
uses an interleaved external code memory with prefetching. 
As long as the number of interleaved memory banks is greater 
than or equal to a + 1, such a memory structure will be 
able to deliver consecutive instruction words from the straight- 
line code-stream at the rate of one per cycle in steady-state. 
Based on this analysis we chose to set a to 3, and to use a 
four-way interleaved memory to hold the simulation program 
instructions. At a target processor cycle time in the 20-40 ns 
range, this choice requires the use of DRAM memories with 
cycle times in the 60-120 ns range. Such parts are readily 
available and are fairly inexpensive. 

Lewis also observed that the data stream has an irregular 
access pattern and lacks temporal locality as well. We have 
carried out a number of architectural studies, however, that 
indicate otherwise. We will demonstrate that, with proper 
compiler techniques, the temporal locality in the data stream 
can be controlled, allowing a cached memory organization to 
achieve high hit rates. We also examine the spatial locality in 
the data stream, and its effects on the data cache miss rate. 
In our discussion of the data cache we will address all four 
of the main cache parameters: cache size, associativity, line- 
size, and write policy. Our analysis will decompose the miss 
rate into its three components: compulsory misses, capacity 
misses, and conflict misses [19], and discuss the effects of our 
design decisions on each. 

Temporal locality in the data stream results from the re- 
use of output signal waveforms in the evaluation of fanout 
gates, and is strongly dependent on the order in which the 
instructions are scheduled. Our compiler (discussed in more 
detail in Section VII-B) attempts to schedule the code stream 
in an order that favors the evaluation of logic gates followed 
immediately by their fanout gates, thus maximizing the tem- 
poral locality of the data waveforms. Temporal locality affects 
the rate of capacity misses, which are, in turn, controlled by 
adjusting cache size. As shown in Fig. 7, architectural studies 
have demonstrated that a cache of 2 K-words is sufficient to 
keep miss rates under 20% in a circuit having 35000 gates. 
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Fig. 7. Cache miss rates for three different cache sizes as a function of 
circuit size. Here circuit size is expressed as the total number of gate inputs, 
since one cache access is required for each input. Cache size is the number 
of 32 b words. 

We expect the miss rate to decrease further as we instrument 
the compiler with additional optimizations. 

Compulsory misses turn out not to be an issue in this 
design. Since the host processor must download the primary 
input waveforms at the beginning of each simulation cycle, 
and since the host interface writes waveforms into the data 
memory through the cache, no cold misses will occur on the 
primary inputs. In addition, since all of a gate’s inputs must 
be evaluated before it can be processed, waveforms will never 
be read before they are written. Thus, all compulsory misses 
are eliminated. 

The final category of cache misses, conjict misses, is 
addressed by the degree of associativity in the cache. As shown 
in Fig. 8, the architectural studies did not seem to indicate 
that the expense of implementing a set-associative cache was 
warranted; instead, we chose the simpler option of a direct- 
mapped cache. This result is due to the absence of looping 
behavior, and the fact that the order in which addresses are 
accessed can be controlled by the compiler when it assigns 
addresses to the operands. 

Spatial locality in the data stream, which depends on the 
order in which the instructions are scheduled, as well as 
the order in which the compiler assigns addresses to the 
waveforms, is more difficult to characterize than in the code 
stream. In a cached memory organization, the use of a line- 
size greater than one can be used to take advantage of spatial 
locality in the reference stream. Our compiler currently assigns 
addresses to the data variables in a linear fashion as they are 
first used. If it were modified to assign them in an order that 
would maximize spatial locality we might see some benefit 
from larger line sizes. However, such a cache adds complexity 
to the design, and would require an interleaved external data 
memory to support fast line fills. For reasons of simplicity we 
chose not to explore this option. 

Finally, we opted for the simpler write-through, as opposed 
to a write-back, write policy. This is justified by the availability 
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Fig. 8. Effects of the degree of associativity on the cache miss rate. The 
total cache size is constant at 2 K words. 

of adequate bandwidth on the memory channel to complete 
the write requests without conflict: writes occur only once 
for every n reads and read requests caused by cache misses 
are expected to be infrequent. According to (14), consecutive 
write requests are separated by at least 3 clock cycles. Thus, 
to avoid write conflicts, a 5 3.  

The fact that we have been able to obtain reasonable 
cache hit rates for circuits much larger than the cache size 
suggests that our choice of using a data cache is justified. We 
believe that our data supports a claim that miss rates will not 
get much worse, even for very large circuits. We base this 
claim on several properties of combinational logic as used 
in large designs. First, the number of logic levels between 
synchronizers does not increase, as this directly impacts clock 
frequency. Second, the “width” of the logic, defined as the 
number of gate fanouts that must be maintained in the cache 
at any one time, is bounded by the structured design style used 
in their construction. Even in large chips, most combinational 
logic is grouped into relatively small blocks with few external 
connections. As long as these logic groups fit within the cache, 
the miss rate will not degrade. 

F. Setupklold Eolation Detection 
When setup or hold violations are detected by an SEV 

instruction, the address of the offending synchronizer input 
signal is written to a violation table in data memory that 
can be read by the host at the end of the simulation. Since 
violation information is diagnostic, and not intended to be re- 
read during the simulation process, violation reports are written 
directly to data memory without going through the cache. 
Furthermore, to avoid unnecessary pipeline stalls, violation 
writeback requests are assigned a lower priority than operand 
writeback requests. This is accomplished with the use of a 
four-entry FLFO buffer to queue violation reports waiting to 
be written back. The violation report at the head of the FIFO 
is written to data memory during idle cycles on the data bus; 
the pipeline is stalled only when the FIFO is full. A larger 
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buffer could be used to reduce the incidence of stalls; this was 
deemed unnecessary, however, since violations are expected 
to be infrequent and to be relatively small in number. 

G. Ravel-XL Host Inte$uce 

The host computer sees Ravel-XL as a memory-mapped 
peripheral device. The host has read/write access to both the 
code and data memories as well as to several internal Ravel- 
XL registers. A 32 b address sent by the host over the address 
bus is mapped by Ravel-XL to one of four address spaces 
according to the value of the two most significant bits: code 
memory, data memory, the setuphold violation tables, and 
the internal system registers. 

In addition to the datapath registers that are used for storing 
the clock parameters, the host can access the program counter, 
a status register, and registers that contain the address of the 
setuphold violation table and the total count of violations in 
the table. The status register has three defined flag bits that 
are set by Ravel-XL: bit 7 is set when an ENDS instruction is 
executed; bit 6 is set upon execution of a WAIT instruction; 
and bit 5 is set by the SEV instruction upon detection of one 
or more setuphold violations. 

Two pseudo registers, START and CONTINUE, are used by 
the host to control the simulation process. A write to START 
resets the program counter and commands Ravel-XL to begin 
simulating; it is issued at the start of the simulation session 
in response to ENDS instructions. A write to CONTINUE 
is used to command Ravel-XL to resume simulation from a 
breakpoint; it is issued in response to WAIT instructions. 

V. RAVEL-XL IMPLEMENTATION 

A single-chip VLSI implementation of the Ravel-XL ar- 
chitecture is currently being prepared for fabrication. The 
implementation was guided by two major objectives: 1) to 
minimize the likelihood of pipeline stalls and 2) to minimize 
the clock cycle time. As noted earlier, the lack of significant 
data dependencies in the Ravel-XL instruction stream makes 
the incidence of pipeline stalls quite rare. To further reduce 
the possibility of stalls, deep buffers are sandwiched between 
the pipe stages to absorb any transient delays in the memory 
system response. Cycle time minimization was addressed 
by decomposing the chip into several largely autonomous 
functional units each consisting of a datapath and an asso- 
ciated controller. Such a “distributed control” approach-as 
opposed to a single global controller-reduces the possibility 
of a performance-limiting critical path in the control logic. 
Additionally, it leads to smaller controllers that are much 
simpler to design and test. 

The design process started with architectural simulations 
of Ravel-XL using a behavioral model written in the Verilog 
Hardware Description Language (HDL) [l 11. This model 
was manually partitioned into distinct datapath and control 
sections to aid the subsequent design synthesis phase. Physical 
design was performed using the EPOCH silicon compiler [12]. 
EPOCH receives its input in a synthesizable subset of Verilog 
HDL: behavioral datapath elements were manually converted 

Fig. 9. Layout plot of the Ravel-XL chip. It is implemented in a 0.8-p 
three-metal CMOS process, and the final dimensions of the chip are approxi- 
mately 1.18 x 1.18 centimeters on a side. 

macro cells defined in the EPOCH library, while behavioral 
control modules were input directly from the architectural 
models. EPOCH performed standard-cell logic synthesis for 
the behavioral controllers, and provided technology mapping 
for the library cells, as well as timing-driven placement, 
routing, and buffer and power-rail sizing. The EPOCH static 
timing analyzer, TACTIC, was used in the determination of the 
critical path. The longest sensitizable path in the design was 
found to lie in the datapath, and results in a clock frequency of 
33 MHz. The chip contains 900 000 transistors, dissipates 1.06 
Watts and occupies 1.4 cm’ of die area in a 0.8 p three-metal 
CMOS process. It will be packaged in a 256 pin PGA package. 
Because of the large pin count the chip is pad-limited: without 
the pad frame the chip core is only 0.75 cm’. A layout plot 
of the chip is shown in Fig. 9. 

A stylized chip floorplan showing its functional units and 
their major interconnections is depicted in Fig. 10. In this 
figure, the relative size of each functional unit roughly corre- 
sponds to the area it occupies on the chip; for clarity, however, 
the position of each unit may not correspond exactly to its 
actual chip placement. This is particularly true for the control 
logic: shown as a single unit on the floorplan, it is actually 
partitioned by the physical design tools into blocks of standard 
cells that are used to fill the gaps created during the placement 
of the datapath components. The largest block on the chip 
is the 2 K x 54 b data cache (32 b words + 22 b tags). 
The c -her functional units identified on the floorplan-most 
of which have been dtscribed already-can be divided into 
the following four groups. 

1) Chip Znte$uce which includes the host interface (HI), 
code memory interface (CMI), and data memory inter- 
face (DMI). 

2)  CF Pipeline Stage which is the code fetch and decode 
from the behavioral model into netlists of SSI and MSI (CFD) unit. 
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Fig 10 Stylized chip floorplan showing major functional units and their 
address and data interconnections The relative sizes of the functional units 
are approximately correct, though for clanty the placement of the components 
have little relahon to that on the chip layout shown in Fig. 9. 

3) DF Pipeline Stage which includes the data fetch (DF) 
unit and the operand Base Registers (BR). 

4) EW Pipeline Stage which includes the gate evaluation 
(GE) unit, the gate evaluation register files (RF) and the 
violation queue (VQ). 

The physical interface to the interleaved code memory is 
achieved by maintaining a 32 entry circular prefetch queue 
in the CMI. A cofltroller in the CMI attempts to keep the 
queue full by continuously issuing read requests to the memory 
to prefetch instruction words. Concurrently, the CFD unit 
removes entries from this queue and performs the necessary 
instruction decoding and operand routing. Immediate operands 
are routed to the appropriate register: gate delays and syn- 
chronizer setuphold parameters are written to the RF in the 
EW stage; base addresses in LDB instructions are written to 
the specified BR. Operand address displacements are posted 
to a 16 entry queue that is accessed by the DF unit. The 
DF unit removes these displacements and pairs each with an 
appropriate ER before issuing a read request to data memory 
through the DMI. The GE unit and its associated register files 
implement the custom datapath described in Section IV-B and 
shown in Fig. 3. Dual-bank registers, shown shaded in that 
figure, allow the CFD unit and the DMI to write data to one 
bank while the GE unit operates on data in the other bank, as 
required by the structure of the pipeline (see Fig. 6). The DMI 
processes reads and writes to the write-through data cache and 

to the external data memory. It accepts requests from four 
sources: 1) operand reads from the DF unit, 2) operand writes 
from the GE unit, 3) violation writes from the VQ, and 4) 
readdwrites from the HI. Priority for access is given first to 
operand read requests, second to operand write requests, and 
last to violation write requests. Requests from the host occur 
only when the pipeline is stopped, so no notion of priority is 
needed in this case. 

W. F%RFORMANCE MEASUREMENT AND COMPARISON 
In this section we compare the performance of Ravel-XL 

to that of several other representative logic simulators. Both 
ED as well as LC simulators, implemented both in hardware 
and in software, are represented. Since the algorithms and 
system architectures used by the different simulators and 
accelerators are quite diverse we use the M-EGPS metric 
introduced in (9) to insure consistency. In addition, since many 
of &e hardware accelerators achieve their speed using multiple 
boards-ach consisting of a single processor pipeline and 
local storage-in parallel, we consider the board to be the 
atomic unit for performance comparisons. Where appropriate, 
we discuss mnlti-board system performance, and note which 
systems a ~ e  scalable. 

A. Benchmark Results 

We benchmarked several software simulators including 
Verilog-XL, a Verilog interpreter from Cadence Design 
Systems 1111, VCS, a Verilog compiler from Chronologic 
Simulation [13], and the software implementation of Ravel 
[31], 1321, [37]. For these simulators the EGPS figures 
are computed directly from experimental run-times using 
the ISCAS-89 sequential benchmark circuit suite [7] with 
sequences of randomly-generated input patterns. Experiments 
performed with the Verilog-HDL model of Ravel-XL allow 
a direct comparison to be made between Ravel-XL and the 
other software simulators. The performance of Ravel-XL is 
compared with several ED hardware accelerators: MARS 
[l], [2], the X P  product family from Zycad Corp. 1431, and 
the Fujitsu SP [33]. It is also compared against several LC 
accelerators: an unnamed system by Zasio et al. [42] and the 
family of IBM simulation engines (LSM [9], YSE [15], and 
EVE [17]). For these systems the peak performance figures are 
estimated from published simulation data. Since the activity 
levels in these simulations are not given, the EGPS figures for 
ED simulators are estimated assuming a 10% activity level, 
which is typical for circuits we have tested. Performance 
estimates at a 100% activity level are also derived in an 
attempt to show where the trade-off between the ED and LC 
methods lies. A summary of the performance study is given 
in Table I. 

1) Ravel-XL Pegomance Measurements: Assuming a cir- 
cuit composed of 3-input gates and a 100% data cache hit 
rate, (14) predicts a 4 CPG peak performance for Ravel-XL. 
At 33 MHz this yields a speed of 8.25 M-EGPS which is 40 
(respectively, 20) times faster than Ravel in its full longkhort 
path (respectively long-path-only) simulation mode. However, 
this estimate does not take into account the structure of the 
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Fig. 11. Experimental results obtained with the Venlog-HDL model of 
Ravel-XL using the ISCAS89 suite of synchronous sequential benchmark 
circuits. 

test circuits or the number of cycles lost to cache misses or 
pipeline hazard stalls. 

Fig. 11 shows experimental results measured with the 
Verilog-HDL model of Ravel-XL. The figure shows how 
the number of cycles required to simulate each gate changes 
with circuit size. Since the average number of gate inputs may 
not be constant across the various circuits in the benchmark 
suite, we also graph the average number of cycles to process 
each gate input. The results show a high simulation cost 
for small circuits-this is due to the difficulty of scheduling 
gates without read-after-write (RAW) pipeline hazards. After 
this initial spike, the simulation cost increases slowly due to 
increasing cache m i s s  rates. Finally, in circuits larger than 
about 10000 gates, the cost appears to taper gradually off to 
a near constant value as the code scheduler is able to partition 
the circuit into strongly connected cache-resident blocks. 
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Fig. 12. The fraction of cycles spent by Ravel-XL waiting for RAW hazards 
and cache misses to be resolved, as a function of circuit size. 

According to Fig. 11 we should expect a simulation rate 
closer to 5 CPG for large circuits, which will reduce our 
predicted performance to about 6.6 M-EGPS, or about 33 times 
faster than the software version of Ravel. 

It is instructive to examine the fraction of clock cycles 
that are wasted while waiting for RAW hazards and cache 
misses to be cleared. As shown in Fig. 12, almost 40% of 
the processor cycles for the largest circuits are spent servicing 
RAW and cache-miss stalls. We expect this percentage to drop 
significantly with better compilation of the circuit equations 
(see Section VII-B). Fig. 13 shows how the performance 
of Ravel-XL, measured as the average number of cycles 
to simulate each gate-input, varies with cache miss rate. 
These numbers were generated using the ISCAS-89 ~38584.1 
benchmark circuit by artificially forcing cache misses at the 
desired rate. As can be seen in the figure, performance drops 
off linearly with an increase in miss rate. 

It is worth pointing out that the overhead of communicating 
with the host will be negligible in most cases. Asynchronous 
host writes to Ravel-XL cost 16 clock cycles, and reads 
between 15 and 18. As an example, it will require 10 ms to 
download the 20 705 gate ISCAS89 benchmark circuit ~38584 
to the code memory at the beginning of a simulation, and the 
cost of writingheading the 290 primary inputloutput values 
each cycle represents only about 5.3% of total simulation time. 

2) Sojiiare Simulators: In its current implementation 
Ravel generates a simulation program in the MIPS R3000 
instruction set [20]. Table I1 lists the number of machine 
instructions generated for a typical gate.At an ideal CPI of one 
on the benchmark workstation, and assuming an average of 
three-inputdgate, Ravel runs at about 100 CPG. This ideal CPI 
rate is rarely achieved, however, because of the lack of locality 
in the instruction stream produced by Ravel. Experiments 
indicated a dramatic increase in the cache miss rate as soon 
as the size of the simulation loop exceeded the size of the 
instruction cache [32]. As we mentioned in Section IV-E, it has 
been observed that memory system performance degradation 
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Fig. 13. The variation in Ravel-XL performance, measured as the average 
number of cycles to simulate each gate-input, as the miss rate increases. The 

-test circuit is S38584.1. 

due to lack of locality is a problem common to LC simulators 
in general [22], [23]. Even for moderately sized circuits of 
several thousand gates the observed CPI was 2 or larger, 
yielding a minimum CPG of 200 for a typical three-input 
gate. The benchmark workstation, a DECstation 5000/240 
running at 40 MHz, can be expected to achieve 0.20 M- 
EGPS with the full simulation model and 0.40 M-EGPS with 
long-path-only delays. This agrees with the simulation data 
gathered in [3 11, which observed a long-path-only simulation 
speed of 0.355 M-EGPS for the ISCAS-89 S1196 circuit, a 
typical circuit with a 13% activity level, and which is large 
enough to cause the CPI to be around 2. 

Experiments using the ISCAS-89 sequential circuit suite 
have shown the software implementation of Ravel to operate 
about ten times faster than Verilog-XL, and at about the same 
speed as VCS, for circuits with activity levels near 10% [31]. 
In these experiments Ravel was run in long-path-only mode to 
more closely match the single-delay model of Verilog. Based 
on this data, Ravel-XL is expected to run 165 times faster than 
Verilog-XL and 16.5 times faster than VCS, and at a 100% 
activity level Ravel-XL would achieve speedups of 1650 and 
165 respectively. 

3) Event Driven Hardware Accelerators: The MARS hard- 
ware accelerator is a micro-programmable system that can be 

programmed to simulate at many abstraction levels. Numbers 
reported here, for a single-board system programmed for a 
two-phase multiple-delay algorithm and running at 10 MHz 
[1, p. 351, are about an order of magnitude slower than Ravel- 
XL. This system is easily scalable using multiple boards in 
parallel, and the authors expect an almost linear increase in 
speed and capacity with a multiboard system. 

Zycad Corporation markets a hardware accelerator using an 
ED algorithm which supports multiple-value rise/fall delays 
that achieves a speed of 25 M-EGPS at a 10% activity level. 
Circuit activity levels must be above 50% before Ravel-XL is 
faster. This system is scalable with up to 16 boards, obtaining 
a linear speedup as boards are added. Arbitrary delay models 
based on function calls can be used at a performance penalty. 

Perhaps the fastest simulator reported is the multiprocessing 
SP system from Fujitsu. The only reported run times are 
given relative to an internal software simulator, complicating 
performance estimation. However, they report a maximum of 
800 million event evaluations per second for a 64 processor 
system. Extrapolating back, we estimate 12.5 M-EGPS per 
processor at a 100% activity level, though the conditions 
required for peak performance are not given. In addition, the 
SP only supports a unit-delay model, perhaps accounting for 
its high performance relative to the others ED approaches. 

4) Levelized Code Hardware Accelerators: Several other 
hardware accelerators use the LC technique. One by Zasio 
et al. obtains 5 M-EGPS, though it is limited to a unit- 
delay model for timing. The most successful LC systems 
were those designed by IBM, the logic simulation machine 
(LSM), Yorktown simulation engine (YSE) and engineering 
verification engine (EVE), with EVE being the most recent. 
All share a common architecture, which also bears some 
resemblance to that of Ravel-XL: it is a multi-processor 
system, each board made up of a single gate processing 
pipeline and local instruction and data memories. A CISC- 
style instruction is used, but theirs is limited to a constant five 
inputs. Boards can be scaled in parallel using a large crossbar 
switch, up to a maximum of 512 boards. They claim a peak 
throughput of over three billion EGPS and a capacity of two 
million gates for a full EVE system-a 500 K gate benchmark 
ran at 490 M-GEPS. The IBM systems are also limited to a 
unit-delay model for timing. 

, 

I 

VII. FUTURE WORK 
In this section we make some retrospective observations 

about the implementation and state the goals for a second- 
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generation chip. We also discuss ongoing work with several 
code optimization problems in the Ravel-XL compiler. We 
conclude with some observations on the use of Ravel-XL in 
a multiprocessor configuration. 

A. Architectural Improvements 

As shown in (14), the speed of Ravel-XL is currently limited 
by memory throughput. With a higher bandwidth to memory 
and more parallel hardware in the gate/synchronizer evaluation 
datapath we could conceivably obtain a simulation rate of 
1 CPG. This will require the use of technology such as a 
multi-port cache in the data memory and a faster interface 
to the code memory, such as a Rambus RDRAM [18]. As 
the simulation speed increases the write-through cache will 
quickly limit performance, requiring a more complex caching 
scheme, in conjunction with deeper write-buffers, to limit the 
frequency of off-chip writes. 

Other improvements that are planned include the ability to 
model gated-clocks and tri-state busses. The support for gated 
clocking may require a notion of conditional execution (i.e., 
branching) in the algorithm, and could introduce significant 
complication in the hardware. The modeling of tri-state busses 
will require a representation for impedance values and a 
new wired-logic primitive. Tri-state busses can currently be 
modeled by collapsing them into equivalent OR or AND 
gates, though CMOS bus contention will not be correctly 
modeled. 

B. Compiler Issues 

In the design of Ravel-XL we made an effort to create a 
flexible system in which the compiler would not be required 
to perform expensive optimizations to achieve reasonable per- 
formance. The only problems in the code generation process 
that require potentially expensive optimizations are: 1) the 
ordering of the gate evaluations in the instruction stream 
to maximize temporal locality, and 2)  the ordering of the 
waveform variables in data memory to control spatial locality. 
To obtain a 100% data-cache hit rate we must guarantee that 
each gate waveform value stays resident in the cache from the 
time that it is written until the last of its fanout gates have been 
evaluated. The traditional level-order (breadth-first) traversal 
of the circuit graph identified with LC simulators may, for 
this reason, lead to poor data cache performance. This will be 
particularly noticeable if the width of the circuit at any given 
topological level (number of gates per level) exceeds the size 
of the cache. 

A preliminary version of a compiler for Ravel-XL has been 
implemented to obtain the data shown in Section VI-Al). To 
address the problem of improving the temporal locality in the 
code, and thus the cache miss rate, we have explored several 
traversal techniques as alternatives to the strict level-order 
traversal. Basically, the compiler attempts to broadcast a gate 
output to its fanout gates as soon as possible after it has been 
evaluated to maximize the likelihood of its presence in the data 
cache, while at the same time minimizing the average lifetime 
of all cache entries. In general, this problem is NP-complete 
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[26], but we have obtained good results with simple heuristics 
using a recursive depth-first traversal [38] of the circuit. The 
algorithm starts at a primary-output and recursively expands its 
fanin-cone, generating code for each gate (if it has not already 
been evaluated) as it returns from the recursion. Since cache 
misses are likely to result on any signals that fanout from this 
block of gates to other blocks, we attempt to choose the next 
primary-output from a set of candidates that uses some of the 
current set of unresolved fanout paths. 

The only problem with this technique is that the recursive 
traversal encourages the scheduling of gates followed imme- 
diately by gates they fan out to, resulting in read-after-write 
(RAW) pipeline hazards that cause frequent stalls. To correct 
this problem the compiler tries to ensure that there is at least 
one unrelated gate scheduled between two gates connected by 
a common signal. The effectiveness of these two optimizations 
over the simple level-order traversal is shown in Fig. 14. 

C. Multiprocessor Systems and System Scalability 

With careful partitioning, large digital circuits can be sim- 
ulated in parallel with minimal interprocessor communication 
and synchronization. Indeed, many of the faster logic simula- 
tion hardware accelerators use parallel techniques [I], [2], [91, 
[15], [17], [33], [43]. Ravel-XL was designed with support 
for multi-processing in mind. Multiple Ravel-XL boards can 
be placed on a single backplane and one design partitioned 
among these boards. Synchronization can be handled in one 
of two ways. If circuits are partitioned only at synchronizer 
boundaries, communication among the different boards is 
necessary only at the beginning of each clock phase when new 
input vectors are loaded. If a circuit must be broken between 
synchronizers, however, WAIT instructions can be placed in 
the code at required synchronization points. In these configura- 
tions communication occurs only through the backplane and is 
managed by the host. This creates an obvious bottleneck, but is 
a cheaper alternative to the complex crossbar interconnection 
system found in many other multiprocessor systems. 
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VIII. CONCLUSIONS 

In this paper we described Ravel-XL, a hardware accel- 
erator for levelized-code (LC) digital logic gate simulation. 
An architecture was developed to implement the Ravel LC 
simulation algorithm in hardware, and a single-chip VLSI 
implementation was presented. The Ravel algorithm adopted 
a unique waveform model that allows timing information to 
be calculated during the levelized traversal of the traditional 
LC simulation process. This eliminates one of the serious 
limitations of LC techniques when compared with event-driven 
(ED) algorithms, namely, the inability to perform accurate 
timing simulation. Ravel-XL, by implementing the Ravel 
algorithm in hardware, is able to pipeline the gate simulation 
process and take advantage of the parallelism available in 
the code to provide a significant speedup over Ravel running 
on a general-purpose computer. Further efficiency is gained 
by customizing the design of the memory system to prevent 
simulation speed degradation when simulating large circuits. 

This implementation is capable of executing an order of 
magnitude faster than the Ravel algorithm running in software 
on a general purpose computer, and two orders of magnitude 
faster than Verilog-XL, an ED simulator, when simulating 
large circuits with high event-activities. In a single-board 
configuration, the simulation speed of Ravel-XL is also com- 
petitive with those of several other commercial and research 
hardware accelerators, and its simple highly-integrated im- 
plementation should give it a significant price/perforrnance 
advantage. Ravel-XL is also easily scalable to multi-board 
parallel simulation configurations, and should be capable of 
simulating at speeds comparable to those of other parallel 
simulation accelerators such as YSE, EVE, and the Zycad XP.  

Work is still in progress on the simulation front-end software 
and code compilation and optimization software. An important 
goal in the project is to prevent the need for expensive code 
pre-processing. Large circuits will require some optimizations 
in scheduling the code to prevent data-cache misses, but 
preliminary work suggests that simple algorithms will be 
sufficient in most cases. Work is also continuing on the 
problem of circuit partitioning to minimize the connectivity of 
circuit blocks split over different processors in a multiboard 
parallel Ravel-XL configuration. In addition, we are examining 
improvements to the architecture based on experience gained 
during the current implementation. 
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