
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 4, NO. 1, MARCH 1996 113

Ravel-XL: A Hardware Accelerator for Assigned-
Delay Compiled-Code Logic Gate Simulation

Michael A. Riepe, Joiio P. Marques Silva, Karem A. Sakallah, Senior Member, ZEEE,
and Richard B. Brown, Senior Member, IEEE

Abstract-Ravel-XL is a single-board hardware accelerator for
gate-level digital logic simulation. It uses a standard levelized-
code approach to statically schedule gate evaluations. However,
unlike previous approaches based on levelized-code scheduling, it
is not limited to zero- or unit-delay gate models and can provide
timing accuracy comparable to that obtained from event-driven
methods. We review the synchronous waveform algebra that
forms the basis of the Ravel-XL simulation algorithm, present
an architecture for its hardware realization, and describe an
implementation of this architecture as a single VLSI chip. The
chip has about 900 000 transistors on a die that is approximately
1.4 cm’, requires a 256 pin package and is designed to run at
33 MHz. A Ravel-XL board consisting of the processor chip
and local instruction and data memory can simulate up to
one billion gates at a rate of approximately 6.6 million gate
evaluations per second. To better appreciate the tradeoffs made
in designing Ravel-XL, we compare its capabilities to those of
other commercial and research software simulators and hardware
accelerators.

Index Terms-Hardware accelerators, simulation engines, lev-
elized compiled code, digital logic simulation, timing analysis,
design verification, special purpose architectures.

I. INTRODUCTION

ESPITE PROMISING advances over the last few years D in correct-by-construction logic synthesis [5] and formal
(functional) verification [8], logic simulation has yet to be
dislodged from its role as an indispensable method for de-
sign verification of large digital systems. Logic simulation
is utilized by digital integrated-circuit designers at many
stages of the design process, from early architectural studies
to final foundry sign-off simulations using back-annotated
delays and complex switch-level or mixed-signal simulation
algorithms. While some simulators, notably those for hardware
description languages (HDL’s) such as Verilog and VHDL,
are flexible enough to be used at all stages of a design,
the verification requirements-in terms of abstraction level
and accuracy-change at each stage. In general, lowering the
abstraction level increases the model’s accuracy and reduces
simulation speed. It is, therefore, common to use different

Manuscript received June 24, 1994; revised January 11, 1995. This work
was supported in part by the Advanced Research Projects Agency under Grant
DAAL03-90-C-0028 and by the National Science Foundation under Grant

The authors are with the Advanced Computer Architecture Laboratory,
Department of Electrical Engineering and Computer Science, University of
Michigan, Ann Arbor, MI 48109 USA.

MIP-9014058.

Publisher Item Identifier S 1063-8210(96)01866-5.

simulation point-tools at each stage of the design to address
the specific requirements of the designer.

Digital circuit simulators can be classified into two main
categories based on the scheduling algorithm they employ for
gate evaluation: statically scheduled levelized-code (LC) [3],
[6], [27], 1401 versus dynamically scheduled event-driven (ED)
[22], [28], [29], [39]. LC algorithms arrange the logic gates
so that they are evaluated according to a partial ordering that
ensures causality. During simulation, all gates are evaluated
in each clock cycle, regardless of whether their inputs have
changed since the last cycle. ED algorithms attempt to reduce
the number of gat2 evaluations by dynamically scheduling,
at run-time, only those gates whose inputs have changed.
Often only a small fraction of the signals in a circuit change
state each cycle so the savings is potentially large. Such
savings, however, must be offset by the cost associated with
the handling and scheduling of these state-change events. To
maintain efficiency, ED methods require careful design of their
data structures and event schedulers; their performance is best
at low levels of circuit activity.

Orthogonal to the issue of the gate scheduling algorithm
is the question of whether the simulator is interpreted or
compiled. An interpreted simulator steps through the circuit
by traversing a data structure representing the circuit graph,
generally using time-consuming indirect addressing modes,
and alternating between graph traversal and gate evaluation
using subroutine calls and returns. As described by Lewis
[25], circuit compilation is essentially a preprocessing step
that symbolically executes the simulation to “uncover” data
structures that can be statically allocated. This eliminates the
code required for circuit-graph traversal, which becomes hard-
coded into the simulator kernel, and replaces most indirect
memory references with direct references to static addresses.
Compilation also tends to unroll most loops and “in-line” many
function calls, thereby reducing context switch overhead and
increasing the amount of instruction-level parallelism available
for use by parallel and superscalar processors. Circuit compi-
lation, thus, tends to increase the efficiency and speed of the
simulation at the cost of greater pre-processing time and larger
code size. Historically, most ED simulators were interpreted,
and most LC simulators were compiled. Recent research on
threaded-code techniques [22], [28], [29], however, has led to
the development of compilers for ED algorithms as well.

The simplest logic simulators incorporate only two-valued
logic models and make no attempt to simulate circuit timing
(so-called zero-delay models) [3], [40], [41]. This level of

1063-8210/96$05.00 0 1996 IEEE

1

114 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL 4, NO. 1, MARCH 1996

abstraction was traditionally the domain of LC simulators,
as the zero-delay model most closely matches the single-pass
levelized gate scheduling algorithm (the presence of circuit
delays introduces the possibility of hazards on the gate output
which cannot be simulated in a single pass through the circuit).
Zero-delay simulation is extremely fast but is useful only in
the early phases of the design process when the only goal is
functional verification. The dominance of LC techniques in
this domain is hard to dispute.

ED algorithms are more naturally suited to the task of
simulation with more complex timing models. Their ability
to follow simulation activity through the circuit allows those
gates with hazards to be simulated as often as necessary to
obtain complete output waveforms, and arbitrarily complex
timing models may be used to calculate the time at which
fanout gates must be scheduled. Even so, LC simulation with
circuit delays is possible. Maurer [27] has developed an LC
algorithm which traces all possible paths through the circuit
to obtain, for each gate, the set of all times at whch the gate
couldpossibly change, and schedules the gate for evaluation at
each of those times. This allows more complex timing models,
such as unit or assigned (multiple) delay, to be used but at the
cost of many, often unnecessary, evaluations per gate. Thus,
such approaches have little chance of obtaining competitive
simulation speed [2 11.

Because circuits with asynchronous feedback cannot be
“levelized,” ED algorithms handle circuits with asynchronous
feedback much more naturally than LC methods. However,
iterative LC evaluation techniques can be used to simulate an
asynchronous circuit until it stabilizes [41]. Often, as in the
case of the feedback paths in the cross-coupled gates of an
RS-latch, only one or two iterations are necessary.

Because of their ability to handle more complex timing
models, as well as asynchronous feedback, ED algorithms
are dominant late in the design process when circuit timing
must be verified. However, this perceived dominance is worth
questioning. The ED algorithm produces a complete waveform
at each signal, showing the time and value of every transition
before the signal stabilizes. Usually this is more information
than is needed for design validation. Except on signals that are
used to gate primary clocks, the presence of hazards in well-
designed synchronous circuits is of little concern. Generally,
all a designer is concerned with when verifying correct timing
behavior is whether interface signals and latchlflip-flop inputs
meet their setup and hold constraints. This implies that there
are only two signal events which are of interest during each
clock cycle, thejirst and last, and any time spent evaluating
the transitions in-between is wasted. The application of delay-
accurate simulation to verify setup and hold constraints in
real circuits also leaves no place for arbitrarily chosen timing
models, such as unit-delay, that have no relation to real circuit
delays-the simulator must support gate delay values with
enough resolution to accurately represent the range of lumped
gatelinterconnect delays provided by circuit back-annotation
tools.

We recently described an LC simulation model and algo-
rithm called Ravel that addresses these observations [31], [32],
[37]. The Ravel model is an extension of a timing model that

was developed specifically to analyze and optimize the setup
and hold constraints in multiphase synchronous circuits that
employ level-sensitive latches [34], [35]. Ravel is based on a
synchronous model for logic signals which records two events
per cycle, the first and last. Using a “waveform” algebra based
on this two eventkycle assumption, it calculates the stable
signal values at the beginning and end of each cycle as well
as the width of the changing interval in between. The event
times at a gate output are calculated by a combination of min
and max functions that depend not only on input event times
but also on their logic values. These times are exact (identical
to what an ED algorithm computes) as long as all signals in
the circuit undergo at most two events in each clock period.
The calculated event times may still be exact even when some
signals experience three or more events in a clock cycle.
Generally, though, the computed event times are only bounds
on the actual event times if the 2 eventkycle assumption is
violated.

Historically, the highest performing logic simulation meth-
ods rely on custom hardware accelerators to boost perfor-
mance several orders of magnitude beyond what is achievable
with software simulators [ll, [21, [41, [91, [151, 1171, [231,
[33], [43]. More recently, hardware emulators based on field-
programmable gate arrays (FPGA’s) [30] have become popular
high-end alternatives because of their faster speeds and their
reconfigurability. In both cases, however, this performance
premium comes at a steep cost, and such options are usually
reserved to the verification of high-volume products such as
microprocessors.

The Ravel-XL system described in this paper is a single-
board hardware realization of the Ravel algorithm designed
to maximize simulation speed while remaining simple and
inexpensive. The board consists of a custom CPU chip, an
asynchronous bus interface to a host processor, and external
memory. In contrast to ED-based accelerators which require
sophisticated hardware support for event handling [I], [2], the
Ravel algorithm leads to a remarkably simple implementation.
Similar to modern general-purpose CPU’s, the Ravel-XL chip
features a pipelined datapath that is supported by a two-level
memory hierarchy optimized for the memory requirements
of the datapath. In addition, the architecture uses a compact
representation for data (one 32 b word per signal) and provides
custom hardware instructions to perform the min and m m
operations necessary to compute signal waveforms. In its
current implementation, Ravel-XL can simulate circuits with
up to four distinct clock phases sharing a common cycle time.
It has instructions to simulate the basic set of logic gates
(AND/NAND, O W O R , XOR/XNOR, INV/BUF) with a fan-
in limit of 16 inputs. It also models level-sensitive latches as
well as edge-triggered flip-flops, and can be enabled to perform
setup and hold violation checks. As discussed in Section VII-
A, Ravel-XL is currently limited in its ability to model tri-state
gates and gated-clocks.

The Ravel-XL board is designed to operate as a dedicated
co-processor to a general-purpose host computer using an
interrupt-driven asynchronous interface. In this configuration,
the host processor is expected to maintain the user interface
to the simulation process, to download the “compiled” circuit

115

-
c) ADDWDATA d-+

CLK - &CLK

---SEL DEC &
--WR TclA 6

chip - R W ~ -RW +
-INT - +$--RESET

ENABLES + ---+-C-IN?

I

A m w ”

-SEL
TURBO-

-WR CHANNEL
backplane

-Rw
RAVEL-XL

Fig. 1. Ravel-XL system board

and test vectors to Ravel-XL and to read back the resulting
output waveforms. Ravel-XL maintains the simulation data
and instructions in its own local memory space, enabling
it to run at a speed that is independent of the host speed
or that of the interface channel. The architecture allows
for addressing up to 1 G-word each of physical data and
instruction memory allowing designs of up to 1 billion gates
to be modeled. For example, a million gate circuit such as a
modern microprocessor can be accommodated with 16 4MB
DRAM chips on the board.

The custom Ravel-XL chip, designed in a 0.8-p three-
metal CMOS process, consists of about 900000 transis-
tors-including a 2 K word data cache-and occupies roughly
1.4 cm2 of die area in a 256-pin package. Running at 33
MHz, it dissipates about 1.1 W and runs about 30 times faster
than the software implementation on a workstation with the
same clock rate. A prototype system board, shown in Fig. 1,
will consist of the Ravel-XL chip, external code and data
memories, an interface to the Digital Equipment Corporation
(DEC) TURBOchannelTM bus backplane [161 realized with
the DEC TcIATM (TURBOchannel Interface ASIC) chip [14],
and a small number of glue-logic chips, initialization ROMs,
and bus-driver chips. It is designed to operate as a peripheral
device on a DEC workstation.

The remainder of this paper is organized as follows. Section
I1 reviews the Ravel simulation model and algorithm. Section
Ill summarizes the Ravel-XL design goals. Section IV de-
scribes the architecture of the Ravel-XL chip, including the
instruction set, pipeline and memory-system design and host
interface. The implementation of this architecture is discussed
in Section V. Section VI analyzes the performance of Ravel-
XL and provides comparisons to representative software sim-
ulators and hardware accelerators. Section VI1 discusses our
future plans for the Ravel-XL project, and Section VI11 closes
the paper with some remarks summarizing our contribution.

11. RAVEL MODEL OVERVIEW
A mathematical model of the timing behavior of syn-

chronous sequential circuits was introduced in [34], 1351
and used as the basis for efficient timing verification and
clock schedule optimization algorithms. This general model
views the circuit as a graph whose vertices are clocked state
devices-referred to as synchronizers to emphasize their role
in insuring synchronous operation-which are either edge-
triggered D flip-flops or level-sensitive D latches. Edges in the
graph model the combinational logic between synchronizers
and are labeled with the minimum and maximum path delays
through the logic. The flow of data signals through the syn-
chronizers is regulated by a set of periodic signals, collectively
referred to as the clock, that share a common clock period and

that provide a time reference for specifying the event times of
the data signals. Each data signal is described in terms of the
times of its earliest and latest transition events in one complete
period of an appropriate clock signal. Data signals are assumed
to have unspecified stable logic values at the beginning and
end of each clock period; they are assumed to be changing
and unknown between their earliest and latest event times.

The Ravel LC logic simulator [31], [32], [37] extended
the above model for use in logic simulation by requiring
the stable values of data signals at the beginning and end
of each clock cycle to be completely specified. Ravel models
the circuit as a graph whose vertices represent the logic gates
as well as the synchronizers. It views each data signal as
a “waveform” and provides a set of equations for logically
combining such waveforms. The resulting waveform algebra is
unique in that it explicitly shows the relationship between the
logic values and event times of the data signals in a circuit and
allows the event times to be calculated accurately by a simple
levelized traversal of the combinational logic. The remainder
of this section summarizes those features of the Ravel model
that must be considered in a hardware implementation of its
simulation algorithm.

A. Signal Model

The models for clock and data signals are summarized in
Fig. 2. The circuit is assumed to have k clock signals, or
phases, labeled 41, . . . , & that share a common cycle time T,.
Each clock phase defines a local frame of reference-whose
origin coincides with its latching edge-for specifying event
times of corresponding data signals. Phase # j p is characterized
by two parameters: Tp, the width of its active interval and
e p , the occurrence time of its latching edge in a suitably
chosen global frame of reference.’ The phases can overlap
and are not required to have the same duty cycle, but must
be numbered so that their latching edges are totally ordered:
el 5 e2 5 . . . 5 e k . Furthermore, the global frame of
reference is chosen so that ek = T,. The duration of the time
interval between consecutive latching edges of phases p and r
is referred to as the phase shift Epr [lo]

if (e, > e,)
p r - { (T, + e, - e P) if (e , < .,> (e, - e p) E -

= T, - (ep - e,) mod T, (1)

and allows for the translation of event times between these
two phases. Denoting the occurrence time of a certain event i
in the current local frame of reference of phase p by t , (4,),
the same event is seen to occur at

t z (# jr) = t z (# j p) - Epr (2)

in the next local frame of reference of phase T . It is important
to note that the use of phase-relative frames of reference and
modulo arithmetic restricts data event times to a dynamic range
with a spread of at most 2T,.

‘Without loss of generality, level-sensitive latches are assumed to be active
high and flip-flops are assumed to be negative edge-triggered. Under these
assumptions, the active interval of a clock phase occurs when the phase IS

high, and its latching edge is the falling transition

116 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 4, NO. 1, MARCH 1996

......~~~ . .

......... Tz 1 xi . . , . , . $2

ai T ~ - T ~ A, T, *
ek

b ~

(a) (b)

Fig. 2. Models for clock (a) and data (b) signals.

As shown in Fig. 2(b), the waveform of a data signal x, is
an alternating sequence of stable and changing intervals. In any
given cycle of operation this waveform is specified by a four-
tuple (w,, a, A,, %) where v, and V, are the stable values at the
start and end of the cycle, and where a, and A, are the event
times of the first and last transitions during the cycle in the
local frame of reference of some clock signal &. The domain of
v, and V, is the three-valued set {0,1, STABLE) representing
the binary logic constants and a stable but unspecified logic
value. Event times, in general, must be modeled as real
numbers, but are usually restricted to the integers by choosing
a suitable resolution. The two event times must obey the
ordering a, 5 A, and, for correct synchronous operation,
0 5 A, - a, < T, (the situation A, < a, can be used to indicate
that a signal is stable throughout the clock cycle, since in this
case the event times are ambiguous).

B. Logic Gate Model
Ravel uses a back-end pure propagation delay model for

logic gates. Other delay models, such as inertial, rise/fall, and
front-end delay, are also possible but will not be elaborated
further. Gate delay is specified by two parameters 0 5 6 5 A
representing the minimum and maximum signal propagation
delays through the gate. This delay range can be viewed
as a statisfical spread over an entire family of gates, or as
the deterministic difference between the shortest and longest
signals paths within a single gate. A “nominal” delay model
is achieved by setting S = A.

The basic operation performed by Ravel concerns the eval-
uation of the signal waveform (v,, ay, Ay, V,) at the out-
put y of a logic-gate in terms of the n signal waveforms
(V I , a l , A I , VI), .. . , (U,, a,, A,, V,) at its inputs. It is as-
sumed that the gate’s input waveforms have been translated
in time to a common frame of reference using (2). Denoting
the logic function of the gate by f , gate evaluation can be
summarized by the following set of four equations:

vy = f (V l , V 2 , . . . ,U,)
v y = f (Vl , v2, . . . , V,)

(3)

where c, and C, are Boolean Bags indicating the presence or
absence of early and late controlling values2 on input xi, and

’A controlling value on a gate input is one which always determines the
output value of the logic gate, regardless of its other inputs. A logic-one is the
controlling value for ANDNAND gates, and a logic-zero is the controlling
value for ORNOR gates. The XOR gate has no controlling value.

a, and AM represent the times of the first and last events
over all inputs to the gate:

a, = min (a,)
1IzSn

lLz<n AM = max (A%). (4)

To avoid confusion, the “+” and “V” symbols in (3) denote,
respectively, arithmetic addition and logical inclusive OR.
Juxtaposition in these equations denotes logical AND.

C. Synchronizer Model

The Ravel model of a D-type latch or flip-flop expresses
the next-cycle waveform (v z , a;, A:, V$) at the Q output in
terms of the current-cycle waveform (VD , U D , AD, VD) at the
D input. Both waveforms are specified in a frame of reference
defined by the controlling clock phase aP. The early and late
next-cycle Q values for both latches and flip-flops are obtained
using the familiar next-state equation Q+ = D for D-type
memory elements:

On the other hand, the early and late output event times depend
on the triggering mechanism. For edge-triggered flip-flops,
these times are calculated according to

where S and A denote the (back-end) minimum and maximum
signal propagation delays through the flip-flop. The output
event times for level-sensitive latches require a slightly more
complex calculation:

a: = S + max(aD, T, - Tp)
A& 1 A + max(AD, T, - TP) (7)

where Tp is the width of the active interval of phase 4p .
For either triggering mechanism, the following hold and

setup constraints must be satisfied for correct latching of input
data:

,

aD ?ff
A D < T , - S (8)

where H and S are specified hold and setup parameters.

D. Ravel Code Generation

Equations (1)-(8) form the basis of the Ravel LC simulator.
Ravel accepts as input a gate-level synchronous sequential
circuit along with a completely-specified multiphase clock
schedule, and produces as output a customized “compiled”

REPE et al.: RAVEL-XL. A HARDWARE ACCELERATOR 117

simulator for this circuit based on the above equations. The
compilation process involves a levelized traversal of the circuit
graph from the primary inputs and synchronizer outputs to the
primary outputs and synchronizer inputs, and the generation
of a “program” that simulates one clock cycle of operation.
The code sequence in this program for a single-output combi-
national circuit fragment sandwiched between a set of source
synchronizers and a single destination synchronizer is roughly
as follows.3

Using the phase shift equations (1) and (2), shift each
source synchronizer output waveform from its respective
frame of reference to the frame of reference defined by
the clock phase of the destination synchronizer. This
‘change-of-origin is necessary in order to insure that the
waveforms are properly processed by the combinational
logic.
In level order, apply the gate evaluations (3)-(4) to all
gates in this circuit fragment.
Check the hold and setup constraints (8) at the input of
the destination synchronizer.
Evaluate the waveforms at the outputs of the destination
synchronizer using (5)-(7).

As described in [34], clock phases are totally ordered based
on the occurrence times of their latching edges in a global
frame of reference. Within the generated simulation program,
the code sequences corresponding to different destination syn-
chronizers are arranged in a partial ordering that is consistent
with this total order on the clock phases.

111. RAVEL-XL DESIGN GOALS

The Ravel-XL system implements the Ravel simulation al-
gorithm in hardware. Its design was guided by three objectives.
Listed according to their priority, they are the following:

1) to maximize performance,
2) to maximize capacity, and
3) to minimize cost.

The bulk of this paper describes the design choices we made to
address the performance objective. Capacity was maximized
through the use of bit-efficient data and instruction formats,
and the design of a memory system which does not degrade
significantly in performance when simulating large circuits,
making feasible the simulation of circuits with up to a billion
gates. Cost was minimized indirectly by rejecting expensive
design options and by requiring the whole system to fit on a
single printed-circuit board.

The performance goal is measured in terms of the effective
number of gates processed pes second, EGPS, and is given by

- f c -
1

IPG x CPI x Tc x A
GEPS

A

EGPS =
CPG x A

(9) - -

where
IPG is the average number of instructions required to

3Primary inputs and outputs can be easily accommodated by inserting

process one gate;

fictitious synchronizers.

CPI is the average number of processor cycles required
to complete one instruction;
T, and f c are, respectively, the processor cycle time in
seconds and corresponding clock frequency in Hz;
CPG = IPG x CPI is the average number of processor
cycles required to process one gate;
GEPS = fc + CPG is the number of gate evaluations
performed each second, and is the most prevalent metric
in the literature;
A is the activity level of the circuit expressed as the
percentage of gates that must be processed in each
simulated cycle of operation.

Accounting for circuit activity makes (9) a consistent metric
for comparing the performance of ED as well as LC simulators
and accelerators. For LC techniques, A should be set to 1
to reflect the fact that all gates are processed regardless of
the actual circuit activity. In reporting performance figures
we will frequently use M-EGPS to denote a million effective
gate evaluations per second. We should note that IPG usually
depends on the number of gate inputs. Multiplying EGPS
by the average number of inputdgate yields the average
number of evaluated inputs per second (EIPS) which is often
more meaningful when discussing individual circuits. Unless
explicitly stated otherwise, when deriving EGPS figures we
will assume that IPG is based on two-input gate.

IV. RAVEL-XL ARCHITECTURE

In this section we develop a hardware architecture for the
Ravel algorithm that meets the above goals. Specifically, this
architecture reduces CPG: 1) by minimizing the data storage
requirements through the use of compact data and instruction
formats, 2) by exploiting the inherent concurrency in the
algorithm through the use of pipelined parallel functional units
in a custom datapath, and 3) by reducing the impact of high
memory traffic through careful matching of the design of the
memory system to the data and code access patterns. The other
factor in the performance equation, namely, the frequency of
operation, depends on the implementation of this architecture;
implementation issues are discussed in Section V.

A. Signal Representation
The software implementation of Ravel requires four 32 b

words to represent the waveform (v, , U,, A,, V,) of each gate
output y: two words to hold the arrival times, and two words
to hold the logic values. This liberal use of memory space,
particularly for storing logic values, is dictated primarily by
the desire to avoid the insertion of performance-degrading bit
packing and unpacking operations in the instruction stream.
In contrast, a custom-designed accelerator can have compact
data formats with no penalty, and possibly some gain, in
performance.

Signal waveforms in Ravel-XL are stored as 32 b words
with 2 b fields for the logic values and 14 b fields for the
arrival times. The 2 b value fields permit the encoding of the
binary logic values 0 and 1 as well as the stable unspecified

118 EEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL 4, NO. 1, MARCH 1996

0

value according to the following table:

0 0

1 1 1 0 , l 1 STABLEI

n n Register Files

f t c L___i
I I

I Gate Evaluation Unit / vwlatm detection \
The use of 14 b time fields is justified by recalling, from
Section 11-A, that the dynamic range of signal times is at
most 2T,. Thus, for T, = 10 ns the minimum resolvable time
in a 14 b representation is about 1.2 ps. The time fields are
considered to be unsigned integers ranging from 0 to 16384.
To represent the negative time values that may arise during
the phase shift calculation at the start of each evaluation cycle
(see Section 11-D), all signal times are biased so that the most
negative time that must be represented is mapped to 0. It is
easy to show that the most negative time value that must be
considered is - (m u p Tp) and that it occurs at the output
of level-sensitive latches controlled by the clock phase with
the widest active interval. The bias value is calculated from
the clock parameters by the host computer which adds it to
(subtracts it from) the signal times that are downloaded to
(uploaded from) Ravel-XL.

B. Custom Hardware Datapath

The core of the Ravel-XL chip is a gate/synchronizer
evaluation unit that implements (1)-(8). The gate evaluations
(3)-(4) are “unrolled” and calculated iteratively using the
template:

Y = G(Q, 2 2) ;

for i = 3 to n

Y = G(Y,G) (10)

where 9 represents a logic value or event time at the gate
output, 21, . . . , x, represent the corresponding variables at
the gate inputs, and G denotes the appropriate inpuv‘output
transformation (logical, min, or max). Using this algorithm,
the output waveform of an n-input gate can be computed in
2(n - 1) + 1 steps: (n - 1) steps to calculate a, and AM
from (41, and (n - 1) + 1 = n steps to calculate the zero-
delay output waveform using (10) and to add the appropriate
gate delay using (3) . A simple manipulation of the arrival time
equations in (3) allows a, and AM to be factored out of the
max and min functions yielding

al, = S + [~ ~ a ~ v cy max (c , ~ ,)]

A, = A + [??,AM v Cy min (E, v A,)] (1 1)

where cy and Cy =e boolean flags indicating, respectively, the
presence of one or more inputs with early and late controlling
values:

l < z < n

1<z<n

cy = c1 v c2 v ’ . . v en
cy = c1 v cz v . . . v c,. (12)

Fig. 3. Block diagram of the custom Ravel-XL gate evaluation datapath.

Use of (11) and (12) instead of (3) reduces the number of
required computation steps to just4 n.

Fig. 3 is a schematic diagram of the gatelsynchronizer
evaluation unit highlighting its main components. The datapath
has several register banks that are used to hold the computation
operands and a set of functional units for performing the
required operations. The registers can be conveniently divided
into two groups based on how they are accessed by the
functional units.

1) Read-only registers that are loaded with “constant” pa-
rameters by the host computer before Ravel-XL starts
the simulation. This group includes a single 14 b register
T, that holds the cycle time, four 14 b registers that hold
the occurrence time (T, - TP) of the enabling edge of
each clock phase, and a bank of 16 14 b registers, PSH,
that hold the phase shifts between each pair of phases
as computed by (1).

2) R e a m r i t e registers (shown with a shadow in Fig. 3)
that are loaded from the code and data memories and
read by the functional units during the simulation. This
group includes:
a) two 14 b registers S and A that hold, respectively,

the minimum and maximum signal delay of the gate
or synchronizer being evaluated;

b) two 14 b registers that contain, respectively, the hold
time H and the difference between the clock period
and the setup time (T, - S) for the synchronizer
being evaluated;

c) a bank of 16 32 b registers that hold the input
waveforms for the gate under evaluation.

The datapath consists of nine independent functional units
that implement the gate and synchronizer evaluation equations.
Synchronizer evaluation is handled by three units:

1) the synchronizer unit which computes the signal wave-
forms at the outputs of flip-flops and latches using
(5)-(7),

2) the phase shift unit which implements (2), and
3) the violation detection unit which checks for setup and

The remaining six units handle the evaluation of logic gates:
1) Unit vy calculates the early logic value at the gate output.
2) Unit V, calculates the late logic value at the gate output.
3) Unit MIN computes Inin(??, V A,) in (1 1) and Cy from

hold violations using (8).

(12).
4Stn~tly speaking, thls i s true only when n 2 2. For single-input gates,

the mmimum number of computaaon steps i s 2.

RIEPE et al.: RAVEL-XL:’A HARDWARE ACCELERATOR 119

r - -
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- - - -
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I

Fig. 4. A schematic of the datapath unit that computes min(C, V A ,) in
(11). Here, “ControIling Value’’ is the binary controlling logic value of the
gate type being evaluated. During the first cycle “Start” is enabled and two
operands, (VI, AI 1 and (V2, Az), are brought in. During all other cycles,
i = 3 . . . n,, “Start” is disabled and the input (V,, A,) is combined with the
current cumulative result stored in the output register.

4) Unit MAX computes max(c,ai) in (1 1) and cy from (12).
5) Unit a, calculates the time of the earliest input event

6) Unit AM calculates the time of the latest input event

The gate evaluation units operate in parallel, each using the
iterative template (10). As an illustration, Fig. 4 shows the
portion of functional unit M I N responsible for computing
min(c, v A,).

using (4).

using (4).

C. Instruction Set

Ravel-XL has seven instructions: four to perform the various
simulation computations, two to handle communication with
the host computer, and a NOP (No Operation) for debugging,
Three of the simulation instructions are CISC-style instructions
that are in one-to-one correspondence with the equations for
gate evaluation, synchronizer evaluation and phase shifting.
To reduce code length and still allow full access to a 32
b word-addressable address space these instructions use a
base-displacement addressing mode [191: the address of a
word-aligned operand is obtained by concatenating a 16 b
value from a base register with the 16 b positive displacement
field in the instruction. The chip has 17 16 b base registers
that are implicitly paired with the input and output operands
of gates and synchronizers. The fourth simulation instruction is
used to reload these base registers when it becomes necessary
to address operands beyond 64 K-words from the current base.

The remainder of this section provides a detailed description
of the instructions; the instruction formats are summarized in
Fig. 5.

The four simulation instructions are as follows: GEV for
- Gate EJaluation, SEV for Synchronizer maluation, PSH for
- Phase sift calculation, and LDB for LoaDB are registers.

GEV is a variable-length instruction that computes the
output signal waveform for gates with up to 16 inputs. For
an n-input gate the instruction is 2 + [n/21 32 b words long
and must be padded with zeros so that it is word-aligned when
the number of gate inputs is odd. The instruction can simulate
any of the eight basic gate types which are identified by the
TYPE field.

SEV computes the signal waveform at the output of a
synchronizer in terms of the input waveform and the clock
parameters. The synchronizer type (flip-flop or latch) is in-
dicated by a 1 b flag FF, and the controlling clock phase is
specified in a 2 b field PH. The instruction can be enabled to
perform a setuphold check by setting the 1 b SHC flag. To
avoid propagating false signal departure times from the outputs
of synchronizers with setup violations, synchronizer output
departure times are clipped by the hardware to a maximum
value of T, + A.

PSH implements (2). It subtracts the phase shift value stored
in the indicated PSH register from the event times of the
indicated signal waveform.

LDB loads a new base address into the indicated base regis-
ter. When the ALL flag is set the base address is written to all
seventeen base registers, which is useful during initialization.

The two instructions used for host communication are
ENDS and WAIT. Both cause Ravel-XL to send an interrupt
to the host and to pause until the host responds with a suitable
command. ENDS is used to indicate the completion of a
simulated clock cycle, and that Ravel-XL is ready for the next
set of input patterns. WAIT instructions can be inserted in
the simulation code to force breakpoints during execution;
they are useful for debugging by allowing single-stepping,
and can also be used for synchronization in a multiprocessor
implementation of Ravel-XL (see Section VII-C).

D. Pipeline Design

For a typical circuit, with many more gates than synchro-
nizers, simulation code based on the above instruction set
is clearly dominated by the GEV instruction. This, in turn,
implies that the overall performance of Ravel-XL is strongly
dependent on an efficient implementation of GEV. In this
section we analyze the communication and computational
requirements of the GEV instruction and describe the design
of a pipeline that minimizes its execution time.

The execution of a GEV instruction for an n-input gate is
naturally decomposed into four steps. These steps, and the
number of processor clock cycles needed to complete each,
are readily shown to be the following:

instruction fetch, requiring (2 + rn/21).: cycles;
input waveforms fetch, requiring ~ L Q cycles;
output waveform evaluation, requiring TI cycles;
output waveform writeback, requiring a cycles.

120 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL 4, NO. 1, MARCH 1996

s I H I* I
~

I I 6
OUTPUT DISPLACEMENT 6 OcTTPUi DISPLACEMENT I

Fig. 5. Instruction formats for the Ravel-XL instruction set. Shaded fields must be set to zero and are reserved for future use.

where cy is the normalized memory system cycle t imedefined
as the ratio between the memory and processor cycle
times-and is typically greater than or equal to one. A baseline
‘‘serial” execution of the instruction, therefore, leads to a total
execution time of n + (n + 3 + rn/21)a cycles.

The options available for reducing this execution time are
basically as follows:

1) overlapping, or pipelining, the execution of the instruc-

2) minimizing Q through proper choice of memory system

These options are usually considered when designing any type
of processor and are not particular to the Ravel-XL design.
However, for general-purpose processors the two options are
typically intertwined and must be considered simultaneously.
Fortunately, the particular “structure” of the GEV instruc-
tion in Ravel-XL allows these two options to be considered
somewhat independently. This fact becomes evident upon
examination of the execution time of a simple four-stage
pipeline whose stages are in one-to-one correspondence with
the four instruction steps. In such a pipeline, each GEV
instruction can be completed in an average of

tion phases;

organization and parameters.

max[(2 + [n/21)a, na, n, a] = a max[2 + rn/21, R] (13)

cycles. Execution time is clearly dominated by the instruction
and data fetch steps regardless of the value of a. The rest of
this section, thus, is devoted to further exploration of option
1. The tradeoffs involved in option 2 are examined separately
in Section IV-E.

This four-stage pipeline implies a three-ported memory
system with separate ports for 1) code fetch, 2) data fetch,
and 3) data writeback. Recognizing that code and data can be
separated into different memory spaces leads to an alternative

design with a single-ported code memory and a double-
ported data memory. This split-memory design is simpler,
cheaper, and potentially faster than the initial design. Further
simplification is possible by noting that, on average, there are
n read operations for every write operation to data memory. A
dedicated write channel to data memory would, thus, be under-
utilized. Reducing the data memory to a single readwrite
port amounts to opting for a three-stage pipeline in which
the waveform fetch and instruction writeback phases are
conceptually combined. The total instruction execution time
in this case becomes

max[(2 + [n/21)a, (n + l)a ,n]
= Q max[2 + [n/21, n + 11

3 for n = 1
n+ 1 for n 2 2.

= .{
The operation of such a three-stage pipeline is illustrated

in Fig. 6 for a three-input GEV instruction. In this figure,
CF, DF, and EW refer, respectively, to the code fetch, input
waveform data fetch, and output waveform evaluation and
writeback stages. In order to prevent conflicting read and write
requests to the data memory, the EW stage is deliberately
skewed with respect to the CF and DF stages. Thus, after
reading the n input waveforms of gate G,, the channel to data
memory becomes available for writing the output waveform
of gate G,-l. This arrangement delays the evaluation of gate
G, by n - 1 cycles and increases the latency of the pipeline
to 2(n + 1). Fortunately, unlike the case of general-purpose
instruction processors, such high latency is not detrimental to
the performance of Ravel-XL due to the absence of branches
in the instruction stream. The only data dependency that may
exist in the pipeline occurs when the waveform to be fetched
is still being computed in the EW stage (a read-after-write, or

RIEPE et al.: RAVEL-XL: A HARDWARE ACCELERATOR 121

CF

DF

EW

**------------Gate evaluation cycle

Fig. 6. Pipeline operation for a three-input GEV instruction.

RAW, hazard), and is handled by stalling the pipeline. More
sophisticated solutions, such as adding data forwarding paths
to the pipeline, are unwarranted since careful compilation can
eliminate most data dependencies.

E. Memory System Design

Equation (14) shows that, with our three-stage pipeline
design, simulation time is directly proportional to a, and
minimized when a = 1. As can be seen in Fig. 6, for a
three-input gate the pipeline makes one reference to the code
memory, and one reference to the data memory, each cycle.
Our basic goal in the design of the memory system is therefore
to match its effective cycle time to that of the processor in
order to achieve a transfer rate of one instruction word and
one data word per processor cycle. Additionally, this transfer
rate must be sustained even when simulating large circuits. For
processor frequencies below 100 MHz a simple but expensive
solution is to use high-speed SRAM’s with Q = 1. However,
a more practical, and much cheaper, solution for obtaining
single-cycle access is to design appropriate memory structures
that allow the use of slower DRAM chips. This goal amounts
to reducing a given normalized memory cycle time a , which
may be >1, to an effective normalized memory cycle time
a,ff-= 1.

To obtain a,ff = 1 when a > 1 the memory system must
be organized so that it matches the patterns of locality in the
code and data streams [19]. Locality is expressed in two ways:
temporal and spatial. The split memory system implied by our
pipeline design gives us the opportunity to optimize the code
and data memory architectures differently. This has proven
useful, since the access patterns to the two memory spaces
turns out to be markedly different.

In general-purpose processors, the traditional method for
capturing locality is with caches. However, Lewis has ob-
served that the straight-line code produced by compiled sim-
ulators causes poor hit rates [24]. Instead of instruction and
data caches Lewis advocates the use of off-chip memories
and a very deep pipeline-which would have no adverse
side effects on branchless code-to absorb the long latencies.
This design would address the latency issues, but would
have difficulty meeting our bandwidth requirements. Ravel-XL
requires an average of one memory access to each bank each

cycle-Lewis’ solution would require a very large multi-ported
off-chip memory to support this requirement.

The poor instruction cache hit rate is caused by a complete
absence of temporal locality. However, we can take advan-
tage of the high degree of spatial locality provided by the
branchless nature of the code to obtain a e ~ E 1. Our solution
uses an interleaved external code memory with prefetching.
As long as the number of interleaved memory banks is greater
than or equal to a + 1, such a memory structure will be
able to deliver consecutive instruction words from the straight-
line code-stream at the rate of one per cycle in steady-state.
Based on this analysis we chose to set a to 3, and to use a
four-way interleaved memory to hold the simulation program
instructions. At a target processor cycle time in the 20-40 ns
range, this choice requires the use of DRAM memories with
cycle times in the 60-120 ns range. Such parts are readily
available and are fairly inexpensive.

Lewis also observed that the data stream has an irregular
access pattern and lacks temporal locality as well. We have
carried out a number of architectural studies, however, that
indicate otherwise. We will demonstrate that, with proper
compiler techniques, the temporal locality in the data stream
can be controlled, allowing a cached memory organization to
achieve high hit rates. We also examine the spatial locality in
the data stream, and its effects on the data cache miss rate.
In our discussion of the data cache we will address all four
of the main cache parameters: cache size, associativity, line-
size, and write policy. Our analysis will decompose the miss
rate into its three components: compulsory misses, capacity
misses, and conflict misses [19], and discuss the effects of our
design decisions on each.

Temporal locality in the data stream results from the re-
use of output signal waveforms in the evaluation of fanout
gates, and is strongly dependent on the order in which the
instructions are scheduled. Our compiler (discussed in more
detail in Section VII-B) attempts to schedule the code stream
in an order that favors the evaluation of logic gates followed
immediately by their fanout gates, thus maximizing the tem-
poral locality of the data waveforms. Temporal locality affects
the rate of capacity misses, which are, in turn, controlled by
adjusting cache size. As shown in Fig. 7, architectural studies
have demonstrated that a cache of 2 K-words is sufficient to
keep miss rates under 20% in a circuit having 35000 gates.

122

25.0% 0 1/2K 0 2K X 8K

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 4, NO. 1, MARCH 1996

iY

30.0% 1

(D c
E 15.0%

E
.- 8

3 10.0% m c

U

5.0%

t

-

-

-

r

U

X

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 $ z $ E g g g g
circuit size (# gate inputs)

Fig. 7. Cache miss rates for three different cache sizes as a function of
circuit size. Here circuit size is expressed as the total number of gate inputs,
since one cache access is required for each input. Cache size is the number
of 32 b words.

We expect the miss rate to decrease further as we instrument
the compiler with additional optimizations.

Compulsory misses turn out not to be an issue in this
design. Since the host processor must download the primary
input waveforms at the beginning of each simulation cycle,
and since the host interface writes waveforms into the data
memory through the cache, no cold misses will occur on the
primary inputs. In addition, since all of a gate’s inputs must
be evaluated before it can be processed, waveforms will never
be read before they are written. Thus, all compulsory misses
are eliminated.

The final category of cache misses, conjict misses, is
addressed by the degree of associativity in the cache. As shown
in Fig. 8, the architectural studies did not seem to indicate
that the expense of implementing a set-associative cache was
warranted; instead, we chose the simpler option of a direct-
mapped cache. This result is due to the absence of looping
behavior, and the fact that the order in which addresses are
accessed can be controlled by the compiler when it assigns
addresses to the operands.

Spatial locality in the data stream, which depends on the
order in which the instructions are scheduled, as well as
the order in which the compiler assigns addresses to the
waveforms, is more difficult to characterize than in the code
stream. In a cached memory organization, the use of a line-
size greater than one can be used to take advantage of spatial
locality in the reference stream. Our compiler currently assigns
addresses to the data variables in a linear fashion as they are
first used. If it were modified to assign them in an order that
would maximize spatial locality we might see some benefit
from larger line sizes. However, such a cache adds complexity
to the design, and would require an interleaved external data
memory to support fast line fills. For reasons of simplicity we
chose not to explore this option.

Finally, we opted for the simpler write-through, as opposed
to a write-back, write policy. This is justified by the availability

25.0%

0 2-way

0 0 0 0 0 g g o o
8 8 8 8 0 0 8 8 s !!2 :: g g \ g 9

circuit size (#gate inputs)

Fig. 8. Effects of the degree of associativity on the cache miss rate. The
total cache size is constant at 2 K words.

of adequate bandwidth on the memory channel to complete
the write requests without conflict: writes occur only once
for every n reads and read requests caused by cache misses
are expected to be infrequent. According to (14), consecutive
write requests are separated by at least 3 clock cycles. Thus,
to avoid write conflicts, a 5 3.

The fact that we have been able to obtain reasonable
cache hit rates for circuits much larger than the cache size
suggests that our choice of using a data cache is justified. We
believe that our data supports a claim that miss rates will not
get much worse, even for very large circuits. We base this
claim on several properties of combinational logic as used
in large designs. First, the number of logic levels between
synchronizers does not increase, as this directly impacts clock
frequency. Second, the “width” of the logic, defined as the
number of gate fanouts that must be maintained in the cache
at any one time, is bounded by the structured design style used
in their construction. Even in large chips, most combinational
logic is grouped into relatively small blocks with few external
connections. As long as these logic groups fit within the cache,
the miss rate will not degrade.

F. Setupklold Eolation Detection
When setup or hold violations are detected by an SEV

instruction, the address of the offending synchronizer input
signal is written to a violation table in data memory that
can be read by the host at the end of the simulation. Since
violation information is diagnostic, and not intended to be re-
read during the simulation process, violation reports are written
directly to data memory without going through the cache.
Furthermore, to avoid unnecessary pipeline stalls, violation
writeback requests are assigned a lower priority than operand
writeback requests. This is accomplished with the use of a
four-entry FLFO buffer to queue violation reports waiting to
be written back. The violation report at the head of the FIFO
is written to data memory during idle cycles on the data bus;
the pipeline is stalled only when the FIFO is full. A larger

RIEPE et al.: RAVEL-XL: A HARDWARE ACCELERATOR 123

buffer could be used to reduce the incidence of stalls; this was
deemed unnecessary, however, since violations are expected
to be infrequent and to be relatively small in number.

G. Ravel-XL Host Inte$uce

The host computer sees Ravel-XL as a memory-mapped
peripheral device. The host has read/write access to both the
code and data memories as well as to several internal Ravel-
XL registers. A 32 b address sent by the host over the address
bus is mapped by Ravel-XL to one of four address spaces
according to the value of the two most significant bits: code
memory, data memory, the setuphold violation tables, and
the internal system registers.

In addition to the datapath registers that are used for storing
the clock parameters, the host can access the program counter,
a status register, and registers that contain the address of the
setuphold violation table and the total count of violations in
the table. The status register has three defined flag bits that
are set by Ravel-XL: bit 7 is set when an ENDS instruction is
executed; bit 6 is set upon execution of a WAIT instruction;
and bit 5 is set by the SEV instruction upon detection of one
or more setuphold violations.

Two pseudo registers, START and CONTINUE, are used by
the host to control the simulation process. A write to START
resets the program counter and commands Ravel-XL to begin
simulating; it is issued at the start of the simulation session
in response to ENDS instructions. A write to CONTINUE
is used to command Ravel-XL to resume simulation from a
breakpoint; it is issued in response to WAIT instructions.

V. RAVEL-XL IMPLEMENTATION

A single-chip VLSI implementation of the Ravel-XL ar-
chitecture is currently being prepared for fabrication. The
implementation was guided by two major objectives: 1) to
minimize the likelihood of pipeline stalls and 2) to minimize
the clock cycle time. As noted earlier, the lack of significant
data dependencies in the Ravel-XL instruction stream makes
the incidence of pipeline stalls quite rare. To further reduce
the possibility of stalls, deep buffers are sandwiched between
the pipe stages to absorb any transient delays in the memory
system response. Cycle time minimization was addressed
by decomposing the chip into several largely autonomous
functional units each consisting of a datapath and an asso-
ciated controller. Such a “distributed control” approach-as
opposed to a single global controller-reduces the possibility
of a performance-limiting critical path in the control logic.
Additionally, it leads to smaller controllers that are much
simpler to design and test.

The design process started with architectural simulations
of Ravel-XL using a behavioral model written in the Verilog
Hardware Description Language (HDL) [l 11. This model
was manually partitioned into distinct datapath and control
sections to aid the subsequent design synthesis phase. Physical
design was performed using the EPOCH silicon compiler [12].
EPOCH receives its input in a synthesizable subset of Verilog
HDL: behavioral datapath elements were manually converted

Fig. 9. Layout plot of the Ravel-XL chip. It is implemented in a 0.8-p
three-metal CMOS process, and the final dimensions of the chip are approxi-
mately 1.18 x 1.18 centimeters on a side.

macro cells defined in the EPOCH library, while behavioral
control modules were input directly from the architectural
models. EPOCH performed standard-cell logic synthesis for
the behavioral controllers, and provided technology mapping
for the library cells, as well as timing-driven placement,
routing, and buffer and power-rail sizing. The EPOCH static
timing analyzer, TACTIC, was used in the determination of the
critical path. The longest sensitizable path in the design was
found to lie in the datapath, and results in a clock frequency of
33 MHz. The chip contains 900 000 transistors, dissipates 1.06
Watts and occupies 1.4 cm’ of die area in a 0.8 p three-metal
CMOS process. It will be packaged in a 256 pin PGA package.
Because of the large pin count the chip is pad-limited: without
the pad frame the chip core is only 0.75 cm’. A layout plot
of the chip is shown in Fig. 9.

A stylized chip floorplan showing its functional units and
their major interconnections is depicted in Fig. 10. In this
figure, the relative size of each functional unit roughly corre-
sponds to the area it occupies on the chip; for clarity, however,
the position of each unit may not correspond exactly to its
actual chip placement. This is particularly true for the control
logic: shown as a single unit on the floorplan, it is actually
partitioned by the physical design tools into blocks of standard
cells that are used to fill the gaps created during the placement
of the datapath components. The largest block on the chip
is the 2 K x 54 b data cache (32 b words + 22 b tags).
The c -her functional units identified on the floorplan-most
of which have been dtscribed already-can be divided into
the following four groups.

1) Chip Znte$uce which includes the host interface (HI),
code memory interface (CMI), and data memory inter-
face (DMI).

2) CF Pipeline Stage which is the code fetch and decode
from the behavioral model into netlists of SSI and MSI (CFD) unit.

124 IEEE TRANSACTIONS ON VERY LARGE SCALE IWEGFLXTION (VLSI) SYSTEMS, VOL. 4, NO. 1, MARCH 1996

A d d m Data

Fig 10 Stylized chip floorplan showing major functional units and their
address and data interconnections The relative sizes of the functional units
are approximately correct, though for clanty the placement of the components
have little relahon to that on the chip layout shown in Fig. 9.

3) DF Pipeline Stage which includes the data fetch (DF)
unit and the operand Base Registers (BR).

4) EW Pipeline Stage which includes the gate evaluation
(GE) unit, the gate evaluation register files (RF) and the
violation queue (VQ).

The physical interface to the interleaved code memory is
achieved by maintaining a 32 entry circular prefetch queue
in the CMI. A cofltroller in the CMI attempts to keep the
queue full by continuously issuing read requests to the memory
to prefetch instruction words. Concurrently, the CFD unit
removes entries from this queue and performs the necessary
instruction decoding and operand routing. Immediate operands
are routed to the appropriate register: gate delays and syn-
chronizer setuphold parameters are written to the RF in the
EW stage; base addresses in LDB instructions are written to
the specified BR. Operand address displacements are posted
to a 16 entry queue that is accessed by the DF unit. The
DF unit removes these displacements and pairs each with an
appropriate ER before issuing a read request to data memory
through the DMI. The GE unit and its associated register files
implement the custom datapath described in Section IV-B and
shown in Fig. 3. Dual-bank registers, shown shaded in that
figure, allow the CFD unit and the DMI to write data to one
bank while the GE unit operates on data in the other bank, as
required by the structure of the pipeline (see Fig. 6). The DMI
processes reads and writes to the write-through data cache and

to the external data memory. It accepts requests from four
sources: 1) operand reads from the DF unit, 2) operand writes
from the GE unit, 3) violation writes from the VQ, and 4)
readdwrites from the HI. Priority for access is given first to
operand read requests, second to operand write requests, and
last to violation write requests. Requests from the host occur
only when the pipeline is stopped, so no notion of priority is
needed in this case.

W. F%RFORMANCE MEASUREMENT AND COMPARISON
In this section we compare the performance of Ravel-XL

to that of several other representative logic simulators. Both
ED as well as LC simulators, implemented both in hardware
and in software, are represented. Since the algorithms and
system architectures used by the different simulators and
accelerators are quite diverse we use the M-EGPS metric
introduced in (9) to insure consistency. In addition, since many
of &e hardware accelerators achieve their speed using multiple
boards-ach consisting of a single processor pipeline and
local storage-in parallel, we consider the board to be the
atomic unit for performance comparisons. Where appropriate,
we discuss mnlti-board system performance, and note which
systems a ~ e scalable.

A. Benchmark Results

We benchmarked several software simulators including
Verilog-XL, a Verilog interpreter from Cadence Design
Systems 1111, VCS, a Verilog compiler from Chronologic
Simulation [13], and the software implementation of Ravel
[31], 1321, [37]. For these simulators the EGPS figures
are computed directly from experimental run-times using
the ISCAS-89 sequential benchmark circuit suite [7] with
sequences of randomly-generated input patterns. Experiments
performed with the Verilog-HDL model of Ravel-XL allow
a direct comparison to be made between Ravel-XL and the
other software simulators. The performance of Ravel-XL is
compared with several ED hardware accelerators: MARS
[l], [2], the X P product family from Zycad Corp. 1431, and
the Fujitsu SP [33]. It is also compared against several LC
accelerators: an unnamed system by Zasio et al. [42] and the
family of IBM simulation engines (LSM [9], YSE [15], and
EVE [17]). For these systems the peak performance figures are
estimated from published simulation data. Since the activity
levels in these simulations are not given, the EGPS figures for
ED simulators are estimated assuming a 10% activity level,
which is typical for circuits we have tested. Performance
estimates at a 100% activity level are also derived in an
attempt to show where the trade-off between the ED and LC
methods lies. A summary of the performance study is given
in Table I.

1) Ravel-XL Pegomance Measurements: Assuming a cir-
cuit composed of 3-input gates and a 100% data cache hit
rate, (14) predicts a 4 CPG peak performance for Ravel-XL.
At 33 MHz this yields a speed of 8.25 M-EGPS which is 40
(respectively, 20) times faster than Ravel in its full longkhort
path (respectively long-path-only) simulation mode. However,
this estimate does not take into account the structure of the

RIEPE et al.: RAVEL-XL A HARDWARE ACCELERATOR

Capacity

(gates)

nla

nla

64K

nla

nla

256K

256K

<230

4K

64K
gates
5MB
mem

TABLE I
SIMULATION BENCHMARK RESULTS

scal-
able?

N

N

Y

N

N

Y

N

Y

Y

Y

125

Verilog-XL ED K
(one board)

(long &
short)

I

Ravel I LC

(one board)

(one board)

(one board)

Timing
Model

1 value

1 value

risdfall

minlmax

1 value

ridfall

unit delay

minlmax

unit delay

unit delay

Peak Speed (lo6 EGPS)

activity
=lo046

.CO4

.a4

.065

.20

.40

2.5

5.0

6.6

12.5

12.5

activity
=lo%

.04

.40

.65

.20

.40

25

5.0

6.6

12.5

125

7.00 L i

6.00

5.00

3
8 4.00

3.00

2.00

1 .oo
0 5000 loo00 15000 2oooO 25000

circuit size (# gates)

Fig. 11. Experimental results obtained with the Venlog-HDL model of
Ravel-XL using the ISCAS89 suite of synchronous sequential benchmark
circuits.

test circuits or the number of cycles lost to cache misses or
pipeline hazard stalls.

Fig. 11 shows experimental results measured with the
Verilog-HDL model of Ravel-XL. The figure shows how
the number of cycles required to simulate each gate changes
with circuit size. Since the average number of gate inputs may
not be constant across the various circuits in the benchmark
suite, we also graph the average number of cycles to process
each gate input. The results show a high simulation cost
for small circuits-this is due to the difficulty of scheduling
gates without read-after-write (RAW) pipeline hazards. After
this initial spike, the simulation cost increases slowly due to
increasing cache m i s s rates. Finally, in circuits larger than
about 10000 gates, the cost appears to taper gradually off to
a near constant value as the code scheduler is able to partition
the circuit into strongly connected cache-resident blocks.

35.00%

30.00%

8 25.Wh
- a

2 20.00%

-
c

B
8 15.00%
e
10.00%

5.00%

0.00%

r

U-

circuit size (# gates)

Fig. 12. The fraction of cycles spent by Ravel-XL waiting for RAW hazards
and cache misses to be resolved, as a function of circuit size.

According to Fig. 11 we should expect a simulation rate
closer to 5 CPG for large circuits, which will reduce our
predicted performance to about 6.6 M-EGPS, or about 33 times
faster than the software version of Ravel.

It is instructive to examine the fraction of clock cycles
that are wasted while waiting for RAW hazards and cache
misses to be cleared. As shown in Fig. 12, almost 40% of
the processor cycles for the largest circuits are spent servicing
RAW and cache-miss stalls. We expect this percentage to drop
significantly with better compilation of the circuit equations
(see Section VII-B). Fig. 13 shows how the performance
of Ravel-XL, measured as the average number of cycles
to simulate each gate-input, varies with cache miss rate.
These numbers were generated using the ISCAS-89 ~38584.1
benchmark circuit by artificially forcing cache misses at the
desired rate. As can be seen in the figure, performance drops
off linearly with an increase in miss rate.

It is worth pointing out that the overhead of communicating
with the host will be negligible in most cases. Asynchronous
host writes to Ravel-XL cost 16 clock cycles, and reads
between 15 and 18. As an example, it will require 10 ms to
download the 20 705 gate ISCAS89 benchmark circuit ~38584
to the code memory at the beginning of a simulation, and the
cost of writingheading the 290 primary inputloutput values
each cycle represents only about 5.3% of total simulation time.

2) Sojiiare Simulators: In its current implementation
Ravel generates a simulation program in the MIPS R3000
instruction set [20]. Table I1 lists the number of machine
instructions generated for a typical gate.At an ideal CPI of one
on the benchmark workstation, and assuming an average of
three-inputdgate, Ravel runs at about 100 CPG. This ideal CPI
rate is rarely achieved, however, because of the lack of locality
in the instruction stream produced by Ravel. Experiments
indicated a dramatic increase in the cache miss rate as soon
as the size of the simulation loop exceeded the size of the
instruction cache [32]. As we mentioned in Section IV-E, it has
been observed that memory system performance degradation

126

Delay Model

IEEE TRANSAClTONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL 4, NO. 1, MARCH 1996

2-input 3-input 4-input n-input

long & short path

long path only

71 100 129 71 + 29 (T Z - 2)

33 46 59 33 + 13 (T Z - 2)

I zero delay I 8 I 12 I 16 I 8 + 4 (n - 2) I

cache miss rate

Fig. 13. The variation in Ravel-XL performance, measured as the average
number of cycles to simulate each gate-input, as the miss rate increases. The

-test circuit is S38584.1.

due to lack of locality is a problem common to LC simulators
in general [22], [23]. Even for moderately sized circuits of
several thousand gates the observed CPI was 2 or larger,
yielding a minimum CPG of 200 for a typical three-input
gate. The benchmark workstation, a DECstation 5000/240
running at 40 MHz, can be expected to achieve 0.20 M-
EGPS with the full simulation model and 0.40 M-EGPS with
long-path-only delays. This agrees with the simulation data
gathered in [3 11, which observed a long-path-only simulation
speed of 0.355 M-EGPS for the ISCAS-89 S1196 circuit, a
typical circuit with a 13% activity level, and which is large
enough to cause the CPI to be around 2.

Experiments using the ISCAS-89 sequential circuit suite
have shown the software implementation of Ravel to operate
about ten times faster than Verilog-XL, and at about the same
speed as VCS, for circuits with activity levels near 10% [31].
In these experiments Ravel was run in long-path-only mode to
more closely match the single-delay model of Verilog. Based
on this data, Ravel-XL is expected to run 165 times faster than
Verilog-XL and 16.5 times faster than VCS, and at a 100%
activity level Ravel-XL would achieve speedups of 1650 and
165 respectively.

3) Event Driven Hardware Accelerators: The MARS hard-
ware accelerator is a micro-programmable system that can be

programmed to simulate at many abstraction levels. Numbers
reported here, for a single-board system programmed for a
two-phase multiple-delay algorithm and running at 10 MHz
[1, p. 351, are about an order of magnitude slower than Ravel-
XL. This system is easily scalable using multiple boards in
parallel, and the authors expect an almost linear increase in
speed and capacity with a multiboard system.

Zycad Corporation markets a hardware accelerator using an
ED algorithm which supports multiple-value rise/fall delays
that achieves a speed of 25 M-EGPS at a 10% activity level.
Circuit activity levels must be above 50% before Ravel-XL is
faster. This system is scalable with up to 16 boards, obtaining
a linear speedup as boards are added. Arbitrary delay models
based on function calls can be used at a performance penalty.

Perhaps the fastest simulator reported is the multiprocessing
SP system from Fujitsu. The only reported run times are
given relative to an internal software simulator, complicating
performance estimation. However, they report a maximum of
800 million event evaluations per second for a 64 processor
system. Extrapolating back, we estimate 12.5 M-EGPS per
processor at a 100% activity level, though the conditions
required for peak performance are not given. In addition, the
SP only supports a unit-delay model, perhaps accounting for
its high performance relative to the others ED approaches.

4) Levelized Code Hardware Accelerators: Several other
hardware accelerators use the LC technique. One by Zasio
et al. obtains 5 M-EGPS, though it is limited to a unit-
delay model for timing. The most successful LC systems
were those designed by IBM, the logic simulation machine
(LSM), Yorktown simulation engine (YSE) and engineering
verification engine (EVE), with EVE being the most recent.
All share a common architecture, which also bears some
resemblance to that of Ravel-XL: it is a multi-processor
system, each board made up of a single gate processing
pipeline and local instruction and data memories. A CISC-
style instruction is used, but theirs is limited to a constant five
inputs. Boards can be scaled in parallel using a large crossbar
switch, up to a maximum of 512 boards. They claim a peak
throughput of over three billion EGPS and a capacity of two
million gates for a full EVE system-a 500 K gate benchmark
ran at 490 M-GEPS. The IBM systems are also limited to a
unit-delay model for timing.

,

I

VII. FUTURE WORK
In this section we make some retrospective observations

about the implementation and state the goals for a second-

RIEPE et al.: RAVEL-XL: A HARDWARE ACCELERATOR 127

generation chip. We also discuss ongoing work with several
code optimization problems in the Ravel-XL compiler. We
conclude with some observations on the use of Ravel-XL in
a multiprocessor configuration.

A. Architectural Improvements

As shown in (14), the speed of Ravel-XL is currently limited
by memory throughput. With a higher bandwidth to memory
and more parallel hardware in the gate/synchronizer evaluation
datapath we could conceivably obtain a simulation rate of
1 CPG. This will require the use of technology such as a
multi-port cache in the data memory and a faster interface
to the code memory, such as a Rambus RDRAM [18]. As
the simulation speed increases the write-through cache will
quickly limit performance, requiring a more complex caching
scheme, in conjunction with deeper write-buffers, to limit the
frequency of off-chip writes.

Other improvements that are planned include the ability to
model gated-clocks and tri-state busses. The support for gated
clocking may require a notion of conditional execution (i.e.,
branching) in the algorithm, and could introduce significant
complication in the hardware. The modeling of tri-state busses
will require a representation for impedance values and a
new wired-logic primitive. Tri-state busses can currently be
modeled by collapsing them into equivalent OR or AND
gates, though CMOS bus contention will not be correctly
modeled.

B. Compiler Issues

In the design of Ravel-XL we made an effort to create a
flexible system in which the compiler would not be required
to perform expensive optimizations to achieve reasonable per-
formance. The only problems in the code generation process
that require potentially expensive optimizations are: 1) the
ordering of the gate evaluations in the instruction stream
to maximize temporal locality, and 2) the ordering of the
waveform variables in data memory to control spatial locality.
To obtain a 100% data-cache hit rate we must guarantee that
each gate waveform value stays resident in the cache from the
time that it is written until the last of its fanout gates have been
evaluated. The traditional level-order (breadth-first) traversal
of the circuit graph identified with LC simulators may, for
this reason, lead to poor data cache performance. This will be
particularly noticeable if the width of the circuit at any given
topological level (number of gates per level) exceeds the size
of the cache.

A preliminary version of a compiler for Ravel-XL has been
implemented to obtain the data shown in Section VI-Al). To
address the problem of improving the temporal locality in the
code, and thus the cache miss rate, we have explored several
traversal techniques as alternatives to the strict level-order
traversal. Basically, the compiler attempts to broadcast a gate
output to its fanout gates as soon as possible after it has been
evaluated to maximize the likelihood of its presence in the data
cache, while at the same time minimizing the average lifetime
of all cache entries. In general, this problem is NP-complete

45.0%

40.0%

35.0%

c 30.0%

E 25.0%

0 20.0%

15.0%

10.0%

5.0%

0.0%

(U

UI

c

.-
(U c

8

0 levelized

0 depth-first

~~~ - .,..., 
circuit size (# gate inputs) 

The effects of two different code ordering strategies on the cache Fig. 14. 
miss rate (2 K word cache). 

[26], but we have obtained good results with simple heuristics 
using a recursive depth-first traversal [38] of the circuit. The 
algorithm starts at a primary-output and recursively expands its 
fanin-cone, generating code for each gate (if it has not already 
been evaluated) as it returns from the recursion. Since cache 
misses are likely to result on any signals that fanout from this 
block of gates to other blocks, we attempt to choose the next 
primary-output from a set of candidates that uses some of the 
current set of unresolved fanout paths. 

The only problem with this technique is that the recursive 
traversal encourages the scheduling of gates followed imme- 
diately by gates they fan out to, resulting in read-after-write 
(RAW) pipeline hazards that cause frequent stalls. To correct 
this problem the compiler tries to ensure that there is at least 
one unrelated gate scheduled between two gates connected by 
a common signal. The effectiveness of these two optimizations 
over the simple level-order traversal is shown in Fig. 14. 

C. Multiprocessor Systems and System Scalability 

With careful partitioning, large digital circuits can be sim- 
ulated in parallel with minimal interprocessor communication 
and synchronization. Indeed, many of the faster logic simula- 
tion hardware accelerators use parallel techniques [I], [2], [91, 
[15], [17], [33], [43]. Ravel-XL was designed with support 
for multi-processing in mind. Multiple Ravel-XL boards can 
be placed on a single backplane and one design partitioned 
among these boards. Synchronization can be handled in one 
of two ways. If circuits are partitioned only at synchronizer 
boundaries, communication among the different boards is 
necessary only at the beginning of each clock phase when new 
input vectors are loaded. If a circuit must be broken between 
synchronizers, however, WAIT instructions can be placed in 
the code at required synchronization points. In these configura- 
tions communication occurs only through the backplane and is 
managed by the host. This creates an obvious bottleneck, but is 
a cheaper alternative to the complex crossbar interconnection 
system found in many other multiprocessor systems. 



128 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL 4, NO. 1, MARCH 1996 

VIII. CONCLUSIONS 

In this paper we described Ravel-XL, a hardware accel- 
erator for levelized-code (LC) digital logic gate simulation. 
An architecture was developed to implement the Ravel LC 
simulation algorithm in hardware, and a single-chip VLSI 
implementation was presented. The Ravel algorithm adopted 
a unique waveform model that allows timing information to 
be calculated during the levelized traversal of the traditional 
LC simulation process. This eliminates one of the serious 
limitations of LC techniques when compared with event-driven 
(ED) algorithms, namely, the inability to perform accurate 
timing simulation. Ravel-XL, by implementing the Ravel 
algorithm in hardware, is able to pipeline the gate simulation 
process and take advantage of the parallelism available in 
the code to provide a significant speedup over Ravel running 
on a general-purpose computer. Further efficiency is gained 
by customizing the design of the memory system to prevent 
simulation speed degradation when simulating large circuits. 

This implementation is capable of executing an order of 
magnitude faster than the Ravel algorithm running in software 
on a general purpose computer, and two orders of magnitude 
faster than Verilog-XL, an ED simulator, when simulating 
large circuits with high event-activities. In a single-board 
configuration, the simulation speed of Ravel-XL is also com- 
petitive with those of several other commercial and research 
hardware accelerators, and its simple highly-integrated im- 
plementation should give it a significant price/perforrnance 
advantage. Ravel-XL is also easily scalable to multi-board 
parallel simulation configurations, and should be capable of 
simulating at speeds comparable to those of other parallel 
simulation accelerators such as YSE, EVE, and the Zycad XP.  

Work is still in progress on the simulation front-end software 
and code compilation and optimization software. An important 
goal in the project is to prevent the need for expensive code 
pre-processing. Large circuits will require some optimizations 
in scheduling the code to prevent data-cache misses, but 
preliminary work suggests that simple algorithms will be 
sufficient in most cases. Work is also continuing on the 
problem of circuit partitioning to minimize the connectivity of 
circuit blocks split over different processors in a multiboard 
parallel Ravel-XL configuration. In addition, we are examining 
improvements to the architecture based on experience gained 
during the current implementation. 

ACKNOWLEDGMENT 

The authors would like to thank J. Bell for his work on 
the Ravel-XL compiler, and also the anonymous reviewers for 
their helpful suggestions and constructive criticism. 

REFERENCES 

[I] P. Agrawal, W. J. Dally, W. C. Fischer, H. V. Jagadish, A. S. 
Krishnakumar, and R. Tutundiain, “MARS: A multiprocessor-based 
programmable accelerator,” IEEE Design & Test of Computers, pp. 
28-37, Feb. 1987. 

[2] P. Agrawal and W. J. Dally, “A hardware logic simulation system,” 
IEEE Trans. Computer-Aided Design, pp. 19-29, Jan. 1990. 

[3] Z. Barzilai, J. L. Carter, B. K. Rosen, and J. D. Rntledge, “HSS-A high- 
speed simulator,” IEEE Truns. Computer-Aided Design, pp. 601-617, 
July 1987. 

[4] T. Blank, “A survey of hardware accelerators used in computer-aided 
design,” IEEE, Design Test, pp. 21-38, Aug. 1984. 

[5] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. 
Wang, “MIS: A multiple-level logic optimization system,” IEEE Trans. 
Computer-Aided Design, pp. 1062-1081, Nov. 1987. 

[6] M. Brener and A. Friedman, Diagnosis and Reliable Design of Digital 
System. Woodland Hills, CA: Computer Science, 1976. 

[7] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of 
sequential benchmark circuits,” in Proc. ISCAS89: 1989. 

[8] M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra, “Automatic 
verification of sequential circuits using temporal logic,” IEEE Trans. 
Comput., vol. C-35, pp. 1035-1044, Dec. 1986. 

[9] T. Burggraff, A. Love, R. Malm, and A. Rudy, “The IBM Los Gatos 
logic simulation machine hardware,” in Proc: IEEE Int. Con8 Comput. 
Design, Oct. 1983, pp. 584-587. 

[IO] T. M. Burks and K. A. Sakallah, “Min-max linear programming and the 
timing analysis of digital circuits.” in Proc. Int. Conf Comuuter-Aided 
Desi;, 1943, pp. 152-155. 

[1 11 Verilog-XL Reference Manuul, Cadence Design Systems Inc., version 
1.6. 1991. 

1121 EPbCH Desinners Handbook, Cascade Design Automation Con, , . .  

EDH-l.OBeta,-1992. 
r131 VCS Reference Manual. Chronologic Simulation. version 2.0. 1993. 

I 

214j J Crap”uchettes, “TURBOchannel interface asic functional specifica- 
tion, revision 0.6 (preliminary),” Digital Equipment Corp , TRUADD 
Program, Aug 31, 1992 

[15] M. Denneau, “The Yorktown simulation engine,” in Proc 19th 
A C M E E E  Design Automation Conf, June 1992, pp 55-59 

[16] Digital Equipment Corporation, “TURBOchannel specifications-version 
2C,” Digital Equipment Con, . TRUADD Program. EK-TCDEV-DK- 
004, Sept. 199;. . 

1171 L. N. Dum, “IBM’s engineering design system snpport for VLSI design 

I 

and verification,” IEEfDesign-& Test Cimput., pp. 30-40, Feb. 198; 
[18] M. Farmwald and D. Mooring, “A fast path to one memory,” IEEE 

Specrrum, pp 50-51, Oct. 1992 
[19] J. L. Hennessy and D A Patterson, Computer Architecture, A Quanti- 

tative Approach. 
[20] G. Kane and J. Heinrich, MIPS RISC Architecture. Englewood Cliffs, 

NJ: Prentice Hall, 1992. 
[21] Y. S. Lee and P. M. Maurer, “Two new techniques for compiled multi- 

delay logic simulation,” in Proc. 29th Design Automation Conf. 1992, 

San Mateo, CA: Morgan Kaufmann, 1990 

pp. 420-423. 
1221 D. M. Lewis, “A hierarchical compiled-code event-driven logic simula- 

tor,” IEEE Trans Computer-Aided Design, June 1991, pp 726-737 
[23] ~, “Performance issues in a compiled-code hardware accelera- 

tor,” in CAD Accelerators New York Elsevier Science, 1991, pp 
47-59 

[24] - , “A compiled-code hardware accelerator for circuit simulatlon,” 
IEEE Trans Computer-Aided Design, pp 555-565, May 1992 

[25] D M. Lewis, M H van Ierssel, and D H Wong, “A field programmable 
accelerator for compiled-code applications,” in Proc Int Conf Comput 
Design (ICCD), 1993, pp 491496 

[26] B. A Malloy, E L Lloyd, and M L Soffa, “Scheduling DAG’S for 
asynchronous multiprocessor execubon,” IEEE Trans Parallel Distrib 
Syst., vol 5, May 1994, pp 498-508 

[27] P M Maurer, “Two new techniques for unit-delay compiled simula- 
tion,” IEEE Trans Computer-Aided Design, vol 11, pp 1120-1130, 
Sept 1992 

[28] P M Maurer and Y S Lee, “Gateways A technique for adding event- 
dnven behavior to compiled simulations,” IEEE Trans Computer-Aided 
Design, pp 338-352, Mar 1994 

[29] A N Parlakbilek and D M Lewis, “A multiple-strength multiple-delay 
compiled-code logic simulator,’’ IEEE Trans Computer-Aided Design 
Integr Circuits and Syst , vol 12, pp 1937-1946, Dec 1993 

[30] Enterprise Emulation System User’s Guide, Quicktum Syst , Inc , 1991 
[31] M hepe and K Sakallah, “Delay accurate compiled-code synchronous 

gate-level Venlog simulation,” in Proc 2nd International Verilog HDL 
Conference, March 1993, pp 121-127 

1321 M A hepe,  J L Bell, E J Shriver, and K A Sakallah, “Assigned- 
delay compiled-code multlphase synchronous logic simulation,” (in 
preparahon) 

[33] M Satoh, K Iwata, A Nakamura, M Kakegawa, J Masuda, H 
Hamamura, F Hirose, and N Kawato, “Logic simulation system using 
simulatlon processor (SP),” in Proc 25th ACMNEEEE Design Automation 
Con$, 1988, pp. 225-230 

[34] K A Sakallah, T N Mudge, and 0 A Olnkotnn, “checkT,  and 
mznT, Timng venfication and optimal clochng of synchronous digital 
circuits,” in Proc Int Conf Computer-Aided Design, Nov 1990, pp. 
552-555 



RIEPE et al.: RAVEL-XL: A HARDWARE ACCELERATOR 129 

[35] - , “Analysis and design of latch-controlled synchronous digital 
circuits,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst., vol. 
11, pp. 322-333, Mar. 1992. 

[36] K. A. Sakallah, T. N. Mudge, T. M. Burks, and E. S. Davidson, 
“Synchronization of pipelines,” IEEE Trans. Computer-Aided Design 
Zntegr. Circuits Syst., vol. 12, pp. 1132-1146, Aug. 1993. 

[37] E. Shriver and K. Sakallah, “Ravel: Assigned-delay compiled code logic 
simulation,” in Proc. Int. Con$ Computer-Aided Design, Nov. 1992, pp. 
364-368. 

[38] R. Tarjan, “Depth-first search and linear graph algorithms,” in Proc. 
SIAMJ. Comput. vol. 1, no. 2, June 1972, pp. 146-160. 

[39] E. Ulrich, “Exclusive simulation of activity in digital networks,” Com- 
mun. ACM, vol. 12, no. 2, pp. 102-110, Feb. 1969. 

[40] L. Wang, N. E. Hoover, E. H. Porter, and J. Zasio, “SSIM: A software 
levelized comuiled-code simulator,” in Proc. 24th ACMLEEE Design 
Automation Con$, 1987, pp. 2-8. 

1411 2. Wang and P. M. Maurer, “LECSIM: A levelized event driven . -  - 
compiled logic simulator,” in Proc. 27th ACMLEEE Design Automation 
Con$, 1990, pp. 491496. 

[42] J.  Zasio and P. Hwang, “A low-cost high-performance levelized 
compiled-code simulation accelerator,” in Hardware Accelerators for 
Electrical CAD. New York: IOP Publishing, 1988, pp. 46-56, 

[43] Zycad Corp., “The XP product family,” marketing literature. 

Karem A. Sakallah (S’78-M’80-SM’92) received 
the B.E. degree (with distinction) in electrical en- 
gineering from the American University of Beirut, 
Beirut, Lebanon, in 1975, and the M.S. and Ph.D. 
degrees electrical and computer engineering from 
Camegie Mellon University (CMU), Pittsburgh, PA, 
in 1977 and 1981, respectively. 

In 1981, he joined the Department of Electri- 
cal Engineering at CMU as a Visiting Assistant 
Professor. From 1982 to 1988, he was with the 
Semiconducting Engineering Computer-Aided De- 

L -  - -  
sign Group at Digital Equipment Corporation, Hudson, MA, where he headed 
the Analysis and Simulation Advanced Development team. Since September 
1988, he has been an Associate Professor of Electrical Engineering and 
Computer Science with the University of Michigan, Ann Arbor. His research 
interests are primarily in the area of computer-aided design of integrated 
circuits and systems. with particular emphasis on numerical analysis, timing 
verification and optimal clocking, multilevel simulation, modeling, knowledge 
abstraction, and design environments. 

Dr. Sakallah has served on the technical program committees of all 
major CAD conferences and is currently an Associate Editor of the IEEE 

SYSTEMS. He is a member of the Association for Computing Machinery. 
TRANSACTIONS OF COMPUTER-AIDED DESIGN OF INTEGRATED ClRCUlTS AND 

Michael A. Riepe received the B.S. degree in 
computer engineering (with highest honors) from 
the University of California, Santa Cruz in 1991, 
and the M.S. degree in electrical engineering from 
the University of Michigan, Ann Arbor in 1993. 
He is currently working towards the Ph.D. degree 
in electrical engineering from the University of 
Michigan. 

His research interests include digital GaAs VLSI 
integrated circuit design, CAD for high-performance 
VLSI layout and simulation, and computer architec- 
ture. 

Richard B. Brown (S’74-M’76-SM’91) received 
the B.S. (with highest honors) and M.S. degrees 
in electrical engineering (computer emphasis) from 
Brigham Young University in 1976. He received the 
Ph.D. degree in electrical engineering (with concen- 
tration in solid state and VLSI) from the University 
of Utah in 1985. His dissertation work included 
development of a custom MOS fabrication process 
and integration of digital and analog circuitry to 
form a novel solid-state chemical sensor. 

From 1976 to 1981, he worked in computer 
design as’ Vice-president of Engineering at Holman Industries, Oakdale,- CA, 
and then as Manager of Computer Development at Cardinal Industries, Webb 
City, MO. In September 1985, he joined the faculty of the Department of 
Electrical Engineering and Computer Science at University of Michigan. 
He has been involved in establishing the VLSI graduate program of the 
University of Michigan and introducing a uniform set of electronic CAD 
tools into the curriculum. He has taught Introduction to Semiconductor Devise 
Theory, Solid-Stae Devices, and Digital Electronics, and both introductory 
and advanced VLSI design courses. Since 1987, he has done research in VLSI 
digital GaAs circuits and high-performance computing systems. His group has 
optimized processor architectures for GaAs SRAM’s and high-performance 
GaAs microprocessors, and developed CAD tools which provide general 
support of high-speed circuit design and automatic hardware description 
language to layout compilation of GaAs DCFL circuits. He holds five patents 
and consults in the areas of solid-state Sensors and circuits, and electronic 

JoPo P. Marques Silva received the Eng. and Mas- 
ter degrees in electrical and computer engineering 
in 1988 and 1991, respectively, from the Institute 
Superior TCcnico at the Technical University of 
Lisbon. He received the Ph.D. degree in electrical 
engineering from the University of Michigan, Ann 
Arbor in 1995. 

He is an Assistant Professor at the Instituto SU- 
perior TCcnico (IST), Lisbon, Portugal, and a Re- 
searcher at the Instituto de Engenharia de %stemas 
e Computadores (INESC). His research interests 

include design and analysis of algorithms and CAD for integrated circuits 
and systems. design automation tools. 


