Data Cache Parameter M easurements

Enyou Li, Clark Thomborson
Computer Science Department
University of Auckland
Private Bag 92019, Auckland
New Zealand
{ley,cthombor } @cs.auckland.ac.nz

Abstract the cache portion of a machine performance model, guid-
ing a compiler’s optimizations of memory operations in the
We extend prior research by Saavedra and Smith on de- inner-loop computations that consume the vast majority of

signing microbenchmarks to measure data cache parame-+time in many applications.
ters. Unlike Saavedra and Smith, we measure the parame- The performance of the primary cache is of strong cur-
ters by characterizing read accesses separately from writerent interest to both the computer architects and program-
accessesand we do not assume that the address mappingmer, because this cache forms an importdirst layer”
function is a bit-selection. We can measure the cache ca-of the memory hierarchy in modern system design. In
pacity C, block sizeb, and associativity,; we can measure this paper, we show how to write a series of microbench-
the cache-hit access time and penalty for read and ywite marks that, in conjunction with our analysis, will estimate
can determine whether a cache allocates on wnite can the capacityC, the associativity:, the blocksizeh, and the
detect write-back and write-through policies. We present cache hit access times and cache miss penalties. Our mi-
experimental results for two CPU/cache structures, a 200 crobenchmarks are thus similar to (and indeed are inspired
MHz Pentium with MMX and a 180 MHz Pentium Pro. by) those proposed by Saavedra and Smith[9]. Our bench-
marks, however, differentiate between read and write ac-
cess times rather than reporting an average access time for

1. Introduction a 50/50 mix of reads and writes, as is done by Saavedra
and Smith. (Note: Smith and Von Worley have proposed
Computer performanceis, increasingly, limited by mem- microbenchmarks for parallel computers that separately es-

ory speed rather than processor speed, as graphically illustimate read and write access times [13]. These microbench-
trated on page 619 of [8]. In 1996, Richard Sites opined thatmarks do not estimate any other cache performance param-
“over the coming decade memory subsystem design will be€eters.)
the only important design issue for microprocessors” [10]. We provide two additional microbenchmarks that can
In his paper, the CPUs could only run at less than 10% of be used to determine the presence or absence of the cache
their peak instruction issue rate. policies commonly known as allocate-on-write and write-
Computer architects are not the only people who are con-through.
cerned about memory systems performance. As memory Our analysis indicate that our microbenchmarks will de-
bottlenecks increase in frequency and severity, performancdiver correct results for a wide variety of cache architec-
programmers and algorithmic designers must pay more attures. In particular, and unlike Saavedra and Smith[9], we
tention to memory design [5, 6]. For many computational do not assume that a particular bit-selection function is used
problems, the performance of the primary data cache is ato compute the set-index for a cache reference and the cache
crucial consideration. Our analysis and experimental re- capacity is not necessarily a power of two. We assume
sults on cache performance, presented in this paper, couladnly that the set-index mapping function (along with the
be used to guide the appropriate selection, design, and handzache’s associativity and replacement logic) will provide
tuning of computer codes. corflict-free access to any aligned array whose size does
For an optimizing compiler using fixed “cost func- not exceed the total capacity of the cache. For example, our
tion” or machine performance model [1], our microbench- microbenchmarks are applicable to caching systems with
marks could be used to choose appropriate parameters fofrandom” [11] or “EE-XOR” [7] set-indexing functions.

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 20:01 from IEEE Xplore. Restrictions apply.

Smith did not discover any advantagein “random” over bit- Vol atile long *va;

selection functions [11], however a more recent study of a' €di ster long s1;

particular set-indexing function has shown great advantagedoubl e t1,T4;

on some codes, and no sifioant disadvantage [7]. Itthere- *va=cal 1 oc(N, si zeof (1 ong)) ;
fore seems prudent to design a microbenchmark that gived 07 (1 =07] <R; j ++)

correct results even if the bit-selection function is not em- S1=va[j]; /* preread loop */

ployed.

To date, we have tested the accuracy of our microbench-St art _time=cl ock() ;

marks on two workstations with different cache structures. f oF (1 =0; | <LOOPN;

| ++)

Our experimental results, from a 180MHz Pentium Pro for(j=0; j<R:) {

workstation and a 200MHz Pentium MMX workstation,
are in agreement with the manufacturer's representations
about their CPU chip’s primary cache capacity, associativ-
ity, block size, and write policy.

sl=val[j]; //16-unrolled
sl=valj+1] ;

... 1113 similar lines
sl=va[j+15] ; j+=16 ;

t1=(double)(clock()-start_time) ;

2. Assumptions and notation T4=t1/(R*LOOPN)

In order to estimate cache parameters, we must make

’

some assumptions about the computer system of which the Figure 1. The timed kernel for a measurement
cache is a part. In particular, we make the following as- of cache size, using stride-4 accesses.

sumptions about the way in which a computer would exe-
cute a timed loop such as the one shown in Figure 1.

1. Atiming routine €.g. cl ock()) is available with suf- 1. Theblock (line) sizeb of the cacheisapower of twoin

ficient accuracy to measure the wall-clock time for our
microbenchmarks. In addition, any background tasks
(e.g. those running on behalf of the operating system)
will not introduce a systematic bias in our timing mea-

surements.

2.

2. Memory is byte-addressable and the memory access
“strides” are measured in bytes. The starting address
of an array such aga[] in Figure 1 will be aligned in
memory. The length of hong data type is 4 bytes.

3. The compiler supportswol at i | e data type. When
it optimize the program, it will not optimize any
operation related to theol ati | e data. For ex-
ample, the compiler will not remove the statements
sl = va[j] inFigure 1.

4. The compiler will place frequently-used scalar
operands in data registers when optimization is en-
abled, and instructions will be cached separately from
data, so that the only memory accesses in the inner
loops of Figure 1 will be to the arraya[] .

5. Suficient CPU resources are available such that the av-

erage loop timd4 calculated by the kernel of Figure1 4

will reflect the average time required for a stritleead
to memory and not, for example, the average time for
an instruction fetch or an indexing calculation.

We must make additional assumptions about the struc-
ture of the cache itself.

bytes, with b > 4. The block-offset functionB() is a
bit-selection function, wittB(z) = x&(b — 1). (This

is the typical mechanism by which a cache optimizes
spatially-local accesses.)

The cache has associativity There areS sets in the
cache and is a power of two. So the total capacity
of the cache, measured in bytes, is given(by: Sab.
Note: C' anda are not necessarily powers of two.

. The set-index mapping functial/ () is not necessar-

ily a bit-selection function. However all elements of
any aligned array of siz€ can be cache-resident si-
multaneously, implying that the functioh/() maps
aligned address ranges.&b bytes uniformly, with ex-
actly one memory block df bytes mapped to each of
the S sets in the cache. SW/ () may be expressed as
the functional composition of asi-permutationr,, ;5
M(z) = 74 /s5((2/b)&(S —1)). Note that the permu-
tationr, /s, may be the identity map, in which case
the usual bit-selection function is employed faf().
Non-trivial 7,5, have been proposed elsewhere [7].

A cache-miss on a read access will always cause the
referenced block of data to be brought into the cache,
displacing at most one “old” cache line according to ei-
ther a LRU or a FIFO replacement algorithm. A cache-
miss on a write access will cause the referenced block
of data to be brought into the cache if and only if the
primary cache has an “allocate on write” policy.

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 20:01 from IEEE Xplore. Restrictions apply.

5. Though a cache hit on aread access will never issue a 4. The miss rate on reads (resp. writes)is(resp.M.,),

access to other deeper memory layers, acache-hit on a where0 < M,. < 1and0 < M, < 1. The average
write access to primary cache will cause a write access time for a read (resp. write) is + M, t,, (resp.t,, +
to a deeper layer in the memory hierarche.(to sec- Mytpw).

ondary cache, primary memory, or secondary memory)
if and only if the primary cache has a “write-through” 3 M easurement of cache parameters
policy.

6. The time required by a cache miss on a read is at In this section, we describe a series of microbenchmarks
least 20% larger than the time required by a cache hit that will characterize cache performance parameters. Our
on a read. The time required for a cache miss on afirst two microbenchmarks are similar to those described by
write is at least 20% larger than the time required by Saavedra and Smith[9]. However our inne_r loops perform a
a cache hit on a write, if the cache does not employ a mémory read and not a memory read-write when we mea-
“write-through” policy. If, instead, the cache employs Suré the cache capacity ano! cache "r_‘? ?'Zé; and our
a “write-through” policy, then the time required for a mlcrober_lchmark for measuring associtivityuses a com-
write access to primary cache is not sigrantly af- Pletely different methods.

fected by whether the data is present in the primary)

7. The secondary cache can be disabled, if desired, to in- When an array is no larger than the cache, it will become
crease the accuracy of estimation of cache parametergache-resident after the preread loop in Figure 1. Therefore,
other than the miss penalty. (Note: we have disabledin thet1-timed loop in Figure 1, the miss rafe, will be 0
secondary cache in our experiments on the Pentiumif 4R < C. This is “Regime 1" in the analysis of Saavedra
and Pentium Pro workstations, described in this paper.)and Smith [9].

For arrays that are too large to be cache-resident, there
In addition to the parameters and variabledirisl il be one cache miss for eveby4 inner loop iterations
above, our microbenchmarks use the variablefindd in of the t1-timed loop. That is, the miss rafel, = 4/b if
item 1 below. We estimate the parameterfros in items 4R > C + Sb; this is “Regime 2a” in [9].
2 through 4. WhenC < 4R < C + Sb, the miss rate sV, =
-) (4/b)[(4R — C)/b]/S. This narrow interval is not named

1. Atotal of R distinct elements are referenced in an ar- by Saavedra and Smith. We call it the “1-2a transitional
ray holding a total ofV elements, where each element regime.”
is a 4-bytel ong. The value ofN and R are different A suitable microbenchmark for capacity is now easily
in each of our benchmark. described. Increas in the loop of Figure 1 until the mea-

2. The average cache-read (resp. write) hit-access timesumd_ average stride-4 r_ead tiriie(R) incre_ases s_harply
for a particular access will be denotéd (resp. .,), from its regime-1 baseline of., to reach its regime-2a

and is measured in nanoseconds. Note: our mi-Plateau Of'4(R) = t, + (4/b)t,:. In practice, we have
crobenchmark estimates of and ¢, are for cache to setLOOPN to a value sufciently large for the resolution
w

bandwidth-bottlenecked computations such aditise of thecl ock() FOU“T“?- .
loop of Figure 1. We writet’. and ¢/, for the some- The cache size is given by the largeRt such that

what larger, latency-tftuenced, estimates arising from T4(R) ’“V“_tr [9]. ; . | |
the loop of Figure 5. See Figure 2 for experimental results, averaged fiver

runs, on our two workstations. We can see that PC1's cache
3. The average cache-read (resp. write) miss penalty ishas a capacity’; (in bytes) that lies in the rangg* <
denoted byt,,, (resp.t,,,), measured in nanoseconds, C1 < 2'5. Also, the capacityC;y of our PC4 lies in the
for our bandwidth-bottlenecked loops. We writg, range2'3 < Cy < 2'. These ranges could be narrowed, if
andt,,, for the somewhat larger, latencyfimenced, desired, by testin@'4(R) for R is not powers of two.
estimates of miss penalty arising from the loop of Fig- Note that, in addition to estimating a capaciy our
ure 5. Note: in our experiments on the Pentium and stride-4 benchmark also estimatesand(4/b)t,,..
the Pentium Pro, we have disabled secondary cache,
so our measured miss penalties are fieation of 3.2. Block size
access bandwidths and latencies to primary memory
(DRAM), not of bandwidths or latencies to secondary If we vary the strideK of our array accesses, we can
cache. estimate the block siziein bytes [9]. A suitable inner loop

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 20:01 from IEEE Xplore. Restrictions apply.

Read Access Time (ns)

Number of Accesses R

Figure 2. Read time for stride-4 accesses on
PC1 and PCA4.

volatile |long vsl, *va;
double t2,TS;
int s=K/sizeof (long);
*va=cal | oc(N, sizeof(long)):;
start _time=cl ock() ;
for(1=0; | <LOOPN; | ++)
for(j=0; j<R;) {
sl=va[j]; //16-unrolled
sl=valj+s] ;
... 1113 similar lines
sl=va[j+15*s] ; jr=16*s ;
}
t2=(double)(clock()-start_time) ;
TS=t2/(R*LOOPN)) ;

Figure 3. The kernel for a measurement of
cache block size, using variable-stride reads.

isshownin Figure 3.

When K > band4R > C + Sb, themissrate M, = 1;
thisis Regime 2b of [9]. When K < band4R > C + Sb,
the miss rate M, = K/b; this is Regime 2a of [9]. We
therefore set R = 4C'/4 in this microbenchmark test, not-
ing that Sb < C for any cache. The reported average
stride/ access time from the code of Figure 3 is thus
TS(K) = t, + min{1, K/b}t,,. The estimated blocksize
b is numerically equal to the smallest valuefgfsuch that
TS(K) =~ TS(2K) [9]. Note that we have assumed tthat
is a power of two. So we only need to measurefiig K)
with K a power of 2.

Experimental results fof'S(K'), averaged ovefive

250

200

150

100

a1
o

o

Read Access Time (ns)

Access Stride in Bytes

Figure 4. Read time for stride-K accesses on
PC1 and PCA4.

(b = 32).

Because we know the | ong datatypeis 4 bytes, we can
get the access times for read-hit and read-miss in the data
cache from the results shown in Figure 2 now. For PC1, we
gett, = 5.7 ns and,, = (32.2 - 5.7) x (32/4) ~ 210 ns.

And for PC4, we get, = 6.1 ns andt,,, = (26.0 — 6.1) x
(32/4) ~ 160 ns.

We suspect there is some bias in our time measurements.
We believe the read time for PC1 and PC4 should be exactly
one clock (5.0 ns and 5.5 ns respectively). In future work,
we hope to reduce this bias, or at least to explain it.

3.3. Associativity

Saavedra and Smith used a variable-stride benchmark,
similar to our Figure 3, to estimate the associativity of a
cache under the assumption that a bit-selection function is
employed for set-indexing. This is equivalent to assuming
that the functionr, /s, is the identity map, in our danition
of the set-index functiod/ ().

In our microbenchmark for estimating associativity, we
make a measurement that is insensitive tgs, . In the code
of Figure 5, we construct a (pseudo)random permutation
[4] of the 4N/b array indices{0,b/4,2b/4,..., N — b/4}
of the 4-byte elements that would load at block offset zero
in the primary cache. This construction requires a source
nt andon() of pseudorandom variables that are uniformly
and independently distributed in the rar{@e1, 2, ..., i—1}.
Suitable C-language code for andon() is readily avail-
able [12].

In Figure 5, we use thérst R elements of this permu-
tation to déine a lengthR sequence of array elements to
be accessed. Note that we access each elememat gf at
most once, in each &fOCPN iterations of our timing loop.

runs, on our two workstations are shown in Figure 4. Note We call this mode of access “random without repetition” to

that, in both casesI'S(16) < T'S(32) ~ T'S(64). We

distinguish it from the more usual benchmark in which ele-

conclude that both primary caches have 32-byte blocksments are chosen for access “with repetition” from the index

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 20:01 from IEEE Xplore. Restrictions apply.

va=cal | oc(N, si zeof (1 ong)) ; 10 - o

/* Randomy Initialize the va[] */ o ——a=1
for(j=0; j<N; j++) va[jl=j; € 08f x g2 -
for(i=4*Nb; i>1; i-=bl4) { g a4
: . o6+ &+ -
jl=mrandom(i) ; % A—a=8
* j1 is u.id. in [0,i-1] */ 0.4 O .-
j=(2\(b/4))*(b/4) ; temp=vali-b/4] ; % ilGR |
va[i-b/4]=valj ; vajj=temp ; § o2 TeTTestResuls oo
} O 0 g ol T Sad ol
for(=0 ; j<R; j++) A N Y 0 QN X ® N ¥
i=vali] ; /* preread loop */ 583 = § b g g é
start_time = clock() ; Number of Random Read Accesses R
for(=0 ; IKLOOPN; I++) {
i=val0] ; Figure 6. Read miss ratio for PCL1.
for=0 ; <R ;) {
i=vali] 1.0
i=vali] ; o
.. /113 identical lines g o8
i=vali] ; j+=16 ; é 0.6
} 9
} g 0.4
t3=(double)(clock()-start_time) ; B oo
TR=t3/(R*LOOPN) ; e

00

Figure 5. The kernel for a measurement of
cache associativity, using random accesses Number of Random Read Accesses R
without repetition.

Figure 7. Read miss ratio for PCA4.

space of an array in auniform, independent fashion. Webe- Theorem 2 If & distinct data elements;, zs, ..., 25 are
lieve a benchmark based on random access with repetitiongad-accessed in sequence by a cache of associativity
would not yield as accurate an estimate of associativity, be-iis same sequence of read-accesses is repeated for a total
cause the miss rat/,. in the analogue of our Theorem 2, of) coPNtimes, and if any two of the elements belong to
below, would not be zero in the smdiicase. different memory blocks and they are mapped to the same

We are aware of no published analysis of caches beingcache set, then the read-miss rati). for the lastL OOPN-
accessed randomly without repetition. However, the combi- 1 read sequencesis
natorics are not very ditult, as indicated by the following
theorems (presented here without proof). M. — { 0 ifk<a 7

"1 1 otherwise

Theorem 1 If an urn contains ¢ marbles of which exactly

@/ S are black, and we choose R marbles blindly, then the
probability P, ¢, of our choosing exactly k black marblesis

Prg = (U/5)(QL-1/5) (@
e k R—k R
Corollary 1 If R b-byte elements are chosen randomly
without repetition for reading from an aligned array of Proof. We have supposed that the cache mapping func-
b-byte elements, wherg is a power of 2 greater than the tjon uniformly maps the data blocks into different cache
number of set$' in the primary cache, then the probability sets if the data arraya[] is aligned to the cache size. So

of exactlyk of these elements competing for cache lines that egch cache set has the same probabifity, of being hit
belong to a cache set i§; (. by k data accesses from tiizrandom-selected data blocks

Corollary 2 If R b-byte elements are chosen randomly
without repetition for reading from an aligned array &f

b-byte elements, whefg = 8C'/b, then the cache miss rate
) oft 3-timed loop in the Figure 5 is

1)
S ksaFPQ

E[M,(R; a)] = i

©)

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 20:01 from IEEE Xplore. Restrictions apply.

in the inner loop. Considering the former corollary, we can register long sl,s2;

get the result in Equation 3. volatile long *va;
va=cal | oc(N, sizeof (long));

We estimate the associativity of a cache by making ~ Start_time=clock();

the series of measurements TR(1), TR(2), TR(4), ..., [or(1=0; I'<LOOPN; |++)
TR(4N/b). We estimate a miss ratio M,(R) from a for(j=0;j<Ry) {
measurement TR(R) as follows. M, (R) ~ (TR(R) — sl=va[j]; //16-unrolled
t)/t.,., where we take . = ming{TR(R)} and t,, = sl=va[j+1l] ;
maxp{TR(R)} — t.. Wethen find the a that gives a best- - /13 similar lines
fit of our analytic form forE[M,.(R; a)] (which is a function sl=va[j+15] ; j+=16 ;
of a and R) to our series of estimate¥,.(R). This bestfit } .
a is our estimate for the associativity of the cache. t4=(double)(clock()-start_time) ;
Note: the average read-hit access titheor this mi- Start_time=clock() ;
crobenchmark may be somewhat larger than thesti- ~ for(=0 7 ISLOOPN; |++) {
mated in ourfirst microbenchmark. forG=0 ;j<R ;) {
Also, the read-miss penalts}, for our associativity- sl=va[] ; //16-unrolled
testing microbenchmark is substantially larger than the sl=vafi+l] ;
t,- estimated in oufirst microbenchmark. Because we .. /13 similar lines

have disabled the secondary cache, a random read-miss in sl=va[j+15] ; j+=16 ;
this microbenchmark usually incurs the latency of a full _
(RAS/CAS) DRAM cycle, whereas the sequential read- fOr(el=0 ; el<16 ; el++)

miss of ourfirst microbenchmark may proceed at the full for(=0 ;j<R ;) {
bandwidth of a fast (CAS-only) DRAM cycle. vafjl=s2 ; //16-unrolled
Our experimental results for associativity measurement, vafj+l]=s2 ;
averaged on ten runs, on our two workstations are shown in . /13 similar lines
Figures 6 and 7, folV = 215 and N = 2! respectively. va[j+15]=s2 ; [+=16 ;
We have a goofit to a = 4 for PC1 and tax = 2 for PC4, }
in agreement with the manufacturer’s description [3]. } .
t5=(double)(clock()-start_time) ;

. . TW2=(t5-t4)/(R*.LOOPN*16 ;
4. M easurement of cache-write policies (510)

We have written three microbenchmarks to determine Figure 8. The “pre-read kernel” for determin-
cache-write policies and to estimate write times. Clinst ing cache writeback policy.
write microbenchmark is called the “pre-read kernel”. It
is shown in Figure 8. Based on our assumption that any

cache system must allocate on read miss, We designed iFniss Our reasoning is as follows: if 4R < C, the array is

to .rtevsal I\<N he}_her a [c:)jrlfmary .(t:acbhe Il(JSES s erte—throug:h Ol cache-resident and there are no misses no matter the cache
write-back policy and for write-back cache, we can also | <.c\vrite-allocate or not.

determine whether it allocate on write miss or not. lts name . AR > C and write-allocate, the miss ratid, on this
comes from thdirst part of the second loop, which reads benchmark is:

va[0..R-1] . This read loop will establish cache resi- '

dency of the lasinin{C/4, R} elements ova[] . Note:)

background tasks may slowly “pollute” our cache, displac- Mz = (4/b) min{l, [(4R — C)/b]/S} (4)
ing elements ofa[] , so we add a read loop before several If 4R > C and not write-allocate, the@'/4 of the R

write loop in the second timed loopnd thefirstloop is de- yafarenced elements are cache-resident, so the miss ratio is:
signed to get the extra time used by the read accesses in the

second loop. _ _ Mys =1—C/4R (5)
If the cache uses a write-through policy, then the aver-
age write time reported by the pre-read microbenchmarkis Equation 6 summarizes our analysis of the performance

TW2(R) = t., that is, essentially invariant witR. ~ of a write-back cache on our pre-read benchmark.
If the cache uses write-back policy, the average write

time reported by the pre-read microbenchmark is noticeably | tw if (4R < C)AWB
dependent o and whether the cache allocates on a write TW2(R) ~ tw + Moty if (4R > C)AWB ©)

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 20:01 from IEEE Xplore. Restrictions apply.

120

—

Number of Accesses R

Figure 9. Average write time for PC1 and PC4,
on our preread microbenchmark.

So, for a write-through cache, we expect to see a write
access time that does not change when we incrBager a
write-back and write-allocate cache, we expect a steep-rise

B 100 [-3

@ gol----- 2
': =
g 60 oo 2
§4o 77777777777777777777777777777 =
g 20p---efo g
; 02 | | | g

A= T

Access Stride in Bytes

Figure 10. Average stride-K write time for PC1

and PC4.

Table 1. Summary of experimental results
with secondary cache disabled.

fromR = C/4to R = (C + Sb)/4, and the write access Machine PCL PC4
time should be constant fdt > (C + Sb)/4 ; for a write- cPU Pentium MMX | Pentium Pro
back and not write-allocate cache, we expect a gradual rise cl OCk_ 200 MHz 180 MHz
for R > C/4. CapaCIt_yC 16 KB 8 KB
Our experimental results for PC1 and PC4, averaged on | BIocK sizeb 328 32B
five runs, on our pre-read benchmark are shown in Fig- | ASSociaivity a 4 2
ure 9. The gradual rise, for PC1 after TYMR96), indicates Read: -
that it uses a write-back policy and does not employ write- h'_t timet, 5.7ns 6.1ns
allocate, and its capacity is 16 kilobytes. And the sharp _ miss pen. tpr | 2101s 160 ns
rise, for PC4 between TW2048) and TWZ4096), indi- write:
cates that it has a write-back, write-allocate primary cache hittimet., 35ns 6.8ns
with a capacity of 8 kilobytes. MISS pen. .tpw 42ns 40ns
In addition, we can got the access times for write-hit and Al I_ocate on W”,EE? no yes
write-miss from Figure 9. For PC1,, = 3.5 ns andf,,,, = Write-through no no

45.6 — 3.5 ~ 42 ns, because the data cache of PC1 does not
use the write-allocate policy. And for PC4, = 6.8 ns and
tow = (99.6 — 6.8) x (32/8) ~ 740 ns, because its data
cache uses a write-allocate policy.
We have written another microbenchmark for write ac-
cesses, to evaluate the dependence of write-access time on
stride. We do not pre-read in this microbenchmark. Its ker- °- Summary and Future Work
nel code is not shown here, however it is very similar to our
strided-read microbenchmark in Figure 3. Under the same We have described a series of microbenchmarks that
reason as for strided-read benchmark, wefset 4C'/4 in measure the most important performance parameters of a
this microbenchmark. The reported average sthidexite primary cache. Our microbenchmarks are similar in spirit to
access time is thufS(K) = t, + min{1, K/b}t,, if the those of Saavedra and Smith [9]. However our microbench-
cache uses write-allocate and write-back pglictherwise marks characterize read and write times separately, they de-
T'S(K) should not change with the variation Af. termine cache write policies, and they will work on caches
Experimental results for our two workstations, aver- with set-index functions other than the bit-selection func-
aged onfive runs, on our strided-write microbenchmark tion that is commonplace today.
are shown in Figure 10. It providing the write access time Our experimental results, obtained by running our mi-
for different strides of PC4. The cache parameters implied crobenchmarks on two workstations, are summarized in Ta-
by the graph, such as cache block size of PC4, non-write-ble 1. Our measured capacity, blocksize and associativity

allocate of PC1 etc., are consistent with that we got from
our other microbenchmarks.

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 20:01 from IEEE Xplore. Restrictions apply.

are in agreement with the manufacturer's description [3],
and our access times seem plausible for systems in which
the secondary cache is disabled.

In future work, we would like to analyze the performance
of skewed caches [2] under our microbenchmarks. Such
caches employ distind-permutationsr,, s, ; to define the
set-index function for each barkwherel < i < a. [

The results in this paper are obtained by disabling
the secondary cache, enabling the compiler's optimization
function for maximum speed to maximize the measurement
accuracy. One reason our microbenchmarks are successful
is that the instruction access and executions of these kernel
loops are not bottlenecks on modern CPUs. In the future,
we will examine the accuracy of our microbenchmarks with
the secondary cache enabled. We are also interested in de-
veloping latency-bound microbenchmarks.

We intend to release our microbenchmarks for public
distribution soon. Finally, we hope tind time, and fund-
ing, for porting our microbenchmarks to Unix or Linux.

References

[1] D.F Bacon, S. L. Graham, and O. J. Sharp. Compiler trans-

formations for high-performance computingCM Comput-

ing Surveys26(4):345-420, December 1994.

F. Bodin and A. Seznec. Skewed associativity improves pro-

gram performance and enhances predictabilBEE Trans.

on Computers, 46(5):530-544, May 1997.

Intel Corporation,http://devel oper.intel.comn

desi gn/ product . htm

D. E. Knuth. The Art of Computer Programming: Seminu-

merical Algorithmsvolume 2. Addison-Wesley Publishing

Company, 3rd edition, 1998.

M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache

performance and optimizations of blocked algorithms. In

Proceedings of the Fourth International Conference on Ar-

chitectural Support for Programming Languages and Oper-

ating Systemspages 63-74, Apr. 1991.

[6] A. R. Lebeck and D. A. Wood. Cache giling and the

SPEC benchmarks: A case studfeEE Computer, pages

15-26, October 1994.

E. Li. Sudy on the Sorage Schemes in High-Performance

Computer System®hD thesis, Institute of Computer Tech-

nology, Chinese Academy of Sciences, 1997.

D. A. Patterson and J. L. Hennes§§omputer Organization

and Design: The Hardware / Software Interface. Morgan

Kaufmann, second edition, 1998.

R. H. Saavedra and A. J. Smith. Measuring cache and TLB

performance and their effect on benchmark runtimegE

Trans. Computers, 44(10):1223-1235, October 1995.

R. Sites. It's the memory, stupidvlicroprocessor Report,

10(10):19, August 1996.

[11] A.J. Smith. A comparative study of set associative memory
mapping algorithms and their use for cache and main mem-
ory. |EEE Trans. on Software Engineering, SE-4(2):121—
1130, March 1978.

(2]

(3]
(4]

(5]

(7]

(8]

El

(10]

13]

[12] C. Thomborson. Tools for randomized experimentation. In

M. E. Tarter and M. D. Lock, editorstatistical Applica-
tions of Expanding Computer Capabilities: Proceedings of
the 25th Symposium on the Interfacgomputing Science
and Statistics (Volume 25), pages 412—-416. Interface Foun-
dation of North America, 1993. Code availabldat p: / /
www. ¢s. auckl and. ac. nz/ “cthombor/Mrandom

S. J. Von Worley and A. J. Smith. Microbenchmarking
and performance prediction for parald computers. Techni-

cal Report UCB/CSD-95-873, Computer Science Division
(EECS), University of California at Berkeley, May 1995.

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 20:01 from IEEE Xplore. Restrictions apply.

