
Data Cache Parameter Measurements

Enyou Li, Clark Thomborson
Computer Science Department

University of Auckland
Private Bag 92019, Auckland

New Zealand
iley,cthomborj@cs.auckland.ac.nz

Abstract

We extend prior research by Saavedra and Smith on de-
signing microbenchmarks to measure data cache parame-
ters. Unlike Saavedra and Smith, we measure the parame-
ters by characterizing read accesses separately from write
accesses� and we do not assume that the address mapping
function is a bit-selection. We can measure the cache ca-
pacityF, block sizee, and associativityd� we can measure
the cache-hit access time and penalty for read and write� we
can determine whether a cache allocates on write� we can
detect write-back and write-through policies. We present
experimental results for two CPU/cache structures, a 200
MHz Pentium with MMX and a 180 MHz Pentium Pro.

1. Introduction

Computer performance is, increasingly, limited by mem-
ory speed rather than processor speed, as graphically illus-
trated on page 619 of [8]. In 1996, Richard Sites opined that
“over the coming decade memory subsystem design will be
the only important design issue for microprocessors” [10].
In his paper, the CPUs could only run at less than 10% of
their peak instruction issue rate.

Computer architects are not the only people who are con-
cerned about memory systems performance. As memory
bottlenecks increase in frequency and severity, performance
programmers and algorithmic designers must pay more at-
tention to memory design [5, 6]. For many computational
problems, the performance of the primary data cache is a
crucial consideration. Our analysis and experimental re-
sults on cache performance, presented in this paper, could
be used to guide the appropriate selection, design, and hand-
tuning of computer codes.

For an optimizing compiler using a¿xed “cost func-
tion” or machine performance model [1], our microbench-
marks could be used to choose appropriate parameters for

the cache portion of a machine performance model, guid-
ing a compiler’s optimizations of memory operations in the
inner-loop computations that consume the vast majority of
time in many applications.

The performance of the primary cache is of strong cur-
rent interest to both the computer architects and program-
mer, because this cache forms an important “¿rst layer”
of the memory hierarchy in modern system design. In
this paper, we show how to write a series of microbench-
marks that, in conjunction with our analysis, will estimate
the capacityF, the associativityd, the blocksizee, and the
cache hit access times and cache miss penalties. Our mi-
crobenchmarks are thus similar to (and indeed are inspired
by) those proposed by Saavedra and Smith[9]. Our bench-
marks, however, differentiate between read and write ac-
cess times rather than reporting an average access time for
a 50/50 mix of reads and writes, as is done by Saavedra
and Smith. (Note: Smith and Von Worley have proposed
microbenchmarks for parallel computers that separately es-
timate read and write access times [13]. These microbench-
marks do not estimate any other cache performance param-
eters.)

We provide two additional microbenchmarks that can
be used to determine the presence or absence of the cache
policies commonly known as allocate-on-write and write-
through.

Our analysis indicate that our microbenchmarks will de-
liver correct results for a wide variety of cache architec-
tures. In particular, and unlike Saavedra and Smith[9], we
do not assume that a particular bit-selection function is used
to compute the set-index for a cache reference and the cache
capacity is not necessarily a power of two. We assume
only that the set-index mapping function (along with the
cache’s associativity and replacement logic) will provide
conÀict-free access to any aligned array whose size does
not exceed the total capacity of the cache. For example, our
microbenchmarks are applicable to caching systems with
“random” [11] or “EE-XOR” [7] set-indexing functions.

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 20:01 from IEEE Xplore.  Restrictions apply.



Smith did not discover any advantage in “random” over bit-
selection functions [11], however a more recent study of a
particular set-indexing function has shown great advantage
on some codes, and no signi¿cant disadvantage [7]. It there-
fore seems prudent to design a microbenchmark that gives
correct results even if the bit-selection function is not em-
ployed.

To date, we have tested the accuracy of our microbench-
marks on two workstations with different cache structures.
Our experimental results, from a 180MHz Pentium Pro
workstation and a 200MHz Pentium MMX workstation,
are in agreement with the manufacturer’s representations
about their CPU chip’s primary cache capacity, associativ-
ity, block size, and write policy.

2. Assumptions and notation

In order to estimate cache parameters, we must make
some assumptions about the computer system of which the
cache is a part. In particular, we make the following as-
sumptions about the way in which a computer would exe-
cute a timed loop such as the one shown in Figure 1.

1. A timing routine (e.g. clock()) is available with suf-
¿cient accuracy to measure the wall-clock time for our
microbenchmarks. In addition, any background tasks
(e.g. those running on behalf of the operating system)
will not introduce a systematic bias in our timing mea-
surements.

2. Memory is byte-addressable and the memory access
“strides” are measured in bytes. The starting address
of an array such asva[] in Figure 1 will be aligned in
memory. The length of along data type is 4 bytes.

3. The compiler supports avolatile data type. When
it optimize the program, it will not optimize any
operation related to thevolatile data. For ex-
ample, the compiler will not remove the statements
s1 = va[j] in Figure 1.

4. The compiler will place frequently-used scalar
operands in data registers when optimization is en-
abled, and instructions will be cached separately from
data, so that the only memory accesses in the inner
loops of Figure 1 will be to the arrayva[].

5. Suf¿cient CPU resources are available such that the av-
erage loop timeT4 calculated by the kernel of Figure 1
will reÀect the average time required for a stride-7 read
to memory and not, for example, the average time for
an instruction fetch or an indexing calculation.

We must make additional assumptions about the struc-
ture of the cache itself.

volatile long *va�
register long s1�
double t1,T4�
*va=calloc(N, sizeof(long))�
for(j=0� j<R� j++)
s1=va[j]� /* preread loop */

start_time=clock()�
for(l=0� l<LOOPN� l++)
for(j=0� j<R�) {
s1=va[j]� //16-unrolled
s1=va[j+1] �
... //13 similar lines
s1=va[j+15] � j+=16 �

}
t1=(double)(clock()-start_time) �
T4=t1/(R*LOOPN ) �

Figure 1. The timed kernel for a measurement
of cache size, using stride-4 accesses.

1. The block (line) size e of the cache is a power of two in
bytes, with e � 7. The block-offset functionE+, is a
bit-selection function, withE+{, @ {)+e� 4,. (This
is the typical mechanism by which a cache optimizes
spatially-local accesses.)

2. The cache has associativityd. There areV sets in the
cache andV is a power of two. So the total capacityF
of the cache, measured in bytes, is given byF @ Vde.
Note:F andd are not necessarily powers of two.

3. The set-index mapping functionP+, is not necessar-
ily a bit-selection function. However all elements of
any aligned array of sizeF can be cache-resident si-
multaneously, implying that the functionP+, maps
aligned address ranges ofVe bytes uniformly, with ex-
actly one memory block ofe bytes mapped to each of
theV sets in the cache. SoP+, may be expressed as
the functional composition of anV-permutation�{@Ve:
P+{, @ �{@Ve++{@e,)+V�4,,. Note that the permu-
tation�{@Ve may be the identity map, in which case
the usual bit-selection function is employed forP+,.
Non-trivial �{@Ve have been proposed elsewhere [7].

4. A cache-miss on a read access will always cause the
referenced block of data to be brought into the cache,
displacing at most one “old” cache line according to ei-
ther a LRU or a FIFO replacement algorithm. A cache-
miss on a write access will cause the referenced block
of data to be brought into the cache if and only if the
primary cache has an “allocate on write” policy.

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 20:01 from IEEE Xplore.  Restrictions apply.



5. Though a cache hit on a read access will never issue a
access to other deeper memory layers, a cache-hit on a
write access to primary cache will cause a write access
to a deeper layer in the memory hierarchy (i.e. to sec-
ondary cache, primary memory, or secondary memory)
if and only if the primary cache has a “write-through”
policy.

6. The time required by a cache miss on a read is at
least 20% larger than the time required by a cache hit
on a read. The time required for a cache miss on a
write is at least 20% larger than the time required by
a cache hit on a write, if the cache does not employ a
“write-through” policy. If, instead, the cache employs
a “write-through” policy, then the time required for a
write access to primary cache is not signi¿cantly af-
fected by whether the data is present in the primary
cache.

7. The secondary cache can be disabled, if desired, to in-
crease the accuracy of estimation of cache parameters
other than the miss penalty. (Note: we have disabled
secondary cache in our experiments on the Pentium
and Pentium Pro workstations, described in this paper.)

In addition to the parameters and variables de¿ned
above, our microbenchmarks use the variables de¿ned in
item 1 below. We estimate the parameters de¿ned in items
2 through 4.

1. A total ofU distinct elements are referenced in an ar-
ray holding a total ofQ elements, where each element
is a 4-bytelong. The value ofQ andU are different
in each of our benchmark.

2. The average cache-read (resp. write) hit-access time
for a particular access will be denotedwu (resp. wz),
and is measured in nanoseconds. Note: our mi-
crobenchmark estimates ofwu and wz are for cache
bandwidth-bottlenecked computations such as the¿rst
loop of Figure 1. We writew3u and w3z for the some-
what larger, latency-inÀuenced, estimates arising from
the loop of Figure 5.

3. The average cache-read (resp. write) miss penalty is
denoted bywsu (resp.wsz), measured in nanoseconds,
for our bandwidth-bottlenecked loops. We writew3su
and w3sz for the somewhat larger, latency-inÀuenced,
estimates of miss penalty arising from the loop of Fig-
ure 5. Note: in our experiments on the Pentium and
the Pentium Pro, we have disabled secondary cache,
so our measured miss penalties are a reÀection of
access bandwidths and latencies to primary memory
(DRAM), not of bandwidths or latencies to secondary
cache.

4. The miss rate on reads (resp. writes) isPu (resp.Pz),
where3 � Pu � 4 and3 � Pz � 4. The average
time for a read (resp. write) iswu .Puwsu (resp.wz .
Pzwsz).

3. Measurement of cache parameters

In this section, we describe a series of microbenchmarks
that will characterize cache performance parameters. Our
¿rst two microbenchmarks are similar to those described by
Saavedra and Smith[9]. However our inner loops perform a
memory read and not a memory read-write when we mea-
sure the cache capacityF and cache line sizee� and our
microbenchmark for measuring associtivityd uses a com-
pletely different methods.

3.1. Capacity

When an array is no larger than the cache, it will become
cache-resident after the preread loop in Figure 1. Therefore,
in thew4-timed loop in Figure 1, the miss ratePu will be 0
if 7U � F. This is “Regime 1” in the analysis of Saavedra
and Smith [9].

For arrays that are too large to be cache-resident, there
will be one cache miss for everye@7 inner loop iterations
of the w4-timed loop. That is, the miss ratePu @ 7@e if
7U � F . Ve� this is “Regime 2a” in [9].

WhenF ? 7U ? F . Ve, the miss rate isPu @
+7@e,g+7U � F,@eh@V. This narrow interval is not named
by Saavedra and Smith. We call it the “1–2a transitional
regime.”

A suitable microbenchmark for capacity is now easily
described. IncreaseU in the loop of Figure 1 until the mea-
sured average stride-4 read timeW7+U, increases sharply
from its regime-1 baseline ofwu, to reach its regime-2a
plateau ofW7+U, @ wu . +7@e,wsu. In practice, we have
to setLOOPN to a value suf¿ciently large for the resolution
of theclock() routine.

The cache size is given by the largestU such that
W7+U, � wu [9].

See Figure 2 for experimental results, averaged over¿ve
runs, on our two workstations. We can see that PC1’s cache
has a capacityF4 (in bytes) that lies in the range547 ?
F4 � 548. Also, the capacityF7 of our PC4 lies in the
range546 ? F7 � 547. These ranges could be narrowed, if
desired, by testingW7+U, for U is not powers of two.

Note that, in addition to estimating a capacityF, our
stride-4 benchmark also estimateswu and+7@e,wsu.

3.2. Block size

If we vary the strideN of our array accesses, we can
estimate the block sizee in bytes [9]. A suitable inner loop

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 20:01 from IEEE Xplore.  Restrictions apply.



0

5
10

15
20

25

30
35

25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

41
94

30
4

Number of  Accesses R

R
ea

d 
A c

ce
ss

 T
im

e 
(n

s)

PC1
PC4

Figure 2. Read time for stride-4 accesses on
PC1 and PC4.

volatile long vs1,*va�
double t2,TS�
int s=K/sizeof(long)�
*va=calloc(N, sizeof(long))�
start_time=clock()�
for(l=0� l<LOOPN� l++)
for(j=0� j<R�) {
s1=va[j]� //16-unrolled
s1=va[j+s] �
... //13 similar lines
s1=va[j+15*s] � j+=16*s �

}
t2=(double)(clock()-start_time) �
TS=t2/(R*LOOPN)) �

Figure 3. The kernel for a measurement of
cache block size, using variable-stride reads.

is shown in Figure 3.
When N � e and 7U � F . Ve, the miss rate Pu @ 4�

this is Regime 2b of [9]. When N ? e and 7U � F . Ve,
the miss rate Pu @ N@e� this is Regime 2a of [9]. We
therefore set U @ 7F@7 in this microbenchmark test, not-
ing that Ve � F for any cache. The reported average
stride-N access time from the code of Figure 3 is thus
WV+N, @ wu . plqi4>N@ejwsu. The estimated blocksize
e is numerically equal to the smallest value ofN such that
WV+N, � WV+5N, [9]. Note that we have assumed thate
is a power of two. So we only need to measure theWV+N,
with N a power of 2.

Experimental results forWV+N,, averaged over¿ve
runs, on our two workstations are shown in Figure 4. Note
that, in both cases,WV+49, ? WV+65, � WV+97,. We
conclude that both primary caches have 32-byte blocks

0

50

100

150

200

250

4 8 16 32 64 12
8

25
6

51
2

Access Stride in Bytes

R
ea

d 
A c

ce
ss

 T
im

e 
(n

s)

PC1
PC4

Figure 4. Read time for stride-K accesses on
PC1 and PC4.

(e @ 65).
Because we know the long data type is 4 bytes, we can

get the access times for read-hit and read-miss in the data
cache from the results shown in Figure 2 now. For PC1, we
getwu @ 8=: ns andwsu @ +65=5� 8=:,� +65@7, � 543 ns.
And for PC4, we getwu @ 9=4 ns andwsu @ +59=3� 9=4,�
+65@7, � 493 ns.

We suspect there is some bias in our time measurements.
We believe the read time for PC1 and PC4 should be exactly
one clock (5.0 ns and 5.5 ns respectively). In future work,
we hope to reduce this bias, or at least to explain it.

3.3. Associativity

Saavedra and Smith used a variable-stride benchmark,
similar to our Figure 3, to estimate the associativity of a
cache under the assumption that a bit-selection function is
employed for set-indexing. This is equivalent to assuming
that the function�{@Ve is the identity map, in our de¿nition
of the set-index functionP+,.

In our microbenchmark for estimating associativity, we
make a measurement that is insensitive to�{@Ve. In the code
of Figure 5, we construct a (pseudo)random permutation
[4] of the 7Q@e array indicesi3> e@7> 5e@7> ===> Q � e@7j
of the 4-byte elements that would load at block offset zero
in the primary cache. This construction requires a source
mrandom() of pseudorandom variables that are uniformly
and independently distributed in the rangei3> 4> 5> ===> l�4j.
Suitable C-language code formrandom() is readily avail-
able [12].

In Figure 5, we use the¿rst U elements of this permu-
tation to de¿ne a length-U sequence of array elements to
be accessed. Note that we access each element ofva[] at
most once, in each ofLOOPN iterations of our timing loop.
We call this mode of access “random without repetition” to
distinguish it from the more usual benchmark in which ele-
ments are chosen for access “with repetition” from the index

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 20:01 from IEEE Xplore.  Restrictions apply.



va=calloc(N,sizeof(long))�
/* Randomly Initialize the va[] */
for(j=0� j<N� j++) va[j]=j�
for(i=4*N/b� i>1� i-=b/4 ) {

j1=mrandom(i) �
/* j1 is u.i.d. in [0,i-1] */
j=(j1\(b/4))*(b/4) � temp=va[i-b/4] �
va[i-b/4]=va[j] � va[j]=temp �

}
for(j=0 � j<R � j++)

i=va[i] � /* preread loop */
start_time = clock() �
for(l=0 � l<LOOPN� l++) {

i=va[0] �
for(j=0 � j<R �) {

i=va[i] �
i=va[i] �
... //13 identical lines
i=va[i] � j+=16 �

}
}
t3=(double)(clock()-start_time) �
TR=t3/(R*LOOPN) �

Figure 5. The kernel for a measurement of
cache associativity, using random accesses
without repetition.

space of an array in a uniform, independent fashion. We be-
lieve a benchmark based on random access with repetition
would not yield as accurate an estimate of associativity, be-
cause the miss ratePu in the analogue of our Theorem 2,
below, would not be zero in the small-U case.

We are aware of no published analysis of caches being
accessed randomly without repetition. However, the combi-
natorics are not very dif¿cult, as indicated by the following
theorems (presented here without proof).

Theorem 1 If an urn contains T marbles of which exactly
T@V are black, and we choose U marbles blindly, then the
probability Sn>T of our choosing exactly n black marbles is

Sn>T @

�
T@V

n

��
T+4� 4@V,

U� n

���T
U

�
(1)

Corollary 1 If U e-byte elements are chosen randomly
without repetition for reading from an aligned array ofT
e-byte elements, whereT is a power of 2 greater than the
number of setsV in the primary cache, then the probability
of exactlyn of these elements competing for cache lines that
belong to a cache set isSn>T.

0.0

0.2

0.4

0.6

0.8

1.0

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Number of Random Read Accesses R

R
ea

d 
A

cc
es

s 
M

is
s 

R
at

io a=1

a=2

a=4

a=8

a=16

Test Results

Figure 6. Read miss ratio for PC1.

0.0

0.2

0.4

0.6

0.8

1.0

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

Number of Random Read Accesses R

R
ea

d 
A c

ce
ss

 M
is

s 
R

at
io a=1

a=2

a=4

a=8

a=16

Test Results

Figure 7. Read miss ratio for PC4.

Theorem 2 If n distinct data elements{4> {5> ===> {n are
read-accessed in sequence by a cache of associativityd, if
this same sequence of read-accesses is repeated for a total
of LOOPN times, and if any two of then elements belong to
different memory blocks and they are mapped to the same
cache set, then the read-miss ratioPu for the lastLOOPN-
1 read sequences is

Pu @

�
3 if n � d
4 otherwise

(2)

Corollary 2 If U e-byte elements are chosen randomly
without repetition for reading from an aligned array ofT
e-byte elements, whereT @ ;F@e, then the cache miss rate
of t3-timed loop in the Figure 5 is

H^Pu+U> d,` @
V
S

nAd nSn>T

U
(3)

Proof. We have supposed that the cache mapping func-
tion uniformly maps the data blocks into different cache
sets if the data arrayva[] is aligned to the cache size. So
each cache set has the same probabilitySn>T of being hit
by n data accesses from theU random-selected data blocks

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 20:01 from IEEE Xplore.  Restrictions apply.



in the inner loop. Considering the former corollary, we can
get the result in Equation 3.

We estimate the associativity of a cache by making
the series of measurements TR+4,, TR+5,, TR+7,, ===,
TR+7Q@e,. We estimate a miss ratio Pu+U, from a
measurement TR+U, as follows: Pu+U, � +TR+U, �
w3u,@w

3

su, where we take w3u @ plqUiWU+U,j and w3su @
pd{UiWU+U,j � w3u. We then ¿nd the d that gives a best-
¿t of our analytic form forH^Pu+U> d,` (which is a function
of d andU) to our series of estimatesPu+U,. This best-¿t
d is our estimate for the associativity of the cache.

Note: the average read-hit access timew3u for this mi-
crobenchmark may be somewhat larger than thewu esti-
mated in our¿rst microbenchmark.

Also, the read-miss penaltyw3su for our associativity-
testing microbenchmark is substantially larger than the
wsu estimated in our¿rst microbenchmark. Because we
have disabled the secondary cache, a random read-miss in
this microbenchmark usually incurs the latency of a full
(RAS/CAS) DRAM cycle, whereas the sequential read-
miss of our¿rst microbenchmark may proceed at the full
bandwidth of a fast (CAS-only) DRAM cycle.

Our experimental results for associativity measurement,
averaged on ten runs, on our two workstations are shown in
Figures 6 and 7, forQ @ 548 andQ @ 547 respectively.
We have a good¿t to d @ 7 for PC1 and tod @ 5 for PC4,
in agreement with the manufacturer’s description [3].

4. Measurement of cache-write policies

We have written three microbenchmarks to determine
cache-write policies and to estimate write times. Our¿rst
write microbenchmark is called the “pre-read kernel”. It
is shown in Figure 8. Based on our assumption that any
cache system must allocate on read miss, We designed it
to reveal whether a primary cache uses a write-through or
write-back policy� and for write-back cache, we can also
determine whether it allocate on write miss or not. Its name
comes from the¿rst part of the second loop, which reads
va[0..R-1] . This read loop will establish cache resi-
dency of the lastplqiF@7> Uj elements ofva[]. Note:
background tasks may slowly “pollute” our cache, displac-
ing elements ofva[], so we add a read loop before several
write loop in the second timed loop� and the¿rst loop is de-
signed to get the extra time used by the read accesses in the
second loop.

If the cache uses a write-through policy, then the aver-
age write time reported by the pre-read microbenchmark is
TW2+U, � wz, that is, essentially invariant withU.

If the cache uses write-back policy, the average write
time reported by the pre-read microbenchmark is noticeably
dependent onU and whether the cache allocates on a write

register long s1,s2�
volatile long *va�
va=calloc(N, sizeof(long))�
start_time=clock()�
for(l=0� l<LOOPN� l++)
for(j=0�j<R�) {
s1=va[j]� //16-unrolled
s1=va[j+1] �
... //13 similar lines
s1=va[j+15] � j+=16 �

}
t4=(double)(clock()-start_time) �
start_time=clock() �
for(l=0 � l<LOOPN� l++) {

for(j=0 �j<R �) {
s1=va[j] � //16-unrolled
s1=va[j+1] �
... //13 similar lines
s1=va[j+15] � j+=16 �

}
for(el=0 � el<16 � el++)

for(j=0 �j<R �) {
va[j]=s2 � //16-unrolled
va[j+1]=s2 �
... //13 similar lines
va[j+15]=s2 � j+=16 �

}
}
t5=(double)(clock()-start_time) �
TW2=(t5-t4)/(R*LOOPN*16) �

Figure 8. The “pre-read kernel” for determin-
ing cache writeback policy.

miss. Our reasoning is as follows: if 7U � F, the array is
cache-resident and there are no misses no matter the cache
uses write-allocate or not.

If 7U � F and write-allocate, the miss ratioPz5 on this
benchmark is:

Pz5 @ +7@e,plqi4> g+7U�F,@eh@Vj (4)

If 7U � F and not write-allocate, thenF@7 of theU
referenced elements are cache-resident, so the miss ratio is:

Pz5 @ 4�F@7U (5)

Equation 6 summarizes our analysis of the performance
of a write-back cache on our pre-read benchmark.

TW2+U, �
�

wz if +7U � F, a WB
wz .Pz5wsz if +7U A F, a WB

(6)

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 20:01 from IEEE Xplore.  Restrictions apply.



0

20

40

60

80

100

120

25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

41
94

30
4

Number of  Accesses R

W
rit

e 
A c

ce
ss

 T
im

e 
(n

s)

PC1
PC4

Figure 9. Average write time for PC1 and PC4,
on our preread microbenchmark.

So, for a write-through cache, we expect to see a write
access time that does not change when we increaseU. For a
write-back and write-allocate cache, we expect a steep-rise
from U @ F@7 to U @ +F . Ve,@7, and the write access
time should be constant forU � +F . Ve,@7 � for a write-
back and not write-allocate cache, we expect a gradual rise
for U � F@7.

Our experimental results for PC1 and PC4, averaged on
¿ve runs, on our pre-read benchmark are shown in Fig-
ure 9. The gradual rise, for PC1 after TW2+73<9,, indicates
that it uses a write-back policy and does not employ write-
allocate, and its capacity is 16 kilobytes. And the sharp
rise, for PC4 between TW2+537;, and TW2+73<9,, indi-
cates that it has a write-back, write-allocate primary cache
with a capacity of 8 kilobytes.

In addition, we can got the access times for write-hit and
write-miss from Figure 9. For PC1,wz @ 6=8 ns andwsz @
78=9�6=8 � 75 ns, because the data cache of PC1 does not
use the write-allocate policy. And for PC4,wz @ 9=; ns and
wsz @ +<<=9 � 9=;, � +65@;, � :73 ns, because its data
cache uses a write-allocate policy.

We have written another microbenchmark for write ac-
cesses, to evaluate the dependence of write-access time on
stride. We do not pre-read in this microbenchmark. Its ker-
nel code is not shown here, however it is very similar to our
strided-read microbenchmark in Figure 3. Under the same
reason as for strided-read benchmark, we setU @ 7F@7 in
this microbenchmark. The reported average stride-N write
access time is thusWV+N, @ wu . plqi4>N@ejwsu if the
cache uses write-allocate and write-back policy� otherwise
WV+N, should not change with the variation ofN.

Experimental results for our two workstations, aver-
aged on¿ve runs, on our strided-write microbenchmark
are shown in Figure 10. It providing the write access time
for different strides of PC4. The cache parameters implied
by the graph, such as cache block size of PC4, non-write-

0

100

200

300

400

500

600

700

800

4 8 16 32 64 12
8

25
6

51
2

Access Stride in Bytes

W
rit

e 
A c

ce
ss

 T
im

e 
(n

s)

PC1

PC4

Figure 10. Average stride-K write time for PC1
and PC4.

Table 1. Summary of experimental results
with secondary cache disabled.
Machine PC1 PC4
CPU Pentium MMX Pentium Pro
Clock 200 MHz 180 MHz
Capacity F 16 KB 8 KB
Block size e 32 B 32 B
Associativity d 4 2
Read:

hit time wu 5.7 ns 6.1 ns
miss pen. wsu 210 ns 160 ns

Write:
hit time wz 3.5 ns 6.8 ns
miss pen. wsz 42 ns 740 ns

Allocate on write? no yes
Write-through? no no

allocate of PC1 etc., are consistent with that we got from
our other microbenchmarks.

5. Summary and Future Work

We have described a series of microbenchmarks that
measure the most important performance parameters of a
primary cache. Our microbenchmarks are similar in spirit to
those of Saavedra and Smith [9]. However our microbench-
marks characterize read and write times separately, they de-
termine cache write policies, and they will work on caches
with set-index functions other than the bit-selection func-
tion that is commonplace today.

Our experimental results, obtained by running our mi-
crobenchmarks on two workstations, are summarized in Ta-
ble 1. Our measured capacity, blocksize and associativity

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 20:01 from IEEE Xplore.  Restrictions apply.



are in agreement with the manufacturer’s description [3],
and our access times seem plausible for systems in which
the secondary cache is disabled.

In future work, we would like to analyze the performance
of skewed caches [2] under our microbenchmarks. Such
caches employ distinctV-permutations�{@Ve>l to de¿ne the
set-index function for each bankl, where4 � l � d.

The results in this paper are obtained by disabling
the secondary cache, enabling the compiler’s optimization
function for maximum speed to maximize the measurement
accuracy. One reason our microbenchmarks are successful
is that the instruction access and executions of these kernel
loops are not bottlenecks on modern CPUs. In the future,
we will examine the accuracy of our microbenchmarks with
the secondary cache enabled. We are also interested in de-
veloping latency-bound microbenchmarks.

We intend to release our microbenchmarks for public
distribution soon. Finally, we hope to¿nd time, and fund-
ing, for porting our microbenchmarks to Unix or Linux.

References

[1] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler trans-
formations for high-performance computing.ACM Comput-
ing Surveys, 26(4):345–420, December 1994.

[2] F. Bodin and A. Seznec. Skewed associativity improves pro-
gram performance and enhances predictability.IEEE Trans.
on Computers, 46(5):530–544, May 1997.

[3] Intel Corporation,http://developer.intel.com/
design/product.htm

[4] D. E. Knuth. The Art of Computer Programming: Seminu-
merical Algorithms, volume 2. Addison-Wesley Publishing
Company, 3rd edition, 1998.

[5] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache
performance and optimizations of blocked algorithms. In
Proceedings of the Fourth International Conference on Ar-
chitectural Support for Programming Languages and Oper-
ating Systems, pages 63–74, Apr. 1991.

[6] A. R. Lebeck and D. A. Wood. Cache pro¿ling and the
SPEC benchmarks: A case study.IEEE Computer, pages
15–26, October 1994.

[7] E. Li. Study on the Storage Schemes in High-Performance
Computer Systems. PhD thesis, Institute of Computer Tech-
nology, Chinese Academy of Sciences, 1997.

[8] D. A. Patterson and J. L. Hennessy.Computer Organization
and Design: The Hardware / Software Interface. Morgan
Kaufmann, second edition, 1998.

[9] R. H. Saavedra and A. J. Smith. Measuring cache and TLB
performance and their effect on benchmark runtimes.IEEE
Trans. Computers, 44(10):1223–1235, October 1995.

[10] R. Sites. It’s the memory, stupid.Microprocessor Report,
10(10):19, August 1996.

[11] A. J. Smith. A comparative study of set associative memory
mapping algorithms and their use for cache and main mem-
ory. IEEE Trans. on Software Engineering, SE-4(2):121–
1130, March 1978.

[12] C. Thomborson. Tools for randomized experimentation. In
M. E. Tarter and M. D. Lock, editors,Statistical Applica-
tions of Expanding Computer Capabilities: Proceedings of
the 25th Symposium on the Interface, Computing Science
and Statistics (Volume 25), pages 412–416. Interface Foun-
dation of North America, 1993. Code available athttp://
www.cs.auckland.ac.nz/˜cthombor/Mrandom

[13] S. J. Von Worley and A. J. Smith. Microbenchmarking
and performance prediction for parallel computers. Techni-
cal Report UCB/CSD-95-873, Computer Science Division
(EECS), University of California at Berkeley, May 1995.

Authorized licensed use limited to: The University of Auckland. Downloaded on November 4, 2008 at 20:01 from IEEE Xplore.  Restrictions apply.


