

*This research was supported in part by National Science Foundation
grants MIP-9700970 and EIA-9870740, US-Israel Binational Science
Foundation grant 96-00247, an IBM Graduate Research Fellowship and
a gift from the Intel Corporation.

Appeared in the proceedings of the International Conference on Computer Design (ICCD ’99), October 1999.

528

Pursuing the Performance Potential of Dynamic Cache Line Sizes*

Peter Van Vleet Eric Anderson Lindsay Brown Jean-Loup Baer Anna Karlin
Department of Computer Science & Engineering

University of Washington
Seattle WA 98195-2350

{pvv, eric}@cs.washington.edu, lbrown@reed.edu, {baer, karlin}@cs.washington.edu

Abstract
In this paper we examine the application of offline al-

gorithms for determining the optimal sequence of loads
and superloads (a load of multiple consecutive cache
lines) for direct-mapped caches. We evaluate potential
gains in terms of miss rate and bandwidth and find that in
many cases optimal superloading can noticeably reduce
the miss rate without appreciably increasing bandwidth.
Then we examine how this performance potential might
be realized. We examine the effectiveness of a dynamic
online algorithm and of static analysis (profiling) for su-
perloading and compare these to next-line prefetching.
Experimental results show improvements comparable to
those of the optimal algorithm in terms of miss rates.

§1 Introduction

Since their introduction over thirty years ago, caches
have become ubiquitous as components of the memory
hierarchy. Caches have been successful because programs
exhibit locality: spatial locality, the tendency for neigh-
boring memory locations to be referenced close together
in time; and temporal locality, the tendency for referenc-
ing in the future those locations that have been referenced
in the recent past. However, as the speed of processors
increases much faster than the decrease in memory la-
tency, the efficiency of caches has received more scru-
tiny.

Combinations of hardware and software techniques
have been proposed and often implemented to improve
locality and to reduce or tolerate memory latency. The
basic goal is to reduce cache miss rates without unduly
increasing the amount of bytes transferred between levels
of the memory hierarchy. When couched in terms of im-
proving spatial locality for data caches, the main theme of
this paper, the usual policy is to support larger cache
lines. Potential detrimental effects of this policy are a

possible increase in cache miss rate because of more fre-
quent conflict misses and the lack of reuse of portions of
the larger lines, and to lengthen the occupancy of the bus
between levels of the memory hierarchy servicing the
miss. In order to palliate these effects and to take advan-
tage of large lines, when deemed profitable, we examine
the potential benefit of implementing the cache controller
so that on a miss, either the missing regular size line is
loaded - hereafter called the base case - or the line is su-
perloaded, i.e., the missing line and surrounding lines are
brought into the cache. Note that the advantages of super-
loading depend on the cost model for the level of the
memory hierarchy under investigation. Of particular im-
portance are the relative costs of a load and a superload.

Although the impact of these techniques has been in-
vestigated using heuristics and software or hardware as-
sists, how much can be gained if these techniques were
used optimally is not known. In this paper, after briefly
introducing an optimal offline algorithm for choosing be-
tween loads and superloads, we derive the margin of
maximum possible improvement on the integer Spec95
benchmark suite. We then analyze the performances,
when compared to the optimal and base cases, of (1) an
online algorithm that dynamically monitors the reuse and
conflicts of cached lines, (2) a static profiling tool that
decides, via the value of the Program Counter (PC),
which load instructions should be modified to become
superloads, and (3) traditional next-line prefetching.

The rest of the paper is as follows. In Section 2, we
present a brief summary of related work and in Section 3
the methodology that we used for simulating the perfor-
mance of the various algorithms. Section 4 is devoted to
the description and performance of the optimal superload-
ing algorithm. Section 5 and Section 6 describe respec-
tively the proposed online and profiling algorithms,
present results of simulations, and compare these results
with those obtained by the optimal algorithm. Section 7
examines how superloading compares to next-line
prefetching. Section 8 concludes and suggests further
study.

529

§2 Related Work

Closest to our own study, Johnson et al. [7] [8] investi-
gate hardware assists, a Spatial Locality Detection Table
(SLT) and a Memory Address Table (MAT), for dynamic
fetch size choices. As with our work, they deal with what
we define as atomic superloads, i.e. the superload opera-
tion will always bring in all of its constituent lines into the
cache. The goals of our study differ from theirs in two
ways. First, we are interested in the optimal case and
thus are at this time restricted to the study of direct-
mapped caches. Second, our online algorithm focuses on
the trade-off between cache misses and bytes transferred
between memory and cache while, because the machine
simulated in their work has ample bandwidth, their em-
phasis is principally on the reduction of cache misses.

Kumar and Wilkerson [9] follow up on Johnson’s work
and present results for an online prediction mechanism
that (in our terminology) performs patterned superload-
ing. That is to say, any arbitrary pattern of lines within a
superline may be loaded. The cache content of the un-
loaded lines is preserved. This was designed as a mecha-
nism to reduce cache pollution from unnecessary loads
rather than improve cache performance from prefetching.

Superlines are one mechanism to improve spatial lo-
cality. As we shall see, our proposed online algorithm
monitors the reuse of lines in superlines in order to decide
whether loads or superloads should be performed. Taking
advantage of reuse information is at the heart of other
methods aimed at improving cache efficiency via bypass-
ing [16], or at having two data caches one of which is de-
voted especially for those data that exhibit spatial locality
[11].

Loading and superloading require cache technology
that is able to accommodate multiple line sizes. Several
studies have explored the feasibility of this idea, including
Conti’s ‘‘Sector Cache’’ [4] (the first cache implementa-
tion) and Seznec’s ‘‘Decoupled Sector Cache’’ [13].

Belady’s MIN algorithm is the most well-known of-
fline algorithm for the study of memory hierarchies [2].
Developed in the context of paging systems, MIN gives
the minimum number of page faults for a given program.
Recently Temam [15] has extended Belady’s algorithm to
include optimal spatial reuse as well as temporal reuses.
His work differs from ours in two aspects. First, his re-
sults are applicable to fully associative caches with opti-
mal set replacement policy whereas we deal with direct
mapped caches. Second, Temam’s work deals with load-
ing arbitrary patterns of lines within a superline while we
consider atomic superloads.

Dynamic sizing has also been studied at other levels in
the memory hierarchy. For example, page promotion poli-
cies from a page to a superpage have been proposed with
the goal of either facilitating superpage management [10]
or to have better TLB coverage [12].

§3 Methodology

To evaluate the effectiveness of the superload algo-
rithms, we use the eight Spec95 integer benchmarks.
Traces were collected with the SimpleScalar simulator
[3]. The default machine settings for the simulator, an 64-
bit 256 register RISC machine, were used. The binaries
for the benchmarks were those provided with the Sim-
pleScalar simulator.

In the context of comparing loads versus superloads,
we have chosen to include only reads in our traces,
though the analysis can be readily extended to include
writes as well. Since we are only modeling relatively
small direct-mapped first-level caches, we kept our traces
between 7M and 23M reads in length for the optimal and
online algorithms.

The input sets for 126.gcc and 132.ijpeg use the test
input set. All others use the train input set (134.perl uses
just the ‘‘scrabbl’’ input).

124.m88ksim, 129.compress and 134.perl were traced
in their entirety. They contained 7.5M, 11.6M and 23.2M
reads respectively. The five other applications were
sampled with five separate sections of four million con-
secutive reads. The five sections were uniformly spaced
throughout the trace and then concatenated together to
form one 20 million read trace. This sampling method has
been shown to give accurate results for the cache sizes we
are considering [5].

For our experiments with profiling, we used the above
traces as the training input. When evaluating profiling, we
ran a full simulation of the reference input for each bench-
mark. In each case, the simulations of the profiling
method were at least 10 times longer and used different
data sets than the traces used as training input.

The running time of the optimal algorithms becomes
an issue if profiling is to be of practical value. Currently,
on a dual processor 200MHz Pentium Pro machine, a 20-
million reference trace can be processed in about five
minutes, a reasonable overhead that has to be incurred
only once per application.

§4 Optimal Algorithm

§4.1 Machine Model

We assume an architecture with the ability to choose
between two line sizes on a cache miss, a load and a su-
perload. On a load, the architecture brings the ‘‘normal’’
cache line into the cache. On a superload, a superline, de-
fined as L consecutive lines determined by address mask-
ing, is brought into the cache. For the remainder of this
paper, we will assume four lines to a superline. The label-
ing of these operations with ‘‘lines and superlines’’ as
opposed to ‘‘sublines and lines’’ is arbitrary. In the paper
we shall always use the former.

530

§4.2 Cost Model

Ideally, an optimal algorithm would present a sequence
of loads and superloads which would provide the most
improvement in overall running time of an application on
a given machine. However, encompassing all the details
of a machine into an algorithm would quickly become too
unwieldy. Instead we optimize for a simplified memory
access model, where every load has a cost of l and a su-
perload has a cost of s. This is expressed as the ratio s:l.
(Where two actions have the same effect in terms of
‘‘cost’’, we break ties in favor of loading.)

In this machine model there is an intrinsic trade-off
between improving cache hit ratio and minimizing ad-
ditional bytes transferred into the cache. At one extreme,
the cost ratio of 1:1 effectively optimizes for cache hit
ratio, disregarding bytes transferred. Superloads are done
if one useful prefetch from another line will occur, even if
at the expense of transferring two potentially useless lines
into the cache. At the other extreme, the cost ratio 3:1
may perform superloads only if there is a useful prefetch
to every line in the superline. This guarantees that band-
width will not be increased over the base case, at the ex-
pense of limited superloading and thus limited ability to
improve cache hit ratio. The cost ratio of 2:1 is a hybrid,
where superloads may occur only if at least 3 of the lines
will be used.

In the cost models, only the relative cost ratios are sig-
nificant. Furthermore, where the cost of a cache hit is dis-
regarded, only the integral cost ratios are of interest. Cost
models greater than 3:1 will always perform loads,
whereas cost models less than 1:1 are unrealistic. Hence
(as we assume four lines in a superline) we need only
consider the cost models 1:1, 2:1 and 3:1. We refer to the
optimal algorithms based on each of these cost models as
Opt 1:1, Opt 2:1 and Opt 3:1 respectively.

§4.3 Algorithm Description

We have developed two offline algorithms which
given a cost model as described above, can provide an
optimal (lowest cost) sequence of loads and superloads.
Here we briefly characterize the algorithms. For more de-
tailed information see the technical report [1].

The algorithm we use in this paper is a linear time,
constant space algorithm for computing the optimal cost
in the case of superloads. This algorithm is based on a
dynamic programming paradigm applied to the suffix of
the reference stream. It calculates optimal cost by clas-
sifying all possible cache states, defining each optimal
cost as a minimum over possible cache operations of the
sum of (1) the cost of the operation and (2) the optimal
cost of satisfying the suffix from the resulting state. The
number of distinct states for one superline is a constant
depending only on the size of the superline, and is small
for direct-mapped caches.

The algorithm runs in time linear in the length of the
reference sequence, but exponential in the number of lines
in a superline. The algorithm can be extended to set as-
sociativity with LRU replacement, but at a significant
cost in execution time.

The second, more complex algorithm also relies on the
assumption of a direct-mapped cache, but can be applied
to compute the optimal cost in the context of bypassing.
However, optimal bypassing combined with optimal su-
perloading is beyond the scope of this paper. This second
algorithm, and some initial bypassing results, are
described in [1].

§4.4 Results of the Optimal Algorithm

In this subsection, we show the results of applying the
optimal results algorithms with various costs and compare
these results with those obtained for the base cases of
‘‘only loads’’ and ‘‘only superloads’’. These experiments
will give us the potential margins of improvement in
cache hit rates and the accompanying penalties in the
number of bytes read. For example (cf. Figure 3 and Fig-
ure 4), the Opt 2:1 algorithm with a line size of 16 bytes
for a 16K direct-mapped cache yields a decrease of cache
miss rate between 11% and 29% (average 19%) with a
decrease in byte reads from 23% to 60% (average 43%)
with respect to the best static line size of 32 bytes for a
16K cache (cf. Table 1).

 Miss rate (%) Bytes read
Line size 8 16 32 64 8 16 32 64
compress 5.10 4.79 4.79 5.51 100.00 188.06 375.81 864.33

gcc 6.18 5.22 4.67 4.80 100.00 169.00 302.46 621.94

go 4.14 4.56 5.73 7.27 100.00 220.40 553.78 1403.95

ijpeg 3.99 2.50 1.74 1.32 100.00 125.16 174.17 263.87

li 8.55 6.14 4.21 3.21 100.00 143.72 196.92 300.67

m88ksim 2.54 2.09 1.60 1.37 100.00 164.19 251.35 430.77

perl 3.96 3.73 3.67 3.89 100.00 188.46 370.81 787.03

vortex 8.15 6.62 6.57 6.55 100.00 162.33 322.14 642.75

average 5.33 4.46 4.12 4.24 100.00 170.17 318.43 664.41

Table 1: Miss rates and bytes read of the base case for the eight benchmark
applications at a series of cache line sizes, 8, 16, 32, and 64 bytes, and a cache
size of 16K. For each application, bytes read is normalized to the quantity for
the case of an 8-byte line size (set to 100).

We analyze each application of the Spec95 benchmark
suite, comparing the base cases of the algorithm that per-
forms no superloads and the algorithm that performs only
superloads to the three optimal algorithms, Opt 1:1, Opt
2:1, and Opt 3:1, at the same line size. Each of the algo-
rithms is simulated using a 32-byte line size, which is the
line size that minimizes average miss rate in the base case
for the benchmark suite as a whole. The resulting miss
rates are shown in the top graph of Figure 1. In all cases
except Opt 3:1 for li (li favors long cache lines, cf. Table
1), the optimal algorithms achieve lower miss rates than

531

either of the base case algorithms, and in some cases,
fairly significantly. As expected, we also see that (a) the
miss rate decreases as the superload cost used by the op-
timal algorithm decreases, and (b) the percentage of
misses on which a superload is performed increases as
superload cost decreases.

compress gcc go ijpeg li m88ksim perl vortex

Base, Opt 3:1, Opt 2:1, Opt 1:1, Superloads

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

M
is

s
R

at
e

Optimal Algorithm
Miss Rate

Superload

Load

Figure 1: Miss rates for the eight benchmark applications. The base case (no
superloads), the three optimal algorithms Opt 3:1, Opt 2:1, and Opt 1:1 (see
text), and the algorithm that always performs a superload are each simulated at
a cache size of 16K and a line size of 32 bytes.

Our results show that the proportion of superloads in
the optimal algorithms is generally greatest for those ap-
plications, such as ijpeg and li, that already have good
performance in the sense of a low miss rate for larger line
sizes. We believe this is because these programs share
the same underlying factor, spatial locality. That is, an
application that exhibits a high degree of spatial locality
will tend both to have a low miss rate and to make effec-
tive use of superloads.

Another interesting observation is that for some ap-
plications a small number of superloads can lead to a sig-
nificant improvement in miss rate. The superloads that
are chosen in the Opt 3:1 algorithm are precisely those
that result in complete use of the superloaded lines, be-
cause three additional hits are necessary for the cost of the
superload to be preferred by that algorithm. These high-
efficiency superloads do not lead to an increase in band-
width (see Figure 2, left two columns), but can lead to a
substantial decrease in miss rate (li or ijpeg).

In Figure 2, we display for each application the bytes
read under the base case (no superloads) and under the
three optimal algorithms, Opt 3:1, Opt 2:1, and Opt 1:1.
(The base case of the only-superload algorithm is not dis-
played; its values are generally much higher, and would
distort the scale.) We see from the graph that (as noted
above) the Opt 3:1 algorithm uses the same bandwidth,
the Opt 2:1 algorithm uses slightly greater bandwidth,
and the Opt 1:1 algorithm significantly greater bandwidth
than the corresponding base case. The substantial ad-
ditional bandwidth required by Opt 1:1 compared to Opt
2:1 can be contrasted to the modest additional benefit in

miss rate, suggesting that there are diminishing returns to
the additional superloads, and indicating that for Opt 1:1
in many cases only one additional extra line is used by a
superload.

compress gcc go ijpeg li m88ksim perl vortex

Base, Opt 3:1, Opt 2:1, Opt 1:1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

130%

140%

B
yt

es
 R

ea
d

Optimal Algorithm
Bytes Read Superload

Load

Figure 2: Bytes read for the eight benchmark applications. The only ‘‘super-
loads’’ algorithm is not displayed in the bytes read graph; its values are much
higher than the others, and would distort the scale.

Since the ratio 2:1 seems to be the cost ratio that pro-
vides the best overall trade-off between miss rate and
bytes transferred, we performed additional experiments
and comparisons using this cost model.

Base 32 Base Best Base 32
32K-Cache

Opt 2:1 8 Opt 2:1 16 Opt 2:1 32
0.00%

0.75%

1.50%

2.25%

3.00%

3.75%

4.50%

M
is

s
R

at
e

Summary of Optimal Algorithm
Miss Rate

Superload

Load

Figure 3: Miss rate for Opt 2:1 over the range of line sizes of interest. Cache
size is 16K (except as noted). The base case (no superloads) is presented in
three versions: at the best overall line size for miss rate (32 bytes), at the best
individual line sizes for each application; and at a cache size twice as large
(32K, 32 byte line size). Results for the individual applications are averaged.

In Figure 3, we display a summary of the miss rate
results of Opt 2:1 over a range of line sizes. For compari-
son, we also display the base case results (loads only, at
the best overall size, i.e., 32 bytes), the results when best
per-application line size is selected (e.g., 8 bytes for go
and 64 bytes for li, cf. Table 1), and a cache which is
twice as large. In each case, the miss rates (and the re-
spective contributions of loads and superloads) for the
eight applications are averaged to obtain the figure dis-
played in the graph.

532

We see that the Opt 2:1 algorithm produces a miss rate
at any line size that is at least as low as the average miss
rate for the base case with best overall cache line. Even
when the base case is simulated at each application’s indi-
vidual optimal line size, the Opt 2:1 algorithm yields
competitive miss rates despite the fact that the cache line
and superline sizes are fixed for all applications. In this
sense the optimal algorithm captures the individuality of
the separate applications, by producing a miss rate size
for each that is comparable to its performance at its own
optimal line size. Note however that the effect of increas-
ing cache capacity cannot be matched. Doubling the
cache size results, as expected, in better improvements
than superloading.

Base 32 Base 8 Base 32
32K-Cache

Opt 2:1 8 Opt 2:1 16 Opt 2:1 32
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

B
yt

es
 R

ea
d

Summary of Optimal Algorithm
Bytes Read Superload

Load

Figure 4: Bytes read for the algorithm Opt 2:1 over the range of line sizes of
interest. Figure’s parameters are the same as Figure 3, with the exception of
the best base case, which in terms of minimizing bandwidth, is an 8-byte line for
each benchmark. Measurements are normalized to the 32-byte base case.

Figure 4 presents the corresponding results for bytes
read. We compare the optimal results, to the standard 32-
byte line size as well as to the configuration with a cache
twice as large. The best possible cache line configuration
for reducing the number of bytes read is the smallest, 8
bytes. Overall the Opt 2:1 algorithm yields only a slight
increase in the number of bytes transferred compared to
the corresponding base case with the same line size.

In order to gauge the effect of cache size on super-
loads, we have carried out these same experiments across
a range of cache size values. The results are qualitatively
similar. A particular item of interest is the proportion of
superloads in the Opt 2:1 algorithm as the cache size in-
creases. We expect to see a higher proportion of super-
loads, since as the cache size increases, there are fewer
conflicts in the cache, and the optimal algorithm can more
often take advantage of the data placement of the ad-
ditional lines. This is confirmed by our experiments. For
example, for Opt 2:1 the absolute number of superloads
decreases from 781K to 491K (accompanied by a drop in
the overall number of misses), but the proportion of cache
misses that are superloads increases from 11% to 23%, as
the cache size increases from 8K to 32K.

§5 Online Prediction

§5.1 Predictor Anatomy

When implementing online algorithms, we must rely
solely on previous behavior, associating past patterns with
the desired outcome and assuming that this is the correct
behavior the next time the pattern occurs. Fundamentally,
the effectiveness of any such predictor will be limited by
the intrinsic usefulness of past information in predicting
the future. Practical considerations such as limited knowl-
edge (feedback) and limited storage space (to store pat-
terns) will further inhibit this effectiveness.

Limited knowledge is a problem inherent in memory
hierarchy studies such as paging system replacement al-
gorithms and, in our case, line size prediction. Specifi-
cally, after a prediction is made, one must provide ‘‘cor-
rect’’ feedback, which is incorporated in the history infor-
mation of the predictor. While this is relatively simple for
some predictors such as branch predictors or even data
value predictors where the true results are known within a
few cycles, and more importantly, are absolutely correct,
this is quite complex for line size predictors as evidenced
by the (relative) complexity of the optimal algorithm.
Thus, the predictor must rely on some form of indepen-
dent knowledge mechanism, which evaluates the situation
and provides (imperfect) feedback.

Our prediction scheme, the Line Size Predictor (LSP),
contains two distinct components, the Operation Counter
Table (OCT), a lookup table which determines whether a
load or superload is performed, and the Line Size Detec-
tor (LSD), a knowledge mechanism which attempts to
determine in retrospect what the correct line size of a load
operation should have been.

Overall, our strategy on a miss to a particular line is to
consider the reference stream since the previous miss to
that particular line. Given this segment of the reference
stream, we determine, approximately, if it would have
been profitable to perform a superload on the previous
miss. If so, we’d like to superload on the current miss, on
the theory that the recent past is a good predictor of the
future. If, on the other hand, a superload would not have
been profitable on the previous miss, we’d like to load on
the current miss. In fact, LSP incorporates hysteresis so
that the decision is affected to some extent also by refer-
ence behavior prior to the last miss.

§5.2 Operation Counter Table

While developing an effective lookup table is an im-
portant and interesting issue, well understood in the con-
text of branch predictors, it is not the focus of our current
efforts. To this end, we use unlimited space to uniquely
record each load by both its program counter (PC) and
effective address (EA). This should reduce most aliasing.

For hysteresis, the OCT contains a 2-bit saturating
counter for each reference. This counter corresponds to

533

the following states and operations: 00 SL (Strong Load),
01 WL (Weak Load), 10 WSL (Weak Superload), 11 SSL
(Strong Superload).

The OCT differs from Tyson [16], which just used
parts of the PC, and Johnson’s MAT [8], which just used
the upper bits of the EA as the index in their lookup
tables. Kumar’s SHT [9] considered several possible
combinations of PC and EA with both infinite and finite
storage.

§5.3 Line Size Detector

The role of LSD, the knowledge mechanism of the on-
line algorithm, is to determine whether a particular refer-
ence should have been a load or a superload. Our ap-
proximation of this question is to ask ‘‘How many of the
relatives (lines belonging to the same superline) of the
line were referenced between the time the line was loaded
and the time the line was evicted?’’ Based on this result,
the OCT (prediction table) is updated. Generally speak-
ing, if this number is sufficiently large, we estimate that
the reference should have been a superload.

We shall define some terms to facilitate the discussion.
Let l be a cache line. The three other cache lines that
would be loaded with l on a superload are called relatives.
Any line that resides in the cache at the same superline of
l, will be called a neighbor. All relatives are neighbors but
a neighbor is not necessarily a relative.

Each line l tracks itself and its three neighbors. For
each of these it associates one of four possible states
R,C,H,X. This reference pattern reflects the condition of a
line’s neighbors since the time the line was brought into
the cache. An H is a hit, the result of the neighbor being a
relative at the time the line is loaded. An R indicates a
reuse, the next miss to that neighbor loaded a relative.
The C represents a conflict, the next miss to that neighbor
was a load of a non-relative. An X means that there was
no subsequent access to that neighbor before the line was
evicted from the cache.

When a line l is loaded into the cache, its own entry is
marked with an R and all its other entries are checked to
see if they are related and marked with an H or X as ap-
propriate. Furthermore, the three neighbor lines may up-
date the entry of their patterns corresponding to l with ei-
ther an R or C.

As subsequent references occur, the conditions of the
X state are updated. State can only be changed from an X
into an R or C. A cache hit as well as a cache miss can
change the state. A superload will wipe clean all state.
However, only the particular line which caused the super-
line will be marked with an R.

When a line is evicted from the cache, its reference
pattern is used to update its operation counter. If the refer-
ence pattern produced by the LSD contains 1 or more H’s,
the operation counter is decremented. The intuition be-
hind this rule is that while H’s do denote spatial locality,
it is in some sense too late, as superloading at this point

would be partially redundant. If the pattern contains 2 or
more C’s the counter is decremented. This action deters
superloading from occurring when the extra lines brought
in would have been replaced before being used. The
counter is incremented if it contains 3 or more R’s, or 2
R’s and 2 X’s. These are situations where superloading
was or probably would have been profitable.

Table 2 shows the effects of a simplified but illustra-
tive set of references on the LSD and OCT. The refer-
ences, the decision that was made based on their opera-
tion count, the resulting state of the cache, the evicted
cache line and the update to its operation counter are all
shown in the table.

Ref OCT(Ref) Cache State Eviction OCT(Eviction) - Action
 Cache Line 1

Cache Line 2
Cache Line 3
Cache Line 4

-- -- ?1 [????]
?2 [????]
?3 [????]
?4 [????]

?? [????] OCT(??) - Unchanged

A1 WSL
(Weak

Superload)

A1 [RXXX]
A2 [XXXX]
A3 [XXXX]
A4 [XXXX]

?? [????] OCT(??) - Unchanged

B2 WL
(Weak
Load)

A1 [RCXX]
B2 [XRXX]
A3 [XCXX]
A4 [XCXX]

A2 [XXXX] OCT(A2) - Unchanged

B3 WL A1 [RCCX]
B2 [XRRX]
B3 [XHRX]
A4 [XCCX]

A3 [XCXX] OCT(A3) - Unchanged

C1 WL C1 [RXXX]
B2 [CRRX]
B3 [CHRX]
A4 [CCCX]

A1 [RCCX] OCT(A1) - Decremented

C2 WL C1 [RRXX]
C2 [HRXX]
B3 [CHRX]
A4 [CCCX]

B2 [CRRX] OCT(B2) - Unchanged

C3 WL C1 [RRRX]
C2 [XRRX]
C3 [HHRX]
A4 [CCCX]

B3 [CHRX] OCT(B3) - Unchanged

A1 WL A1 [RXXH]
C2 [CRXX]
C3 [CHRX]
A4 [CCCX]

C1 [RRRX] OCT(C1) - Incremented

Table 2: Online Algorithm Example. The columns of the table are, the incoming
reference, what the OCT (look-up table) says should be done, the state of the
cache after the incoming reference has been loaded, the line and pattern that
were evicted and finally, how this pattern changes the OCT state. For a given
reference, the letter denotes a superline, the number corresponds to the line
within a superline. In the example, C1 replaces A1, A1 and B2 are neighbors,
and B2 and B3 are relatives.

When a prediction needs to be made, the counter as-
sociated with the missing line is checked and it indicates
the operation to be performed. Currently, if a reference
has any relatives in the cache, a superload will be sup-
pressed. This is due to the observation that superloading is

534

usually not profitable if 1 or more relatives are already
present in the cache in the Opt 2:1 model. The OCT
counters are initialized to weak superloads.

The LSD is comparable to Johnson’s SLDT [8] and
Kumar’s AST [9]. The LSD operates at a much finer
grain than the SLDT. It restricts its prediction to a binary
decision, unlike the AST which predicts a mask of 16
‘‘lines’’ to be loaded in a ‘‘superline’’. The LSD also uses
four states, R,X,C,H, to record cache behavior, while the
SLDT and AST effectively only use R and X.

As with any online prediction scheme, there are many
design parameters for the prediction lookup table (OCT)
and knowledge mechanism (LSD). Just a few examples
are, the initial state of the OCT, the size of the OCT
counter, which combination of bits (PC, EA) should index
the OCT, which states should the LSD track, which pat-
terns should modify the OCT. Our initial choices for these
parameters, as described above, are based largely on com-
mon practice in similar settings such as branch prediction.
We hope in the future to tune these parameters, using the
optimal offline results as a guide.

 §5.4 Results of the Online Algorithm

Our online prediction scheme can be quite effective in
reducing cache misses when compared to the base case.
Typically the performance of the LSP varies between
those of the Opt 2:1 and the Opt 3:1 algorithms.

For example, the online algorithm with a line size of
16 bytes in a direct mapped cache of 16K yields a de-
crease of a cache miss rate between 6% and 30% (average
17%) with an increase in byte reads from -9% to 18% (av-
erage 9%) when compared to the base case with a 32-byte
line. Recall that on average, the application of the Opt 2:1
algorithm resulted in an average 19% decrease in miss
rate with a 43% decrease in bytes read. Therefore, the
online algorithm can catch 90% of the margin of improve-
ment in decreasing the miss rate but suffers from extra
bandwidth requirements.

The miss rate is shown in Figure 5 where it can be
seen that the LSP (fourth from the left) is close to the Opt
2:1 (second from the left for each application) for the
same line size. In the case of ijpeg, LSP actually outper-
forms Opt 2:1 in miss rate for line sizes 16 and 32 bytes.
Note, this is not a contradiction, as Opt 2:1 is a hybrid
between optimizing the cache hit ratio (Opt 1:1) and not
increasing the number of bytes read (Opt 3:1).

As noted earlier, applications can show large varia-
tions in miss rate across different line sizes. The LSP ex-
hibits a similar but less pronounced variation in perfor-
mance across different line sizes.

The LSP rarely performs worse than always loading or
always superloading. Exceptions occur when the LSP
uses large line sizes on applications that prefer small line
sizes. One example is the application go, where the base
case beats the LSP for a line size of 32 bytes.

compress gcc go ijpeg li m88ksim perl vortex average

Base 32, Opt 2:1 16, Online 8, 16, 32

0%

1%

2%

3%

4%

5%

6%

7%

M
is

s
R

at
e

Online
Miss Rate

Superload

Load

Figure 5: Miss rates for the eight benchmark applications. The LSP algorithm is
simulated at line sizes of 8, 16, and 32 bytes. For comparison, the base case
(no superloads) and the optimal algorithm Opt 2:1 are simulated at a line size of
16 bytes, the best line size for the optimal algorithms. The cache size is 16K.

Another observation is that the LSP does more super-
loads than the optimal algorithms. This translates into a
significant increase in the number of bytes transferred as
shown in Figure 6. However, the largest factor for the
number of bytes read still remains the line size. The LSP
at an 8-byte line size is roughly equivalent in bytes read to
the Opt 2:1 algorithm at a 16-byte line size.

compress gcc go ijpeg li m88ksim perl vortex average

Base 32, Opt 2:1 16, Online 8, 16, 32

0%

50%

100%

150%

200%

B
yt

es
 R

ea
d

Online
Bytes Read

Superload

Load

Figure 6: Bytes read for the eight benchmark applications. Figure’s parameters
are the same as Figure 5.

The number of bytes transferred under the LSP at a 16-
byte line size is comparable to the base case, a 32-byte
line size. This implies that the additional bandwidth re-
quirements of LSP could easily be negated if its inclusion
allows the cache to be designed with smaller line sizes.
The increase in superloads also suggests that the LSP’s
current parameters may be too aggressive.

Even without significant tuning, the LSP shows prom-
ise in being able to obtain the benefits of superloading.

535

The algorithm for the LSP clearly demonstrates that it is
possible to create a knowledge mechanism for determin-
ing line size that will provide good feedback to an online
predictor.

§6 Profiling

Our statistical analysis of the optimal sequences shows
that there is some positive correlation between the load
type and its PC (Program Counter). While this correlation
isn’t as strong as between the load type and the EA (Ef-
fective Address), trying to identify load type by the PC
does allow us to take advantage of static techniques such
as profiling.

The inherent advantage of profiling is that little hard-
ware support is required. All that is needed is the ability
of the hardware to perform loads or superloads and an
extra bit in the load instruction, or an extra opcode, to in-
dicate the appropriate action. The disadvantage of all pro-
filing techniques is performing offline analysis. In our
case this means running the offline optimal algorithm on a
trace of references.

We’ve simulated profiling by grouping unique PC’s
together in a hash table and keeping counters for the num-
ber of times each PC performed a load or a superload. We
then run the program through a modified cache simulator,
which looks up the PC of each miss in the hash table and
decides whether to perform a load or a superload. Our
experimental results show that a threshold of 60% for su-
perloading is best. That is to say, a superload instruction
will be generated when less than 60% of the misses for a
given PC were loads in the optimal algorithm.

For our experiments we profiled the optimal 1:1 se-
quence of loads and superloads. Higher cost model ratios
actually have more accurate and consistent profiling in-
formation, but they produce fewer superloads and hence
have less impact overall. All results presented in this and
the next section are for the full simulations of the bench-
marks as described in Section 3.

§6.1 Results of Profiling

We choose the 16-byte line size for the online and pro-
filed simulations, as this is the best overall line size for
superloading. As a comparison we use two base cases, the
base case from the previous sections, all loads at 32 bytes,
which has the best overall cache hit ratio, and loads at a
line size of 16 bytes, which provides a reference by which
to examine the increase in the number of bytes read.

Figure 7 shows the miss ratios for our experiments. In
most cases, the online algorithm performs slightly better
than profiling. With the exception of m88ksim for the 16-
byte line, the online and profiling do better than either
base line size. On average, the online algorithm reduces
the miss rate by 10%, whereas profiling reduces it by 7%
(compared to the 32-byte line base).

compress gcc go ijpeg li m88ksim perl vortex average

Base 16, Online, Profile 1:1, Base 32

0%

3%

5%

8%

10%

13%

15%

M
is

s
R

at
e

Profiling
Miss Rate

Superloads

Loads

Figure 7: Miss rates for Base 16, Online, Profiling 1:1 and Base 32. Base 16 is
all loads with a 16-byte line, Online is the online algorithm described in Section 5
with a 16-byte line, Profiling 1:1 is the profiled optimal 1:1 sequence with a 16-
byte line and Base 32 is all loads with a 32-byte line.

In Figure 8, we examine the number of bytes read by
each scheme. With few exceptions, the online algorithm
is the most aggressive and reads in the most bytes. As to
be expected, there is quite a large difference in the num-
ber of bytes read between the two base cache-line sizes.
Profiling makes more efficient use of its superloads in
many cases and reads 22% fewer bytes than the 32-byte
line base case.

compress gcc go ijpeg li m88ksim perl vortex average

Base 16, Online, Profile 1:1, Base 32

0%

100%

200%

300%

B
yt

es
 R

ea
d

Profiling
Bytes Read

Superloads

Loads

Figure 8: Bytes read for profiling. Each benchmark is normalized to the Base 16
case. Parameters are the same as Figure 7.

Overall, the results for profiling are encouraging. It
provides most of the cache hit ratio of the online algo-
rithm, while being reasonable in terms of bytes read.
Compared to the 32-byte line base, there is a reduction in
both cache hit ratio and bytes read.

§7 Prefetching

Dynamic cache lines are a method for localized
prefetching. Thus comparison to other prefetching
schemes is warranted. ‘‘Next-line’’ prefetching [14] is a

536

very simple yet effective scheme. With next-line
prefetching, on a cache miss to line l, line l+1, if not al-
ready present in the cache, will be prefetched.

We examined next-line prefetching added to the base
cache mechanism for both 16 and 32-byte lines. On aver-
age prefetching improves the miss rate 5% and 1% re-
spectively. Using a 16-byte line, profiling and the online
mechanism show a 19% and 12% respective improvement
in the average miss rate.

 Increases in the number of bytes read is more dra-
matic. On average, basic next-line prefetching presents
increases of 64% and 70% for 16-byte lines and 32-byte
lines, whereas online and profiling superloading result in
an average increase of 44% and 39% and respectively.

compress gcc go ijpeg li m88ksim perl vortex average

Prefetch 16, Prefetch 32, Online, Online+Prefetch, Profile 1:1

0%

2%

4%

6%

8%

10%

12%

14%

M
is

s
R

at
e

Prefetching
Miss Rate

Superloads

Loads

Figure 9: Miss rates for next-line prefetching schemes. Prefetch 16 and
Prefetch 32 are the 16 and 32-byte base case with next-line prefetching. The
superloading variations use a 16-byte line.

Next-line prefetching can also be combined with dy-
namic cache line sizes. We experimented with several
approaches, but found the most effective was on a cache
miss that was going to be superloaded, if the first line of
the next superline was not already in the cache and that
line would be superloaded, prefetch the next superline
into the cache.

 The combination of the online mechanism and next-
line prefetching shows a 21% improvement in the cache
miss rate, a 2% improvement over the online mechanism.
In terms of the number of bytes read, the combination re-
sults in an average increase of 51% over the base case
and 7% over the online mechanism.

The addition of next-line prefetching to both the base
case and the online mechanism provides a comparable
decrease miss rate. However, the online mechanism al-
lows the prefetching to be more selective resulting in a
relatively small increase in the number of bytes read.

 Both in terms of miss rate and bytes read, dynamic
cache line schemes have the potential to out perform the
simple though unintelligent next-line prefetching. There is
also merit for using these two techniques in conjunction.

compress gcc go ijpeg li m88ksim perl vortex average

Prefetch 16, Prefetch 32, Online, Online+Prefetch, Profile 1:1

0%

100%

200%

300%

400%

500%

B
yt

es
 R

ea
d

Prefetching
Bytes Read

Prefetched

Superloads

Loads

:Figure 10: Bytes read for prefetching. This figure’s parameters are the same as
Figure 9.

§8 Conclusions and Future Work

We have introduced offline algorithms for determining
the optimal sequence of loads and superloads for a given
reference stream for direct-mapped caches under various
cost models. We have presented the experimental results
of these algorithms applied over a range of cache param-
eters for a set of traces based on the Spec95 integer
benchmarks. Each optimal algorithm incorporates a spe-
cific trade-off between cache miss rate and the number of
bytes read into the cache. In many cases, optimal super-
loading can noticeably reduce miss rate when compared
to the base case without appreciably increasing band-
width. In other cases, superloading can achieve a compa-
rable miss rate with smaller line sizes, translating into a
substantial reduction in bandwidth.

We have also presented an online algorithm for deter-
mining the sequence of loads and superloads. Experimen-
tal results for this algorithm, compared to the optimal al-
gorithm, indicate that comparable improvements in cache
miss rate can be achieved, although there is a noticeable
increase in the number of bytes read in some cases. This
suggests that further refinement, using the knowledge
gained from analyzing optimal sequences, could improve
the performance of the online algorithm.

We have examined the effectiveness of static analysis
of the optimal traces (profiling). With our application
suite, profiling seems to be fairly effective, nearly achiev-
ing the same miss rate reduction as our online prediction
algorithm, while being more efficient in terms of the num-
ber of bytes transferred.

Finally, we compared superloading and next-line
prefetching. Profiling and the online mechanism for su-
perloading perform better than next-line prefetching in
miss rate and significantly better in the number of bytes
read. Furthermore, it appears that superloading and next-
line prefetching can be successfully combined.

537

The algorithms that we have currently developed will
allow us to characterize other features of optimal super-
loading. In future work, we expect to analyze other
line/superline size ratios, loading arbitrary patterns of
lines (cf. [15] and [9]) within a superline, and similar
variations. The development of corresponding algorithms
for set-associative caches is another interesting area for
future research.

The results of these algorithms can be used to further
develop software and hardware techniques that exploit
spatial locality. Combining profiling and online prediction
is one promising idea. And perhaps most significant, opti-
mal results allow the construction of a framework for on-
line methods which can lead to the determination of better
parameters for lookup tables and knowledge mechanisms.

§9 Bibliography
[1] Eric Anderson, Peter Van Vleet, Lindsay Brown, Jean-

Loup Baer and Anna Karlin, ‘‘On the Performance Poten-
tial of Dynamic Cache Lines’’, Technical Report UW-
CSE-99-02-01, University of Washington, February,
1999.

[2] Laszlo Belady, "A Study of Replacement Algorithms for
a Virtual-Storage Computer," in IBM Systems Journal,
volume 5, number 2, pages 78-101, 1966.

[3] David Burger and Todd Austin, "Evaluating Future Mi-
croprocessors: the SimpleScalar Tool Set," Technical
Report #1342, University of Wisconsin, June 1997.

[4] Charles Conti, ‘‘537r Buffer Storage’’, Computer Group
News, 2:9-13, 1969.

[5] Patrick Crowley and Jean-Loup Baer ‘‘On the Use of
Trace Sampling for Architectural Studies of Desktop Ap-
plications’’, Proceedings of the first Workshop on Work-
load Characterization (WWC ’98), November 1998.

[6] Antonio González, Carlos Aliagas, and Mateo Valero, "A
Data Cache with Multiple Caching Strategies Tuned to
Different Types of Locality," in Proceedings of ICS ’95,
July 1995.

[7] Teresa Johnson and Wen-mei Hwu, "Run-time Adaptive
Cache Hierarchy Management via Reference Analysis,"
in Proceedings of the 24th International Symposium on
Computer Architecture, pages 315-326, June 1997.

[8] Teresa Johnson, Matthew Merten and Wen-mei Hwu,
"Run-time Spatial Locality Detection and Optimization,"
in Proceedings of the 30th International Symposium on
Microarchitecture, pages 57-64, 1997.

[9] Sanjeev Kumar and Chistopher Wilkerson, "Exploting
Spatial Locality in Data Caches using Spatial Footprints,"
in Proceedings of the 25th International Symposium on
Computer Architecture, pages 357-368, 1998.

[10] Madusudhan Talluri and Mark Hill, ‘‘Surpassing the TLB
Performance of Superpages with less Operating System
Support’’, in Proceedings of ASPLOS-VI, pages 171-182,
1994.

[11] Jude Rivers, Edward Tam, Gary Tyson and Edward
Davidson, "Utilizing Reuse Information in Data Cache
Management," in Proceedings of the 12th ACM Interna-
tional Conference on Supercomputing, pages 449-456,
July 1998.

[12] Ted Romer, Wayne Ohlrich, Anna Karlin and Brian Ber-
shad, ‘‘Reducing TLB and Memory Overhead using On-
line Superpage Promotion’’, in Proceedings of the 22nd
International Conference on Computer Architecture,
pages 176-187, 1995.

[13] André Seznec, "Decoupled Sectored Caches: Conciliating
Low Tag Implementation Cost and Low Miss Ratio," in
Proceedings of the 21st International Symposium on
Computer Architecture, pages 384-393, 1994.

[14] Alan J. Smith, "Cache Memories," Computing Surveys,
vol 14, pages 473-530, September 1982.

[15] Olivier Temam, "Investigating Optimal Local Memory
Performance," in Proceedings of the 8th International
Conference on Architectural Support for Programming
Languages and Operating Systems, October 1998.

[16] Gary Tyson, Michael Farrens, J. Matthews, and A. R.
Plezkun, "A Modified Approach to Data Cache Manage-
ment," in Proceedings of the 28th Annual International
Symposium on Microarchitectures, pages 93-103, De-
cember 1995.

