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Abstract 
 

Encryption algorithms commonly use table lookups to 
perform substitution, which is a confusion primitive. The 
use of table lookups in this way is especially common in 
the more recent encryption algorithms, such as the AES 
finalists like MARS and Twofish, and the AES winner, 
Rijndael. Workload characterization studies indicate that 
these algorithms spend a significant fraction of their 
execution cycles on performing these table lookups, more 
specifically on effective address calculations. 

This study considers the five AES finalists (MARS, 
RC6, Rijndael, Serpent and Twofish) and studies the 
effect of different addressing modes that can be used to 
calculate the effective addresses during the table lookups. 
We report our findings for four different addressing 
modes and on varying width EPIC processors. The results 
indicate that speedups exceeding 2x can be obtained 
when fast addressing modes are used. 
 
1. Introduction 
 

Diffusion and confusion are two cryptographic 
functions that are necessary to obscure the plaintext 
during encryption. Diffusion achieves this through mixing 
and reordering of data, such as in shifts or rotates. 
Confusion, on the other hand, relies on substitution, which 
means replacement of chunks of data by some other data, 
such as in a table lookup. 

Table lookups in encryption algorithms have been used 
in this way for a long time. DES, for instance, is a very 
widely used algorithm whose security depends exclusively 
on table lookups. In DES, these tables are known as the S-
boxes. More recent algorithms also rely heavily on table 
lookups for security. Of the five algorithms that were the 
finalists in the Advanced Encryption Standard (AES) 
effort (MARS [1], RC6 [2], Rijndael [3], Serpent [4], and 
Twofish [5]), all except RC6 used table lookups. 

For some of these algorithms, table lookups are used 
for optimization purposes – beyond achieving confusion. 
Rijndael, for instance, is the AES winner and has a 
structure that involves various operations such as rotations 
and matrix multiplication following a series of table 
lookups. However, the algorithms is designed in such a 
way that the operations following the table lookups can be 

migrated into the table lookups by pre-modifying these 
tables, so that finally, the entire algorithm becomes only a 
series of table lookups. Similar optimizations are also 
possible for Twofish. For these algorithms, performing the 
table lookups efficiently has a direct and significant 
impact on the performance, since the algorithms are 
indeed a sequence of table lookups. 
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Figure 1. Distribution of execution cycles 
between table lookups and all other operations. 
 
2. Table lookups in AES finalists 
 

Problems in the encryption algorithms with many table 
lookups are twofold. 

First, each table lookup involves operations other than 
loading of the data from the memory. Typically, this 
involves the effective address calculation. The index (that 
is the number specifying which entry of the table will be 
accessed) needs to be scaled and then added to the start 
address of the table (the base address) to get the effective 
address. The scaling is necessary whenever each entry of 
the table holds data that is larger than a single byte. This is 
quite often the case, since the most commonly used tables 
have 256 entries and each entry is 4 bytes. The addition of 
the scaled index value to the base address is usually a part 
of the load instruction. This is the indexed addressing 
mode. The scaling, however, usually requires a separate 
instruction (unless the scaling is also a part of the load 



instruction, in which case we have the scaled-indexed 
addressing mode). 

Secondly, the index is not always readily available to 
begin with. Consider the optimized implementation of 
either Rijndael or Twofish. These algorithms use tables 
that have 256 entries and each entry is 4 bytes. The index, 
therefore, is 8 bits long (28 = 256 entries). However, the 8-
bit index can be in any one of the four bytes of a 32-bit 
integer register. This means, to obtain and isolate the 
index, additional instructions are required. For instance, to 
obtain the 8-bit index which is in the third byte of a 32-bit 
integer register, the register first needs to be shifted to the 
right by 24 bits, and then anded with 0xFF to isolate the 
index. This requires at least two additional instructions, 
unless a special instruction such as extract is 
available. 
 
2. Table lookups in AES finalists 
 

This section will focus on how different addressing 
modes can be used to speed up the most common table 
lookups in the encryption algorithms. As an example, 
consider a table lookup from Rijndael or Twofish. These 
algorithms use tables with 256 entries, and each entry is 4 
bytes. The indices into these tables are 8 bits (bytes), and 
these bytes are extracted from any one of the four byte 
locations in a 32-bit integer register. Assume that we 
perform a lookup using the third byte of the register Ra as 
the index, and that the table base address is in Rb. The 
result will be written to Rd. 
 
3.1. Indexed addressing 
 

Performing this table lookup using the indexed 
addressing mode will require four instructions. 

 
1. shr Rc,Ra,24  # shift right 
2. and Rc,Rc,0xFF  # bitwise and 
3. shl Rc,Rc,2  # shift left 
4. load Rd,Rc(Rb)  # load indexed 

 
The first instruction performs a right shift to right-align 

the index bits and the second instruction is necessary to 
clear the upper order bits. The third instruction scales the 
index, and the fourth instruction performs the load. The 
indexed addressing mode calculates the effective address 
by adding the scaled index to the base address during the 
load operation. 

A simple optimization, which is often missed by 
compilers is possible as follows. 

 
1. shr Rc,Ra,22 
2. and Rc,Rc,0x3FC 
3. load Rd,Rc(Rb) 

 

3.2. Scaled-indexed addressing 
 

This addressing mode is found in some existing 
Instruction Set Architectures (ISAs) such as the PA-RISC 
2.0 [6]. The index scaling is also migrated into the load 
instruction, and this permits a single instruction saving per 
table lookup. 

 
1. shr Rc,Ra,24 
2. and Rc,Rc,0xFF 
3. load.4 Rd,Rc(Rb) 

 
The ‘4’ after the load indicates that a scaling for four 

bytes (that is two bits) will be applied to the index. 
 

3.3. Scaled-indexed addressing + extract 
 
An extract instruction picks an arbitrary 

continuous bit-field from the source register and writes it 
right-aligned to the target register, while clearing the 
remaining bits of the target register. Extract 
instructions are also found existing microprocessor ISAs, 
such as in IA-64 [7]. Using the extract instruction 
together with the scaled-indexed addressing mode permits 
a table lookup to be done in two instructions. 

 
1. extract Rc,Ra,3b 
2. load.4 Rd,Rc(Rb) 

 
The ‘3b’ in the extract instruction indicates that the 

third byte of Ra is extracted into Rc. 
 

3.4. Load.extract.scale (load.ex.sc) 
 
The final case we consider is a hypothetical instruction 

which combines the index extraction, index scaling and 
the memory access into one. This will be used to show the 
potential speedups if it was possible to eliminate all the 
overhead of the effective address calculations. This 
instruction will be called the load.ex.sc. 

 
1. load.3b.4 Rd,Ra(Rb) 

 
The ‘3b’ in the ‘ex’ field indicates that the third byte 

of Ra will be used as the index, and the ‘4’ in the ‘sc’ 
field indicates that the index will be scaled by 4. The use 
of the load.ex.sc in this way completely eliminates 
any overhead associated with table lookups (Figure 2). 

A similar, but more restrictive approach has previously 
been described in [8]. In that study, it was noted that if the 
tables were aligned to 1kB memory blocks, the effective 
address can very simply be calculated by a concatenation 
of the shifted index bits and the base address. 
Implementation of load.ex.sc is more complicated, 
however it is applicable to table sizes other than 1kB. 
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Figure 2. load.3b.4 Rd,Ra(Rb) 
 

4. Simulations 
 

We use the simulator of the IMPACT compiler [9] to 
evaluate the effect of different addressing modes on the 
encryption performance. Optimized C implementations of 
the encryption algorithms are used as the source. Findings 
for RC6 and Serpent are not reported. RC6 is the only 
AES finalist that did not use table lookups. Serpent, on the 
other hand, includes table lookups, however in its 
optimized implementations, these lookups are realized as 
a series of logical operations (ands and ors). 

We simulate each of the algorithms using the four 
addressing modes explained previously, and perform an 
encryption of one hundred 128-bit blocks of data. For 
each of the addressing modes, we simulate the algorithms 
on 1,2,4, and 8-wide EPIC (Explicitly Parallel Instruction 
Computer) processors. To fairly compare the algorithms 
with different degrees of dependence on table lookups, the 
number of memory ports is also varied from one to the 
issue width, in multiples of two. We determine how the 
performance is affected by the following variables: a) the 
addressing mode in the architecture, b) the issue width of 
the processor, and c) the number of memory ports. 
 
5. Conclusions 
 

Table 1 is a partial summary of our results for one and 
two-wide processors with one memory port (also see 
Figure 3). All algorithms show speedups ranging from 
20% (MARS) to over 200% (Rijndael). These figures 
verify MARS’s relatively less use of table lookups, and 
Rijndael’s heavy dependence on them. Twofish is in 
between with a speedup of 49% in a two-wide processor.  

Table 2 summarizes the results for an eight-wide 
processor with one and two memory ports. Figure 4 shows 
the same data for up to eight memory ports. These results 
are also congruent with the previous and show that the 

performance of the AES winner, Rijndael, is very 
dependent on both the number of memory ports as well as 
the addressing mode used [10]. Other algorithms show a 
saturation beyond two memory ports, after which the 
addressing mode becomes more important than the 
number of memory ports. Best speedup in this case is for 
Rinjdael, with 41% for two memory ports. 

As the data for the load.ex.sc indicates, the 
benefits of eliminating the overhead of effective address 
calculations are significant. Load.ex.sc achieves this 
by migrating the effective address calculations into the 
load operation. Since this requires selecting and shifting 
the index bits followed by the addition of the base 
address, load.ex.sc is likely to take two cycles in a 
high-performance processor with a high clock rate. In 
such a case, using this instruction would be similar to 
using scaled-indexed addressing and the extract 
instruction; hence the latter solution might be preferred. 
For a crypto-processor, however, the cycle times can be 
kept longer, and load.ex.sc can be implemented as a 
single-cycle instruction. This would allow both a low-
power implementation due to the longer clock cycles, as 
well as significant speedups due to the elimination of the 
time overhead of effective address calculations. 
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Table 1. Speedups for varying issue widths, w.r.t. 
indexed addressing. (a) Scaled-indexed (b) 
Scaled-indexed + extract (c) load.ex.sc. 

Algorithm Arch. (a) (b) (c) 
MARS 1G_1M1 1.09 1.16 1.21 

 2G_1M 1.08 1.15 1.21 
Rijndael 1G_1M 1.23 1.57 2.00 

 2G_1M 1.26 1.63 2.05 
Twofish 1G_1M 1.16 1.39 1.62 

 2G_1M 1.17 1.39 1.49 
 
Table 2. Speedups for one and two memory ports 
w.r.t. indexed addressing. (a) Scaled-indexed (b) 
Scaled-indexed + extract (c) load.ex.sc. 

Algorithm Arch. (a) (b) (c) 
MARS 8G_1M 1.05 1.10 1.10 

 8G_2M 1.04 1.09 1.09 
Rijndael 8G_1M 1.08 1.08 1.10 

 8G_2M 1.19 1.37 1.41 
Twofish 8G_1M 1.06 1.14 1.14 

 8G_2M 1.07 1.14 1.21 
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Figure 3. Execution cycles in one and two-wide 
processors with one memory port. (a) Indexed 
(b) Scaled-indexed (c) Scaled-indexed + extract 
(d) load.ex.sc. 
                                                 
1 1G_1M indicates a one-wide (1G = 1 General ALU) processor with 
one memory port (1M = 1 Memory Port). Likewise, 8G_2M is an eight-
wide processor with two memory ports. 
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Figure 4. Execution cycles for one, two, four and 
eight memory ports in an eight-wide processor. 


