
A. Murat Fiskiran and Ruby B. Lee, "Performance Impact of Addressing Modes on Encryption Algorithms," Proceedings of the International
Conference on Computer Design (ICCD 2001), pp. 542-545, September 2001.

Performance Impact of Addressing Modes on Encryption Algorithms

A. Murat Fiskiran and Ruby B. Lee
Department of Electrical Engineering

Princeton University
{fiskiran,rblee}@princeton.edu

Abstract

Encryption algorithms commonly use table lookups to
perform substitution, which is a confusion primitive. The
use of table lookups in this way is especially common in
the more recent encryption algorithms, such as the AES
finalists like MARS and Twofish, and the AES winner,
Rijndael. Workload characterization studies indicate that
these algorithms spend a significant fraction of their
execution cycles on performing these table lookups, more
specifically on effective address calculations.

This study considers the five AES finalists (MARS,
RC6, Rijndael, Serpent and Twofish) and studies the
effect of different addressing modes that can be used to
calculate the effective addresses during the table lookups.
We report our findings for four different addressing
modes and on varying width EPIC processors. The results
indicate that speedups exceeding 2x can be obtained
when fast addressing modes are used.

1. Introduction

Diffusion and confusion are two cryptographic
functions that are necessary to obscure the plaintext
during encryption. Diffusion achieves this through mixing
and reordering of data, such as in shifts or rotates.
Confusion, on the other hand, relies on substitution, which
means replacement of chunks of data by some other data,
such as in a table lookup.

Table lookups in encryption algorithms have been used
in this way for a long time. DES, for instance, is a very
widely used algorithm whose security depends exclusively
on table lookups. In DES, these tables are known as the S-
boxes. More recent algorithms also rely heavily on table
lookups for security. Of the five algorithms that were the
finalists in the Advanced Encryption Standard (AES)
effort (MARS [1], RC6 [2], Rijndael [3], Serpent [4], and
Twofish [5]), all except RC6 used table lookups.

For some of these algorithms, table lookups are used
for optimization purposes – beyond achieving confusion.
Rijndael, for instance, is the AES winner and has a
structure that involves various operations such as rotations
and matrix multiplication following a series of table
lookups. However, the algorithms is designed in such a
way that the operations following the table lookups can be

migrated into the table lookups by pre-modifying these
tables, so that finally, the entire algorithm becomes only a
series of table lookups. Similar optimizations are also
possible for Twofish. For these algorithms, performing the
table lookups efficiently has a direct and significant
impact on the performance, since the algorithms are
indeed a sequence of table lookups.

23

72

30

77

41

30

0

20

40

60

80

100

120

MARS Rijndael Twofish

E
xe

cu
tio

n
tim

e
on

 a
 s

in
gl

e
is

su
e

m
ac

hi
ne

(n

or
m

al
iz

ed
 to

 M
A

R
S

 =
 1

00
)

Table lookups Other operations

Figure 1. Distribution of execution cycles
between table lookups and all other operations.

2. Table lookups in AES finalists

Problems in the encryption algorithms with many table
lookups are twofold.

First, each table lookup involves operations other than
loading of the data from the memory. Typically, this
involves the effective address calculation. The index (that
is the number specifying which entry of the table will be
accessed) needs to be scaled and then added to the start
address of the table (the base address) to get the effective
address. The scaling is necessary whenever each entry of
the table holds data that is larger than a single byte. This is
quite often the case, since the most commonly used tables
have 256 entries and each entry is 4 bytes. The addition of
the scaled index value to the base address is usually a part
of the load instruction. This is the indexed addressing
mode. The scaling, however, usually requires a separate
instruction (unless the scaling is also a part of the load

instruction, in which case we have the scaled-indexed
addressing mode).

Secondly, the index is not always readily available to
begin with. Consider the optimized implementation of
either Rijndael or Twofish. These algorithms use tables
that have 256 entries and each entry is 4 bytes. The index,
therefore, is 8 bits long (28 = 256 entries). However, the 8-
bit index can be in any one of the four bytes of a 32-bit
integer register. This means, to obtain and isolate the
index, additional instructions are required. For instance, to
obtain the 8-bit index which is in the third byte of a 32-bit
integer register, the register first needs to be shifted to the
right by 24 bits, and then anded with 0xFF to isolate the
index. This requires at least two additional instructions,
unless a special instruction such as extract is
available.

2. Table lookups in AES finalists

This section will focus on how different addressing
modes can be used to speed up the most common table
lookups in the encryption algorithms. As an example,
consider a table lookup from Rijndael or Twofish. These
algorithms use tables with 256 entries, and each entry is 4
bytes. The indices into these tables are 8 bits (bytes), and
these bytes are extracted from any one of the four byte
locations in a 32-bit integer register. Assume that we
perform a lookup using the third byte of the register Ra as
the index, and that the table base address is in Rb. The
result will be written to Rd.

3.1. Indexed addressing

Performing this table lookup using the indexed
addressing mode will require four instructions.

1. shr Rc,Ra,24 # shift right
2. and Rc,Rc,0xFF # bitwise and
3. shl Rc,Rc,2 # shift left
4. load Rd,Rc(Rb) # load indexed

The first instruction performs a right shift to right-align

the index bits and the second instruction is necessary to
clear the upper order bits. The third instruction scales the
index, and the fourth instruction performs the load. The
indexed addressing mode calculates the effective address
by adding the scaled index to the base address during the
load operation.

A simple optimization, which is often missed by
compilers is possible as follows.

1. shr Rc,Ra,22
2. and Rc,Rc,0x3FC
3. load Rd,Rc(Rb)

3.2. Scaled-indexed addressing

This addressing mode is found in some existing
Instruction Set Architectures (ISAs) such as the PA-RISC
2.0 [6]. The index scaling is also migrated into the load
instruction, and this permits a single instruction saving per
table lookup.

1. shr Rc,Ra,24
2. and Rc,Rc,0xFF
3. load.4 Rd,Rc(Rb)

The ‘4’ after the load indicates that a scaling for four

bytes (that is two bits) will be applied to the index.

3.3. Scaled-indexed addressing + extract

An extract instruction picks an arbitrary

continuous bit-field from the source register and writes it
right-aligned to the target register, while clearing the
remaining bits of the target register. Extract
instructions are also found existing microprocessor ISAs,
such as in IA-64 [7]. Using the extract instruction
together with the scaled-indexed addressing mode permits
a table lookup to be done in two instructions.

1. extract Rc,Ra,3b
2. load.4 Rd,Rc(Rb)

The ‘3b’ in the extract instruction indicates that the

third byte of Ra is extracted into Rc.

3.4. Load.extract.scale (load.ex.sc)

The final case we consider is a hypothetical instruction

which combines the index extraction, index scaling and
the memory access into one. This will be used to show the
potential speedups if it was possible to eliminate all the
overhead of the effective address calculations. This
instruction will be called the load.ex.sc.

1. load.3b.4 Rd,Ra(Rb)

The ‘3b’ in the ‘ex’ field indicates that the third byte

of Ra will be used as the index, and the ‘4’ in the ‘sc’
field indicates that the index will be scaled by 4. The use
of the load.ex.sc in this way completely eliminates
any overhead associated with table lookups (Figure 2).

A similar, but more restrictive approach has previously
been described in [8]. In that study, it was noted that if the
tables were aligned to 1kB memory blocks, the effective
address can very simply be calculated by a concatenation
of the shifted index bits and the base address.
Implementation of load.ex.sc is more complicated,
however it is applicable to table sizes other than 1kB.

1 0 0 0 1 0 1 1... ...

1 0 0 0 1 0 1 1 0 0

Base Address

Effective
Address

Rb:

Ra:

3rd byte of Ra

Figure 2. load.3b.4 Rd,Ra(Rb)

4. Simulations

We use the simulator of the IMPACT compiler [9] to
evaluate the effect of different addressing modes on the
encryption performance. Optimized C implementations of
the encryption algorithms are used as the source. Findings
for RC6 and Serpent are not reported. RC6 is the only
AES finalist that did not use table lookups. Serpent, on the
other hand, includes table lookups, however in its
optimized implementations, these lookups are realized as
a series of logical operations (ands and ors).

We simulate each of the algorithms using the four
addressing modes explained previously, and perform an
encryption of one hundred 128-bit blocks of data. For
each of the addressing modes, we simulate the algorithms
on 1,2,4, and 8-wide EPIC (Explicitly Parallel Instruction
Computer) processors. To fairly compare the algorithms
with different degrees of dependence on table lookups, the
number of memory ports is also varied from one to the
issue width, in multiples of two. We determine how the
performance is affected by the following variables: a) the
addressing mode in the architecture, b) the issue width of
the processor, and c) the number of memory ports.

5. Conclusions

Table 1 is a partial summary of our results for one and
two-wide processors with one memory port (also see
Figure 3). All algorithms show speedups ranging from
20% (MARS) to over 200% (Rijndael). These figures
verify MARS’s relatively less use of table lookups, and
Rijndael’s heavy dependence on them. Twofish is in
between with a speedup of 49% in a two-wide processor.

Table 2 summarizes the results for an eight-wide
processor with one and two memory ports. Figure 4 shows
the same data for up to eight memory ports. These results
are also congruent with the previous and show that the

performance of the AES winner, Rijndael, is very
dependent on both the number of memory ports as well as
the addressing mode used [10]. Other algorithms show a
saturation beyond two memory ports, after which the
addressing mode becomes more important than the
number of memory ports. Best speedup in this case is for
Rinjdael, with 41% for two memory ports.

As the data for the load.ex.sc indicates, the
benefits of eliminating the overhead of effective address
calculations are significant. Load.ex.sc achieves this
by migrating the effective address calculations into the
load operation. Since this requires selecting and shifting
the index bits followed by the addition of the base
address, load.ex.sc is likely to take two cycles in a
high-performance processor with a high clock rate. In
such a case, using this instruction would be similar to
using scaled-indexed addressing and the extract
instruction; hence the latter solution might be preferred.
For a crypto-processor, however, the cycle times can be
kept longer, and load.ex.sc can be implemented as a
single-cycle instruction. This would allow both a low-
power implementation due to the longer clock cycles, as
well as significant speedups due to the elimination of the
time overhead of effective address calculations.

6. References

[1] C. Burwick, D. Coppersmith, E. D’Avignon, et al, “MARS –
a candidate cipher for AES,” 1st AES Conference, Ventura, CA,
August 20-22, 1998.
[2] R.L. Rivest, M.J.B. Robshaw, R. Sidney and Y.L. Lin, “The
RC6 Block Cipher,” 1st AES Conference, Ventura, CA, August
20-22, 1998.
[3] J. Daemen and V. Rijmen, “AES Proposal: Rijndael,” 1st
AES Conference, Ventura, CA, August 20-22, 1998.
[4] R. Anderson, E. Biham and L. Knudsen, “Serpent: A
Proposal for the Advanced Encryption Standard,” 1st AES
Conference, Ventura, CA, August 20-22, 1998.
[5] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and
N. Ferguson, “Twofish: A 128-bit Block Cipher,” 1st AES
Conference, Ventura, CA, August 20-22, 1998.
[6] R.B. Lee, “Precision Architecture,” IEEE Computer, Vol.
22, No. 1, pp. 78-91, January 1989.
[7] Intel, “IA-64 Architecture Software Developer’s Manual,
Vol. 3: ISA Reference,” Rev. 1.1, ID 245319-002, July 2000.
[8] J. Burke, J. McDonald and T. Austin, “Architectural Support
for Fast Symmetric-Key Cryptography,” Proceedings of the 9th
International Conference on Architectural Support for
Programming Languages and Operating Systems, Cambridge,
MA, November 12-15, 2000.
[9] P.P. Chang, S.A. Mahlke, et al, “IMPACT: An Architectural
Framework for Multiple Instruction Issue Processors,”
Proceedings of the 18th International Symposium on Computer
Architecture, Toronto, Canada, pp. 266-275, May 28, 1991.
[10] J. Worley, B. Worley, T. Christian and C. Worley, “AES
Finalists on PA-RISC and IA-64: Implementations and
Performance,” Proceedings of the 3rd AES Conference, New
York, NY, pp. 57-74, April 12-14, 2000.

Table 1. Speedups for varying issue widths, w.r.t.
indexed addressing. (a) Scaled-indexed (b)
Scaled-indexed + extract (c) load.ex.sc.

Algorithm Arch. (a) (b) (c)
MARS 1G_1M1 1.09 1.16 1.21

 2G_1M 1.08 1.15 1.21
Rijndael 1G_1M 1.23 1.57 2.00

 2G_1M 1.26 1.63 2.05
Twofish 1G_1M 1.16 1.39 1.62

 2G_1M 1.17 1.39 1.49

Table 2. Speedups for one and two memory ports
w.r.t. indexed addressing. (a) Scaled-indexed (b)
Scaled-indexed + extract (c) load.ex.sc.

Algorithm Arch. (a) (b) (c)
MARS 8G_1M 1.05 1.10 1.10

 8G_2M 1.04 1.09 1.09
Rijndael 8G_1M 1.08 1.08 1.10

 8G_2M 1.19 1.37 1.41
Twofish 8G_1M 1.06 1.14 1.14

 8G_2M 1.07 1.14 1.21

0

200

400

600

800

1000

1200

1400

C
yc

le
s

1G
_1

M

0

100

200

300

400

500

600

700

800

(a) (b) (c) (d)

C
yc

le
s

2G
_1

M

MARS Rijndael Tw ofish

Figure 3. Execution cycles in one and two-wide
processors with one memory port. (a) Indexed
(b) Scaled-indexed (c) Scaled-indexed + extract
(d) load.ex.sc.

1 1G_1M indicates a one-wide (1G = 1 General ALU) processor with
one memory port (1M = 1 Memory Port). Likewise, 8G_2M is an eight-
wide processor with two memory ports.

MARS

350

360

370

380

390

400

410

420

430

1M 2M 4M 8M

E
xe

cu
tio

n
cy

cl
es

 p
er

 b
lo

ck

Indexed

Scaled-
indexed

Scaled-
indexed +
extract

load.ex.sc

Rijndael

0

50

100

150

200

250

300

350

400

1M 2M 4M 8M

E
xe

cu
tio

n
cy

cl
es

 p
er

 b
lo

ck
Indexed

Scaled-
indexed

Scaled-
indexed +
extract

load.ex.sc

Twofish

0

50

100

150

200

250

300

1M 2M 4M 8M

E
xe

cu
tio

n
cy

cl
es

 p
er

 b
lo

ck

Indexed

Scaled-
indexed

Scaled-
indexed +
extract

load.ex.sc

Figure 4. Execution cycles for one, two, four and
eight memory ports in an eight-wide processor.

