
UC Davis
IDAV Publications

Title
VLSI Design and Verification of the Imagine Processor

Permalink
https://escholarship.org/uc/item/5v63s542

Authors
Khailany, Brucek
Dally, William J.
Chang, Andrew
et al.

Publication Date
2002

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5v63s542
https://escholarship.org/uc/item/5v63s542#author
https://escholarship.org
http://www.cdlib.org/

Appears in the Proceedings of the 2002 International Conference on Computer Design

VLSI Design and Verification of the Imagine Processor

Brucek Khailany, William J. Dally, Andrew Chang, Ujval J. Kapasi, Jinyung Namkoong, Brian Towles
Computer Systems Laboratory

Stanford University
Stanford, CA 94305 USA

{khailany, billd, achang, ujk, namkoong, btowles}@cva.stanford.edu

Abstract

The Imagine stream processor is a 21 million transistor
chip implemented by a collaboration between Stanford Un-
versity and Texas Instruments in a 1.5V 0.15 µm process
with five layers of aluminum metal. The VLSI design, clock-
ing, and verification methodologies for the Imagine proces-
sor are presented. These methodologies enabled a small
team of graduate students with limited resources to design a
high-performance media processor in a modern ASIC flow.

1. Introduction

Imagine is a 21-million transistor chip implemented in
a 1.5V 0.15 µm CMOS Texas Instruments (TI) process
with five layers of metal.1 A block diagram of the Imag-
ine stream processor [6] is shown in Figure 1. The chip
was designed by a collaboration between Stanford Univer-
sity and the ASIC group at TI. Stanford designed the archi-
tecture, logic, and did the floorplanning and cell placement.
TI completed the layout and layout verification.

This paper highlights the two major challenges with
the Imagine VLSI design: building a relatively high-
performance datapath-style design in a standard ASIC de-
sign methodology and doing this with a small team of grad-
uate students. To accomplish this task, a tiled region design
methodology was used, an approach where timing-driven

1The fabrication process has a drawn gate length of 0.15 µm, an effec-
tive gate length of 0.13 µm, and has five layers of aluminum with metal
width and spacing rules typical to a 0.18 µm CMOS process [5] [9]. A
fan-out-of-4 inverter delay in the typical corner of this process is 73 ps.

The research described in this paper was supported by an Intel Founda-
tion Fellowship, the Defense Advanced Research Projects Agency under
ARPA order E254 and monitored by the Army Intelligence Center under
contract DABT63-96-C0037, by ARPA order L172 monitored by the De-
partment of the Air Force under contract F29601-00-2-0085, by Intel Cor-
poration, by Texas Instruments, and by the Interconnect Focus Center Pro-
gram for Gigascale Integration under DARPA GrantMDA972-99-1-0002.

Imagine Stream Processor

Microcontroller

ALU Cluster 7

ALU Cluster 6

ALU Cluster 5

ALU Cluster 4

ALU Cluster 3

ALU Cluster 2

ALU Cluster 1

ALU Cluster 0

Stream
Register File

Stream
Controller

Host
Processor

Streaming
Memory
System

S
D
R
A
M

Host
Interface

Network Interface

Other Imagine
Nodes, I/O

Figure 1: Imagine architecture block diagram

placement is avoided and the designer controls the place-
ment of small regions of standard cells. Results obtained
with this methodology and techniques used for functional
verification of the Imagine processor are presented.

2. Schedule

By summer 1998, the Imagine architecture specification
had been defined and a cycle-accurate C++ simulator for
Imagine was completed and running. In November 1998,
logic design had begun with one Stanford graduate student
writing the RTL for an ALU cluster. By December 2000,
the team working on Imagine implementation had grown to
five graduate students and the entire behavioral RTL model
for Imagine had been completed and functionally verified.

The Imagine floorplanning, placement, and layout was

Appears in the Proceedings of the 2002 International Conference on Computer Design

RTL Netlist

LibraryWire
Models

Place &
Route

Synthesis Layout

ExtractorR & CTiming
Analysis

Slow
Paths

Manual
Design

Figure 2: Standard ASIC Design Methodology

carried out by splitting the design into five unique subchips
and one top-level design. In November 2000, the first trial
placement of one of these subchips, an ALU cluster, was
completed by Stanford. By August 2001, the final place-
ment of all five subchips and the full-chip design was com-
plete and Stanford handed the design off to TI for layout
and layout verification. In total, between November 1998
when behavioral RTL was started and August 2001 when
the placed design was handed off to TI, Stanford expended
11 person-years of work on the logic design, floorplanning,
and placement of the Imagine processor. Imagine parts en-
tered a TI fab in February 2002. First silicon was received
in April, 2002 and functionality has been verified in the lab.

3. Design Methodology Background

Figure 2 shows a typical ASIC tool flow. RTL is written
in a hardware description language such as Verilog and is
mapped to a standard-cell library with a logic synthesis tool
such as Synopsys Design Compiler [10]. Wire lengths are
estimated from statistical models and timing violations are
fixed by resynthesizing with new timing constraints or by
restructuring the logic. After pre-placement timing conver-
gence, designs are then passed through an automatic place
and route tool, which usually uses a timing-driven place-
ment algorithm. After placement, wire lengths from the
placed design are extracted and back-annotated to a static
timing analysis (STA) tool. However, when actual wire
lengths do not match predicted pre-placement statistical-
based wire lengths, this can cause a timing problem and can
lead to costly design iterations, shown in the bottom feed-
back loop.

Recent work in industry and academia has addressed
many of the inefficiencies in ASIC flows. This work can be
grouped in two categories: improving timing convergence
and incorporating datapath-style design in ASIC flows.

Physically-aware synthesis approaches [11] attempt to
address the shortcomings of traditional flows by concur-
rently optimizing the logical and physical design, rather
than relying on statistically-based wire-length models.
While these approaches deliver modest improvement in tim-

ing performance and area, their principal benefit is to reduce
the number of iterations required for timing convergence.

Many researchers have demonstrated that identifying
and exploiting regularity yields significant improvements in
density and performance for datapath structures in compar-
ison to standard ASIC place and route results [2]. In par-
ticular, researchers have shown numerous automated tech-
niques for extracting datapath structures from synthesized
designs and doing datapath-style placement [7] [8] [3].
However, widespread adoption of these techniques into
industry-standard tools had not yet occurred by the time the
VLSI design for the Imagine processor was started.

4. Imagine Design Methodology

Given the small size of the Stanford design team and the
need to interface with the Texas Instruments flow for do-
ing layout, the design methodology for Imagine was con-
strained to use the basic tool flow shown in Figure 2. How-
ever, to take advantage of the datapath regularity in Imagine
and to expedite timing convergence, this tool flow was mod-
ified. Physical-aware synthesis techniques were not avail-
able while the VLSI design was carried out, so a tiled re-
gion design methodology was used. This methodology pro-
vides similar advantages in gate density to the techniques
presented in Section 3 for doing datapath-style design in a
standard cell technology.

In the ASIC methodology used on Imagine, the design
is partitioned into subchips. A flat placement is run for
each subchip and hierarchical placement is used only for
top-level assembly. Table 1 shows the number of instances,
area, and gate area in equivalent NAND2 gates for each of
the five subchips: the ALU cluster (CLUST), the micro-
controller (UC), the stream register file (SRF), the host in-
terface / stream controller / network interface (HISCNI),
and the memory bank (MBANK). Each of these sub-
chips corresponds directly to units in Figure 1 except the
MBANK. The streaming memory system is composed of 4
MBANK units: 1 per SDRAM channel. Also shown is the
top-level design, which includes glue logic between sub-
chips and I/O interfaces.

In addition to the gates listed in Table 1, some of the sub-
chips also contain SRAM’s instantiated from the TI ASIC
library. The UC contains storage for 2048 576-bit VLIW in-
structions [6] organized as 9 banks of single-ported, 1024-
word, 128-bit SRAM’s. The SRF contains 128 KBytes of
storage for stream data, organized as 8 banks of single-
ported, 1024-word, 128-bit SRAM’s. There is a dual-
ported, 256-word, 32-bit SRAM in each ALU cluster for
scratchpad memory. Finally, the HISCNI subchip contains
SRAM’s for input buffers in the network interface and for
stream instruction storage in the stream controller.

Appears in the Proceedings of the 2002 International Conference on Computer Design

Table 1: Subchip statistics

Instances mm2 Gate Area #
CLUST 130,000 5.1 × 0.8 304K 8
UC 27,000 6.2 × 1.4 27K 1
SRF 314,000 9.0 × 4.0 1.31M 1
HISCNI 98,000 8.0 × 1.4 320K 1
MBANK 57,000 1.2 × 1.8 169K 4
Top Level 75,000 16 × 16 351K 1
Full Chip 1,782,000 16 × 16 5.12M 1

Floorplan

Local
Netlists

Library

Short
Wire

Models

Place &
Route

Structure

Layout

ExtractorR & C
Timing

Analysis
Slow
Paths

Manual
Design

RTL
Structured

RTL

Regions

Wire plan Key Wires
Placement
& Loads

Synthesis

Figure 3: Tiled Region Design Methodology

Several of the subchips listed above benefit from using
datapath-style design. Specifically, each ALU cluster con-
tains six 32-bit floating-point arithmetic units and fifteen
32-bit register files. Exploiting the datapath regularity for
these units keeps wire lengths within a bitslice very short,
which in turn leads to smaller buffers, and therefore a more
compact design. In addition, control wires are distributed
across a bitslice very efficiently since cells controlled by
the same control wires can be optimally aligned. The SRF,
which contains 22 8-entry 256-bit streambuffers [6], also
benefits from the use of datapaths. The 256 bits in the
streambuffers align to the 8 clusters’ 32-bit-wide datapath,
keeping wires predictable and short and allowing for effi-
cient distribution of control wires.

The tiled-region basic flow used on Imagine is shown
in Figure 3. It is similar to the typical ASIC methodol-
ogy shown previously in Figure 2. However, several key
additional steps, shown in gray, have been added in order
to allow for datapath-style placement and to reduce costly
design iterations. First, in order to make sure that data-
path structure is maintained all the way through the flow,
two RTL models were used. A second RTL model, labeled
structured RTL, was written. It is logically equivalent to the
behavioral RTL, but contains additional logical hierarchy in
the RTL model. Datapath units such as adders, multipli-
ers, and register files contain submodules that correspond
to datapath bitslices. These bitslices correspond to a physi-

 module adder (a,b,y);
 input [7:0] a,b;
 output [7:0] y;
 wire [6:0] c;
 …
 adder_slice slice2
 (a[3],b[3],c[2],c[3],y[3]);
 adder_slice slice3
 (a[4],b[4],c[3],c[4],y[4]);
 ….
 endmodule

 module adder_slice(a,b,ci,co,y)
 input a,b,ci;
 output co,y;
 assign y=a^b^ci;
 assign co=(a&b)|(a&ci)|(b&ci);
 endmodule

 X_unit = 2.09
 Y_unit = 34.4 // bit height

 Module adder {
 group slice_”0:1:7”
 x1=0 x2=20
 y1=“0:1:7” y2=“1:1:7”
 }

 inst adder adder_0 x=50 y=0
 inst adder adder_1 x=70 y=0

Synthesis

Structured
RTL

Tile File

Floorplan

Standard Cell
Netlist

Tileparse

Create_groups.scr
Place_groups.scr

Region-Based
Placement

Figure 4: Tiled Region Floorplanning Details

cal location along the datapath called a region. Regions are
also used with typical ASIC methodologies, but the tiled-
region flow has a much larger number of smaller regions
(typically 10 to 50 instances per region) when compared to
timing-driven placement flows.

In addition to the floorplanning of regions, the subchip
designer also must take into account the wire plan for a
subchip. The wire plan involves manually annotating all
wires of length greater than one millimeter with an esti-
mated capacitance and resistance based on wire length be-
tween regions. By using these manual wire-length anno-
tations during synthesis and timing analysis runs, statisti-
cal wire models generated during synthesis are restricted to
short wires. Manual buffers and repeaters were also inserted
in the structured RTL for long wires. With wire planning,
pre-placement timing more closely matches post-placement
timing with annotated wire resistance and capacitance.

A more detailed view of the floorplanning and placement
portion of the tiled-region methodology is shown in Fig-
ure 4. Consider an 8-bit adder. It would be modeled with
the statement y = a + b in behavioral RTL. However, the
structured RTL is split up by hand into bitslices as shown
in Figure 4. The structured RTL is then either mapped by
hand or synthesized into a standard-cell netlist using Syn-
opsys Design Compiler [10]. In conjunction with the netlist
generation, before placement can be run, floorplanning has
to be completed. In the tiled-region design methodology,
this is done by writing a tile file. An example portion of a

Appears in the Proceedings of the 2002 International Conference on Computer Design

Table 2: Imagine placement results

Occ # Regions Placement
CLUST 65.1% 1,556 Tiled-Region

UC 56.3% 102 Tiled-Region
SRF 54.5% 6,640 Tiled-Region

HI/SC/NI 38.9% 237 Tiled-Region
MBANK 69.1% 15 Timing-Driven
Top Level 63.3% 1,095 Tiled-Region

tile file is shown in Figure 4. The tile file contains a map-
ping between logical hierarchy in the standard cell netlist
and a bounding box on the datapath given in x-y coordi-
nates. The example tile file shows how the eight bitslices
in the adder would be tiled in bit positions 0 to 7 along the
datapath at x coordinates 0 to 20. Arbitrary levels of hierar-
chy are allowed in a tile file, allowing one to take advantage
of modularity in a design when creating the floorplan. The
tile file is then passed through a tool developed by Stan-
ford called tileparse. Tileparse flattens the hierarchy of the
tile file and outputs scripts which are later run by the placer
to set up the regions. Once the regions have been set up,
but before running placement, the designer can look at the
number of cells in a region and iterate by changing region
sizes and shapes until a floorplan that fits is found. Finally,
the Avant! Apollo-II automatic placement and global route
tool [1] is used to generate a trial placement on the whole
subchip. These steps are then iterated until a floorplan and
placement with satisfactory wiring congestion and timing
has been achieved. The steps following placement in the
tiled-region design methodology do not differ from the typ-
ical ASIC design methodology.

5. Imagine Implementation Results

Table 2 shows the placement results for the subchips and
top level design. Standard cell occupancy is given as a ratio
of standard cell area to placeable area. Area devoted to large
power buses or SRAMs is not considered placeable area. It
is also important to note that occupancy is dependent on
the characteristics of the subchip. For example, aspect ra-
tio considerations contributed to the lower occupancies of
the HISCNI subchip. Also, the SRF has regions of low
occupancy for interfacing with the SRAM’s and other sub-
chips that reduce its overall occupancy. However, in regions
where large numbers of datapaths were used such as in the
streambuffer datapaths, occupancy was over 80%. Tiled-
region placement was used on all of the subchips except
for the smaller MBANK subchip, which did not have logic
conducive to datapath-style placement. Timing results are

included in Table 3. Maximum clock frequency and critical
path for each clock domain in fan-out-of-4 inverter delays
(FO4s) are shown. Results were measured using standard
RC extraction and STA tools at the typical process corner.

By using tiled-regioning, large subchips such as the SRF
and CLST with logic conducive to datapath-style placement
were easily managed by the designer. For example, place-
ment runs for the SRF, which contained over 300,000 in-
stances took only around one hour on a 450 MHz Ultra-
sparc II processor. This meant that when using tiled-region
placement on these large subchips, design iterations pro-
ceeded very quickly. Furthermore, the designer had fine-
grained control over the placement of regions to easily fix
wiring congestion problems. For example, the size and as-
pect ratio of datapath bitslices could be modified as neces-
sary to provide adequate wiring resources. In order to more
extensively compare the effectiveness of tiled-regioning to
timing-driven placement on these subchips, gate density,
timing performance, and design time would need to be mea-
sured on subchips optimized using both techniques. Un-
fortunately, quantitative data for such a comparison on the
Imagine design was not available. The benefits from using
datapath-style placement in ASIC designs has been well-
studied by other researchers, as presented in Section 3.

Figure 5 shows a die photograph of the Imagine proces-
sor with the five subchips highlighted. Its die size is 16 mm
× 16 mm. The IO’s are peripherally bonded in a 792-pin
BGA package. There are 456 signal pins (140 network, 233
memory system, 45 host, 38 core clock and debug), 333
power pins (136 1.5V-core, 158 3.3V-IO, 39 1.5V-IO), and
3 voltage reference pins. The additional empty area in the
chip plot is either glue logic and buffers between subchips
or is devoted to power distribution.

6. Imagine Clocking Methodology

Most ASIC’s use a tree-based clock distribution scheme.
This approach was also used on Imagine, but distributing a
high-speed clock with a large die size and many clock loads
with low skew was challenging. Typical high-performance
custom designs use latch-based design to enable skew tol-
erance and time-borrowing. However, a large variety of
high-performance latches were not available in Imagine’s
standard cell library, so an edge-triggered clocking scheme
where clock skew affects maximum operating frequency
was used. Latches, instead of flip-flops, were used in some
register file structures in the ALU clusters in order to reduce
area and power dissipation.

In order to distribute a clock to loads in several subchips
while minimizing skew between the loads, the standard flow
in the TI-ASIC methodology was used. First, after each
subchip was placed, a clock tree was expanded within each

Appears in the Proceedings of the 2002 International Conference on Computer Design

SRF

UC

HI NISC
M

B
A

N
K

0
M

B
A

N
K

1
M

B
A

N
K

2
M

B
A

N
K

3

CLUST1

CLUST0

CLUST3

CLUST2

CLUST5

CLUST4

CLUST7

CLUST6

Figure 5: Die Photograph

Table 3: Imagine timing results

Clock Max Freq Tcycle (FO4s) Clock Loads
iclk 296 MHz 46.3 160K
sclk 148 MHz 92.6 8.8K
hclk 175 MHz 78.3 2.7K
mclk 233 MHz 58.6 19K

nclkin 296 MHz 46.3 166
nclkout 296 MHz 46.3 55

subchip using available locations in the floorplan to place
clock buffers and wires. Skew between the clock loads was
minimized using Avant! Apollo [1]. Later, when all of the
subchips were instantianted in the full-chip design, delay el-
ements were inserted in front of the clock pins for the sub-
chips so that the insertion delay from the inputs of the delay
elements to all of the final clock loads would be matched for
the average insertion delay case. Next, the same flow used
on the subchips was used to synthesize a balanced clock tree
to all of the inputs of the delay elements and the leaf-level
clock loads for clocked elements in the top-level design.

Imagine must interface with several different types of
I/O each running at different clock speeds. For example,
the memory controller portion of each MBANK runs at the
SDRAM clock speed. Rather than coupling the SDRAM
clock speed to an integer multiple of the Imagine core clock
speed, completely separate clock trees running at arbitrarily
different frequencies were used. In total, Imagine has 11

FIFO

Read
Ptr

Write
Ptr

Shift Out
Read Clock

Write Enable
Write Clock

Data In Data Out

Sync

Com-
pare

Empty

Sync
Com-
pare

Full

Figure 6: Asynchronous FIFO Synchronizer

clock domains: the core clock (iclk), a clock running at half
the core clock speed (sclk), the memory controller clock
(mclk), the host interface clock (hclk), four network input
channel clocks (nclkin n, nclkin s, nclkin e, nclkin w), and
four network output channel clocks (nclkin n, nclkout s,
nclkout e, nclkout w). These clocks and the loads for each
clock are shown in Table 3, but for clarity, only one of the
network channel clocks is shown. The maximum speed of
the network clocks were architecturally constrained to be
the same speed as iclk, but can operate slower if needed
in certain systems. Mclk and hclk are also constrained by
the frequency of other chips in the system such as SDRAM
chips, rather than the speed of the logic on Imagine. Sclk
was used to run the SRF and stream controller at half the
iclk speed. The relaxed timing constraints significantly re-
duced the design effort in those blocks and architectural
experiments showed that running these units at half-speed
would have little impact on overall performance.

The decoupling provided by Imagine’s 11 indepenedent
clock domains reduces the complexity of the clock distri-
bution problem. Also, non-critical timing violations within
one clock domain can be waived without affecting perfor-
mance of the others. To facilitate these many clock do-
mains, a synchronizing FIFO was used to pass data back and
forth between different clock domains. Figure 6 shows the
FIFO design used [4]. In this design, synchronization delay
is only propagated to the external inputs and outputs when
going from the full to non-full state or vice versa, and sim-
ilarly with the empty to non-empty state. Brute force syn-
chronizers were used to do the synchronization. By making
the number of entries in the FIFO large enough, write and
read bandwidths are not affected by the FIFO design.

7. Imagine Verification Methodology

Functional verification of the Imagine processor was a
challenge given the limited resources available in a univer-
sity research group. A functional verification test suite was
written and run on the behavioral RTL. The same test suite
was subsequently run on the structured RTL. Tests in the

Appears in the Proceedings of the 2002 International Conference on Computer Design

suite were categorized either as module-level or chip-level
tests. Standard industry tools performed RTL-to-netlist and
netlist-to-netlist comparisons for functional equivalency us-
ing formal methods.

Module-level tests exercised individual modules in iso-
lation. These tests were used on modules where function-
ality was well-defined and did not rely on large amounts of
complex control interaction with other modules. Module-
level tests that exercised specific corner cases were used for
testing Imagine’s floating-point adder, multiplier, divide-
square-root (DSQ) unit, memory controller, and network
interface. In each of these units, significant random test-
ing was also used. For example, in the memory controller,
large sequences of random memory reads and writes were
issued. In addition, square-root functionality in the DSQ
unit was tested exhaustively.

Chip-level tests were used to target modules whose con-
trol was highly coupled to other parts of the chip and for
running portions of real applications. Rather than relying
only on end-to-end correctness comparisons in these chip-
level tests, a more aggressive comparison methodology was
used for these tests. A cycle-accurate C++ simulator had
already been written for Imagine. During chip-level tests,
a comparison checker verified that the identical writes had
occurred to architecturally-visible registers and memory in
both the C++ simulator and the RTL model. This technique
was very useful due to the large number of architecturally-
visible registers on Imagine. Also, since this comparison
occurred every cycle, it simplified debugging since any bugs
would be seen immediately as a register-write mismatch. A
number of chip-level tests were written to target modules
such as the stream register file and microcontroller. In or-
der to generate additional test coverage, insertion of random
stalls and timing perturbations of some of the control signals
were included in nightly regression runs.

In total, there were 24 focused tests, 10 random tests,
and 11 application portions run nightly as part of a regres-
sion suite. Some focused tests included random timing per-
turbations. Every night 0.7 million cycles of focused tests,
3.6 million cycles of random tests, and 1.3 million cycles
of application portions were run as part of the functional
verification test suite on the C++ simulator, the behavioral
RTL and the structured RTL. These three simulators ran at
600, 75, and 3 Imagine cycles per second respectively when
simulated on a 750 MHz UltrasparcIII processor.

8. Conclusion

The VLSI design and functional verification of the Imag-
ine processor was a challenge with a small team of gradu-
ate students. However, the tiled-region design methodology
enabled the team to accomplish this task and retain the per-

formance advantages of a datapath-style design in an ASIC
tool flow. An exciting area of future work is the extension
of the Imagine architecture to a custom methodology or to
future VLSI technologies where even greater performance
gains could be achieved.

9. Acknowledgments

The authors would like to thank the ASIC division and
the San Jose CDC at TI for their support in the design and
fabrication of the Imagine processor. We would also like to
thank Scott Rixner, John Owens, Mohamed Kilani, Ghazi
Ben Amor, and Abelardo Lopez-Lagunas for their contribu-
tions to the Imagine VLSI implementation and verification.

References

[1] D. Chen. Apollo II adds power capabilities, speeds VDSM
place and route. Electronics Journal, page 25, July 1999.

[2] D. Chinnery and K. Keutzer. Closing the Gap Between ASIC
and Custom: Tools and Techniques for High-Performance
ASIC Design. Kluwer Academic Publishers, May 2002.

[3] A. Chowdhary, S. Kale, P. Saripella, N. Sehgal, and
R. Gupta. Extraction of functional regularity in datapath
circuits. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 18(9):1279–1296, Septem-
ber 1999.

[4] W. J. Dally and J. Poulton. Digital Systems Engineering,
pages 485–486. Cambridge University Press, 1998.

[5] K. Diefendorff. The race to point one eight. Microprocessor
Report, pages 1–5, September 1998.

[6] B. Khailany, W. J. Dally, S. Rixner, U. J. Kapasi, P. Mattson,
J. Namkoong, J. D. Owens, B. Towles, and A. Chang. Imag-
ine: Media processing with streams. IEEE Micro, pages
35–46, Mar/Apr 2001.

[7] T. Kutzschebauch and L. Stok. Regularity driven logic syn-
thesis. In Proceedings of the International Conference on
Computer Aided Design, pages 439–446, November 2000.

[8] R. X. Nijssen and C. van Eijk. Regular layout generation
of logically optimized datapaths. In Proceedings of the In-
ternational Symposium on Physical Design, pages 42–47,
1997.

[9] M. Rodder, Q. Z. Hong, M. Nandakumar, S. Aur, J. C. Hu,
and I.-C. Chen. A sub-0.18 µm gate length CMOS tech-
nology for high performance (1.5v) and low power (1.0v).
In International Electron Devices Meeting, pages 563–566,
Dec 1996.

[10] Synopsys. Design Compiler User Guide, 2000.11 edition.

[11] Synopsys. Physical Compiler User Guide, 2000.11 edition.

