
Speculative Trace Scheduling in VLIW Processors

Manvi Agarwal and S.K. Nandy
CADL, SERC,

Indian Institute of Science,
Bangalore, INDIA

{manvi@rishi.,nandy@}serc.iisc.ernet.in

J.v.Eijndhoven and S. Balakrishnan
Philips Research Laboratories,
Eindhoven, The Netherlands

{jos.van.eijdhoven,srinivasan.balakrishnan}@philips.com

Abstract

VLIW processors are statically scheduled processors
and their performance depends on the quality of schedules
generated by the compiler’s scheduler. We propose a new
scheduling scheme where the application is first divided
into decision trees and then further split into traces.
Traces are speculatively scheduled on the processor
based on their probability of execution. We have
developed a tool “SpliTree” to generate traces
automatically. Using dynamic branch prediction for
scheduling traces our scheme achieves approximately
1.4x performance improvement over that using decision
trees for Spec92 benchmarks simulated on TriMediatm.

1. Introduction

“Very Long Instruction Word Processor”, widely
known as “VLIW” is a paradigm for simple hardware and
high compute capacity. In a VLIW processor the micro-
architectural details are exposed to the compiler and latter
generates schedules to exploit maximum Instruction Level
Parallelism (ILP) present in the code. Two main methods
of scheduling in VLIW processors are: basic block
scheduling and extended basic block scheduling. Basic
block scheduling is limited in its scope of exploiting ILP
because of small size of basic blocks. (4-5 interdependent
operations on an average in each basic block.) In extended
basic block scheduling, groups of basic block scheduling
can be categorized into following: trace scheduling,
superblock scheduling, hyperblock scheduling and
decision tree scheduling. All these scheduling schemes

suffer from the drawback of issue slot wastage as
explained later in the text of the paper.

In this paper we propose a new scheduling scheme
which ensures minimal issue slot wastage. In our scheme,
the application is first divided into decision trees and then
further split into traces by the tool SpliTree developed by
us. Traces of the application are carved out with the help
of profile information of the application. Based on profile
information, each trace is annotated with the probability
of its execution. All the decision points are removed from
the body of the trace and extra code is inserted at the tail
to check for correct conditions. Removal of decision
points from the body of the trace assists the compiler to
perform optimizations, which are not possible otherwise.
Using dynamic branch prediction for predicting root of
each trace our scheme achieves a gain in schedule length
of the trace. The proposed speculative trace scheduling
scheme minimizes the number of mispredictions by
scheduling traces based on their probability of execution.

The rest of the paper is organized as follows: section 2
gives an overview of the scheduling techniques for VLIW
processors. In section 3 we explain our speculative trace
scheduling scheme and give results. We summarize
contribution of the work in section 4 and draw
conclusions.

2. Related Work

Scheduling is the process of generating a sequence of
micro-operations that provide appropriate control to the
functional units for their execution. As mentioned earlier,
two methods of scheduling are: Basic block scheduling
and Extended basic block scheduling. Some of the

Proceedings of the 2002 IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD’02)
1063-6404/02 $17.00 © 2002 IEEE

Figure 1. Types of Extended Basic Block Scheduling Scopes: (a) Trace, (b) Superblock, (c) Hyperblock,
(d) Decision Tree and (e) Traces of Speculative Trace Scheduling

extended basic block scheduling techniques are trace
scheduling, superblock scheduling, hyperblock scheduling
and decision tree scheduling. The scheduling scopes used
in these scheduling schemes are illustrated in figure 1.

In trace scheduling [3], compiler picks the most likely
path of execution and schedules it for execution. Using a
trace, it is possible to expose available ILP because
several basic blocks are included in it, which can be
scheduled in parallel on the underlying VLIW processor
as a single unit. Side entries as well as side exits are
allowed in traces because of which book-keeping of
operations moved across basic blocks is required. In
superblock scheduling overhead of book-keeping is
obviated as elaborated below.

Superblock scheduling [8] is similar to trace
scheduling except that it does not allow any side entries.
Traces are formed along with tail duplication past fork
points. There is only a single entry point as opposed to
trace scheduling which has multiple entry points. This
scheduling scheme does not permit code motion past fork
points, which renders book-keeping unnecessary and is an
advantage over trace scheduling. A drawback of
superblock and trace scheduling is that both the
scheduling schemes execute only one path of the
application. Selection of wrong path for execution based
on profile information leads to wastage of processor
cycles.

Hyperblock scheduling [7] is different from trace and
superblock scheduling in that multiple paths are scheduled
in a single unit. Hyperblock scheduling uses predication to
form scheduling scopes. Predication involves conditional
execution of instructions based on the value of boolean
operand which is known as predicate. As shown in figure
1, a hyperblock can contain multiple paths combined
together by if-conversion and tail duplication. Basic
blocks containing procedure calls and unresolvable
memory accesses are not included in a hyperblock. It is a
single entry structure with multiple side exits. The process
of if-conversion transforms the control dependency to data

dependency and hence optimizations can be performed on
the hyperblock which are not possible with trace
scheduling.

Decision tree scheduling [5] is another method of
extended basic block scheduling and is similar to
superblock scheduling due to the absence of join points
and side entries. Each leaf of a decision tree ends in a
procedure call or jump to a different tree. There are no
side exits from the interior basic blocks of a decision tree
and there is only one entry point, which is the root of the
decision tree. Predication can be employed in decision
trees similar to hyperblock scheduling, to perform
compiler optimizations and hence exploit more ILP.

Control operations in all the scheduling scopes
discussed above are either predicated or delayed. In the
case of delayed branch operations, scheduler has to find
appropriate operations to fill the delay slots of the
branches. If it is unable to find these operations, it fills
them with “nops”. Issue slots thus get wasted which
otherwise could be used to schedule operations on the
functional units. Due to the presence of control operations
in a decision tree, required code optimizations cannot be
performed because operations following a branch cannot
be scheduled earlier than the branch. This can be evaded
by using guarded or predicated execution in which control
dependency is converted into data dependency with the
help of predicates and the operations are scheduled as
soon as their data dependency is met. Value of the
predicate registers determines whether the result would be
considered or discarded. Though efficient schedules can
be generated with higher code density, effectively this
leads to wastage of issue slots of VLIW processors. These
issue slots could instead be used to issue operations along
the correct path. We propose speculative trace scheduling
scheme as an alternative in which there is minimal issue
slot wastage and efficient schedules are generated with
high code density. The scheduling unit in our scheme is a
single entry and single exit structure which we call
“probable execution trace”. Henceforth, whenever we use

Proceedings of the 2002 IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD’02)
1063-6404/02 $17.00 © 2002 IEEE

Figure 2. (a) A Decision Tree (b) Traces of the Decision Tree

the term “trace” we implicitly mean “probable execution
trace”.

3. Speculative Trace Scheduling

In this scheduling scheme, the application code is
divided into a number of traces i.e. probable execution
traces of the application are formed. Decision points are
removed from the body of the trace and extra code is
inserted at the tail to check for correct conditions.
Removal of decision points from the body of the trace
assists the compiler to generate efficient schedules. There
are two phases in this scheduling scheme. In the first
phase of the compilation process the application is divided
into decision trees. After this phase an intermediate file is
obtained which is a tree file and it contains the application
code divided into several decision trees. In the second
phase of the compilation process, the tree file is
transformed into a trace file i.e. each decision tree in the
tree file is split into its corresponding traces. These trace
files are then scheduled on the underlying VLIW
processor using list scheduling [2]. Decision trees are split
into traces in the manner shown in figure 2. Path ABCF
forms one trace as shown in the figure 2. Similarly all the
possible paths in the decision tree are split into
corresponding traces. The operations in a trace do not face
ordering constraints during scheduling because of the
removal of decision points from the body of the trace.
Operations are scheduled as soon as their data dependency
is met. During the formation of the traces, each trace is
annotated with the probability of execution of the path
included in it. Since we factor in the branch direction as
predicted by the branch predictor [1] no delay slots are
allocated for branches. Gain in schedule lengths is
achieved and code density is increased in the schedules
generated by this scheme. As the check for correct
execution of trace is done at the end of the trace, penalty
paid on a trace misprediction is the length of the trace.
The processor has to roll back to the previous checkpoint
sate in the event of a misprediction with the help of
additional hardware support [4]. A set of shadow registers
can be maintained along with the working set of registers
in the hardware. The state of the processor at the end of
previously executed correct trace is stored in the shadow

registers. In the case of a correct prediction, working
registers are committed into the shadow registers and
execution of the new trace proceeds. On a misprediction
working registers are discarded and the state of the
processor is retrieved from the shadow registers and
execution of the next trace starts. Memory writes of the
current trace can be labeled pending till the check for the
correct trace is made. If the executed trace turns out to be
correct, pending memory operations are marked
committed. On a misprediction these pending memory
writes are discarded.

 Figure 3. Pseudo Code for the Decision Tree
shown in figure 4

3.1. Exploiting ILP

Schedules generated by our scheme have higher code
density as compared to the schedules generated using
decision trees. We explain this with the help of an
example. Figure 4(a) corresponds to the decision tree
generated by the compiler for the “for loop” in the pseudo
code shown in figure 3. Figure 4(b) gives the
corresponding scheduled code. Number in the parenthesis
of “if” condition (figure 4(a)) shows the probability with
which that condition is taken. As seen in figure 4(b),
scheduler has scheduled the whole tree by using
predicated execution. All the operations are “if guarded”.
Register r1 is hardwired register of TriMedia with value 1.
Register r7 is the masking register whose least significant
bit (LSB) determines whether the corresponding results
would be taken into consideration or discarded. If the
value of LSB of r7 is 1 then the results are taken into
account and if it is 0 then the results are masked and the
execution proceeds. Total number of processor cycles to
execute this schedule is 6. As evident from the figure, last
3 cycles do not issue any operation but “nops” have to be
included because of the branch operations, which have a

Proceedings of the 2002 IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD’02)
1063-6404/02 $17.00 © 2002 IEEE

Figure 4. (a) Decision Tree as generated by the TriMedia compiler. (b) Schedule of the Decision Tree in
(a) generated by the TriMedia Scheduler

Figure 5. (a) Trace of the most probable path of the decision tree shown in figure 4(a) generated by
SpliTree. (b) Schedule of the trace shown in (a) generated by the TriMedia scheduler using branch
prediciton

delay of 3 cycles. 4 issue slots are seen wasted in cycle 2
of the schedule, which have register r7 as their predicate
register. Figure 5(a) shows the trace of the most probable
path of the tree shown in figure 4(a). Head of trace
contains overall probability of the trace and does not have

control operations in the body. Scheduled code of the
trace in figure 5(a) is shown in figure 5(b). If branch
prediction is accurate then the trace takes only 3 cycles to
execute the same part of the code as opposed to 6 cycles
taken by the corresponding tree. On a trace misprediction,
roll back operations are performed and the penalty paid is

Proceedings of the 2002 IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD’02)
1063-6404/02 $17.00 © 2002 IEEE

the length of trace, which in this example is 3 cycles. In
the schedule of figure 5(b) there are no issue slots wasted
in scheduling the second path of the decision tree (shown
in figure 4(a)). As is apparent from the figures schedule
length has shrunk by 3 cycles by using speculative trace
scheduling.

Figure 6. Scheduling Space of Decision Trees
and Probable Execution Traces

3.2. Simulation and Results

Simulation environment used for the project is Philips
TriMedia SDE version 2.0, which is a Philips proprietary
software tool. TriMedia compiler “tmcc” breaks down the
code into several decision trees depending on the
application and generates tree files in the intermediate
format, known as “trees code” in the terminology of
TriMedia. These tree-files are converted into trace-files
with the help of our tool SpliTree. SpliTree takes as input
these tree-files and generates trace-files with all the trees
split into their corresponding traces. While generating
these traces SpliTree calculates the overall probability of
execution of the trace based on the profile information (if
available) obtained from the previous runs of the
application. (For our simulation purposes we have used
Philips proprietary input data to gather profile
information.) Each trace is annotated with this probability.
The trace label is in accordance with the label of the last
basic block included in it. These traces are then scheduled
on the underlying hardware units with the help of
TriMedia scheduler “tmsched”. “tmsched” at the time of
scheduling, consults machine description file to generate
proper schedules. Since a trace is devoid of control
operations in its body, there is no overhead of idle
processor cycles as illustrated in figure 5. Figure 4(a)
shows the tree code generated by the tmcc whose schedule
is given in figure 4(b). Most probable trace of the same
tree is shown in figure 5(a) with its schedule in figure
5(b). Number of branch delay slots is 0 cycles in our
schedule because dynamic branch prediction is employed
to predict branch at the end of the trace when the trace is
executed.

In order to bring out the efficacy of the speculative
trace scheduling scheme proposed in this paper, we cover
the scheduling space of both decision trees and probable
execution traces, with and without branch prediction. This
is pictorially depicted in figure 6. The expression for the
execution time of the application, “ETtree” in Case 0 is
given by:

where, “Ltree” is the schedule length of a tree and can be
expressed by Ltree =

�
path=1 Lpath *ppath. “Lpath” is the

length of each path of a decision tree and “ppath” is the
probability of execution of the path. The expression for
the execution time “ETptree” in Case 1 is given by:

where, “MPtree” is the effective penalty for a mispredicted
tree. The expression for calculating “MPtree” is: MPtree =
R * MispredictionPenalty, where “R” is the next PC
misprediction rate of the branch predictor and
misprediction penalty for each tree is equal to the number
of pipeline stages between the fetch and the execute unit.
Execution time, “ETtrace” of the application in Case 2 is
given by:

where, “Ltrace” is the schedule length of the trace, “Etrace”
is the execution count of trace and “ptrace” is the
probability of the execution of the trace. Execution time,
“ETptrace” of the application in Case 3 is evaluated as:

where, “MPtrace” is the effective misprediction penalty of
the trace and can be expressed as MPtrace = R *
MispredictionPenalty. “R” is the next PC misprediction
rate of the branch predictor and the misprediction penalty
is equal to the length of the trace.

The results for Cases 1, 2 and 3 are normalized with
respect to that of Case 0 and are reported in Table 1. As
already mentioned in earlier sections, sufficient hardware
[4](which is not present in TriMedia) is assumed to nullify
the execution of wrongly predicted traces. The branch
predictor for the VLIW processors used in this work is the
one proposed by Jan Hoogerbrugge in [1]. We have used
the results of branch prediction from the paper of Jan [1],
where the branch predictor predicts the direction of the
branch along with the issue-slot that contains the taken
branch. The rate of branch misprediction depends on the
implementation of the branch predictor as well as on the
application. If a lot of branch operations are present in an
application and the behavior of branches change
frequently then the rate of branch misprediction is high for
such an application. Results have been provided for
Spec92 benchmarks. We used Spec92 benchmarks to
evaluate our results because these are adequate to quantify
the results for embedded processors. As can be seen in
Table 1, a gain in performance is achieved in all the three
cases as compared to decision trees with delayed branches
of TriMedia. Jan Hoogerbrugge has reported Case 1
results in [1] and we have reproduced them in this paper
for the sake of comparison with our speculative
tracescheduling scheme. Performance gain in the case of

ETtree = � Etree * Ltree (1)
trees

ETptree = � Etree * (Ltree + MPtree) (2)
trees

ETtrace = � Etrace * Ltrace * ptrace (3)
traces

ETptrace = � Etrace * ptrace * (Ltrace + MPtrace) (4)
traces

n

Proceedings of the 2002 IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD’02)
1063-6404/02 $17.00 © 2002 IEEE

Benchmark
Predicted Trees
(Case 1)

Unpredicted Traces
(Case 2)

Predicted Traces
(Case 3)

008.espresso 1.1688 1.2336 1.5387
022.li 1.2266 1.0825 1.3631
023.eqntott 1.1652 1.1348 1.4009
072.sc 1.0913 1.1111 1.3677
Average 1.1629 1.1405 1.4170

Table 1. Performance Improvement relative to delayed branches in TriMedia for three cases: predicted
branches in trees (branch delay is 0 cycles), split traces (no branch prediction i.e. branch delay is 3
cycles) and branch prediction in traces (branch delay is 0 cycles).

branch prediction is obvious considering the fact that
branch delay slots are reduced to zero. Gain in
performance is also achieved by splitting trees into traces
without using branch prediction (branch delay slot = 3
cycles) as is evident from column 2 results in Table 1.
This is due to the removal of control operations from the
body of the trace because of which the operations are
moved higher up in the schedule and issue slots are
utilized more effectively. Column 2 results give the
theoretical gain of trace scheduling over decision tree
scheduling and have been produced here to show
theoretical comparison of trace scheduling with decision
tree scheduling. Decision trees with branch prediction
perform better than unpredicted traces because of the
absence of branch delay slots in the former. A significant
gain is seen in the case of predicted traces (column 3 of
Table 1) as compared to predicted trees (column 1) and
traces without branch prediction (column 2). This is due to
two reasons: 1) branch delay slot reduction and 2) the
removal of decision points from the body of the trace
because of which ordering constraints are absent in the
schedules. The performance achieved by our scheduling
scheme is approximately 1.41 times the original TriMedia
scheduling scheme, which is based on decision tree
scheduling. The performance of predicted traces is
approximately 1.2 times the performance of predicted
trees (column 1 and 3 of Table 1).

There is code growth due to replication of code for
forming traces. However, the performance gain is
considerable to offset the disadvantage of code expansion.
For long traces, the misprediction penalty will be high.
Although intermediate checkpoints will be beneficial for
such cases, long traces can be artificially split into smaller
traces in accordance with the scheme. Moreover in
embedded applications traces are not too long and this is
true of the benchmarks compiled.

4. Conclusion

The performance of the VLIW processors can be
improved considerably by dividing the application into
multiple traces and using dynamic branch prediction for
scheduling. By speculatively scheduling traces based on
their probability of execution, the performance obtained

by us is approximately 1.41 times the original TriMedia
performance. We have shown that by annotating traces
according to their probability of execution (obtained by
profiling the application) and scheduling them according
to this probability the number of mispredictions incurred
is minimal.

References

[1] Jan Hoogerbrooge, “Dynamic Branch Prediction for a VLIW
processor”, In Proceedings of the 2000 International Conference
on Parallel Architecture and Compiler Techniques (PACT’00),
pp. 207-216, Philadelphia, PA, Oct. 2000.

[2] Jan Hoogerbrooge et al., “Instruction Scheduling for
TriMedia”, In Journal of Instruction Level and Parallelism, Vol
1. 1999.

[3] John R. Ellis, “BULLDOG: A Compiler for VLIW
Architectures”, ACM Doctoral Dissertation Awards, MIT Press,
Cambridge, Massachusettes, 1986.

[4] Manvi Agarwal et.al., “Multithreaded Architectural Support
for Soeculative Trace Scheduling in VLIW Processors”,
Accepted for SBCCI 2002, 15th Symposium on Integrated
Circuits and System Design, Porte Alegre, RS, Brazil,
September 9-14, 2002.

[5] Peter Y. T. Hsu et al., “Highly Concurrent Scalar
Processing”, In Proceedings of the 13th International
Symposium on Computer Architecture (ISCA-13), 14(2): 386 -
395, Tokyo, June 1986.

[6] Sanjeev Banerjia et al., “Treegion Scheduling for Highly
Parallel Processors”, In Proceedings of Euro-Par’97, pp. 1074 -
1078, Passau, Germany, Aug. 1997.

[7] Scott A. Mahalke et al., “Effective Compiler Support for
Predicated Execution using the Hyperblock”, In Proceedings of
the 25th Annual International Symposium on Microarchitecture
(MICRO-25), pp. 45 – 54, Portland, Oregon, USA, Dec. 1 – 4,
1992.

[8] W. W. Hwu et al., “The Superblock: An Effective Structure
for VLIW and Superscalar Compilation”, Journal of
Supercomputing, pp. 229 - 248, 1993.

Proceedings of the 2002 IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD’02)
1063-6404/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

