
Profiling Interrupt Handler Performance through Kernel Instrumentation

Branden Moore, Thomas Slabach, Lambert Schaelicke
Department of Computer Science and Engineering

University of Notre Dame
{bmoore, tslabach, lambert}@cse.nd.edu

Abstract

As a result of technology trends towards multi-gigahertz
processors, the I/O system is becoming a critical bottle-
neck for many applications. Interrupts are a major as-
pect of most device drivers. Characterizing interrupt per-
formance and its relation to architectural trends is impor-
tant for understanding and improving I/O subsystem per-
formance. Kernel instrumentation in combination with per-
formance counters is able to overcome the limitations of
microbenchmarks when measuring interrupts. A compar-
ative analysis of a range of IA-32 based systems reveals
that interrupt handler code exhibits only a low degree of
instruction-level parallelism. Consequently, the trend to-
wards deeper processor pipelines and smaller caches to
maximize clock frequency can be detrimental to interrupt
handling performance.

1. Introduction

As semiconductor technology moves processor perfor-
mace into the multi-gigahertz range, the input/output sub-
system increasingly affects overall system performance.
The shift towards ubiquitous network connectivity and mul-
timedia content further amplifies the need for the efficient
transfer of data into and out of computer systems.

Interrupts are one important component of I/O software
as they handle a wide variety of asynchronous events. Inef-
ficient interrupt handling not only slows down the commu-
nication between the host processor and I/O device, it also
incurs significant processing time at the expense of appli-
cation code. For example, on a fully saturated 100 Mb/s
Ethernet link with an average packet size of 512 bytes, the
network adapter may generate over 20,000 interrupts per
second. If each interrupt takes 15µsec, over 30% of the pro-
cessor time may be devoted to interrupt handling. Contin-
uously increasing data rates of high-speed I/O devices such
as network adapters and hard disks further emphasize the
need for efficient interrupt handling. Quantifying the inter-

rupt handling capabilities of current systems, determining
sources of deficiencies and relating interrupt cost to archi-
tectural trends is an important step towards optimizing the
I/O performance of computer systems.

Measuring interrupt cost is complicated by several fac-
tors. Unlike many other performance characteristics, inter-
rupts can not directly be observed at the application level
because they are part of a larger kernel operation that can
only be measured in its entirety. Furthermore, interrupts re-
spond to asynchronous events that are not easily controlled
by application-level software. This work addresses these
shortcomings by instrumenting the Linux operating sys-
tem kernel [4] with code that utilizes hardware performance
monitoring counters present in various processors of the In-
tel IA-32 family [11]. In addition to measuring execution
time in cycles, these counters allow accurate measurements
of various microarchitectural aspects such as instruction de-
code and graduation counts, branch prediction behavior and
cache misses, thus providing further insights into the cost of
interrupt handling.

The instrumented kernel provides detailed interrupt per-
formance measurements for disk and network interrupts un-
der varying system conditions on a number of platforms
based on the same IA-32 ISA and operating system. Results
show that in Linux network interrupts are generally more
expensive than disk interrupts, and that there is significant
variation in interrupt cost between idle and highly-utilized
systems. Furthermore, interrupt handler code exhibits uni-
formly low instruction level-parallelism, largely due to high
level-1 cache miss rates. As a result, interrupt performance
does not benefit from modern deeply-pipeline microarchi-
tectures despite their significantly higher clock frequency.

The following section summarizes previous work in the
areas of operating system measurements, interrupt perfor-
mance analysis and performance monitoring counter sup-
port. Section 3 describes in detail the experimental setup
and kernel modifications. Measurement results are pre-
sented in Section 4. Section 5 outlines directions for future
work and Section 6 summarizes the approach and findings
of this work.



2. Related Work

A wide variety of techniques exists to measure and de-
scribe computer system performance. Application-level
benchmarks such as SPECweb [22] and various TPC
queries [16] approximate the complex behavior of real ap-
plications and evaluate several components of system per-
formance simultaneously. However, while such complex
benchmarks can provide an accurate view of overall system
performance, they are unable to focus on individual aspects
such as interrupt or system call costs.

Microbenchmarks, on the other hand, are designed to
measure components of system performance in isolation.
LmBench [13] provides a number of tools to measure ar-
chitectural and operating system characteristics, including
a number of I/O features such as disk and network band-
width. Since microbenchmarks generally execute as unpriv-
ileged user processes, measurements are restricted to effects
observable by applications and internal effects such as inter-
rupts can not be characterized with microbenchmarks.

While interrupt cost itself is not easily measured by mi-
crobenchmarks, the impact interrupts have on applications
can be observed by user-level code. For instance, by contin-
uously refreshing the instruction or data cache, and count-
ing the number of cache misses after an interrupt it is possi-
ble to measure the cache footprint of interrupt handlers [18].
The portability of this approach allows the comparison of a
variety of I/O interrupt handlers on different systems, but it
provides little insight into the source of the observed behav-
ior, or into the performance characteristics of the interrupt
handler code itself.

Profiling is an alternative to direct benchmarking that is
particularly useful to characterize regular application per-
formance instead of benchmarks. Profiling tools such as
gprof [7] or DCPI [2] perform statistical sampling of the
processor state to obtain execution profiles of applications
or operating systems. If gathered over a sufficiently long in-
terval, such profiles can provide detailed information about
the contribution of individual routines to overall execution
time. However, the short execution time of interrupt han-
dling code reduces the probability of sampling the interrupt
handler. Furthermore, I/O interrupts and sampling events
such as clock interrupts may interact or correlate and thus
bias the results of statistical sampling.

Direct measurements of operating system behavior usu-
ally requires instrumentation of the kernel. A number of
tools exist that facilitate the automatic or semiautomatic in-
sertion of profiling code into executables [12,23]. Automat-
ing the instrumentation process lets users focus on the mea-
surement task and reduces the risk of introducing errors into
the code to be profiled. However, interrupt handler code is
a complex combination of carefully hand-optimized assem-
bler code and high-level language routines and is thus chal-

lenging to instrument via automatic tools. Nevertheless, a
properly instrumented kernel in combination with a power-
ful analysis tool can offer important insights into operating
system behavior [20].

Special-purpose profiling hardware can significantly ex-
tend the capabilities of instrumentation or profiling. For in-
stance, programmable hardware can implement a wide va-
riety of custom counters and timers to measure nearly any
aspect of system performance [14, 19]. However, the inter-
play between profiling hardware and software can be com-
plex and may require intimate knowledge of the system to
be measured. Furthermore, the additional cost incurred by
the hardware component makes this approach less viable for
casual users.

In the past few years performance monitoring counters
as one form of dedicated profiling hardware have become
available in nearly all processors [1, 5, 11, 15, 24]. These
counters can be programmed to count a variety of events,
ranging from processor cycles and instructions executed to
cache misses and system bus stall times. Access to the
counter registers is usually privileged and a variety of in-
terfaces that give user-level programs light-weight access
have been developed [6, 8, 10, 17, 21]. While invaluable for
application developers, most performance-counter support
packages are designed to characterize regular applications
and are unsuitable to measure the operating system kernel.

3. Methodology

3.1. Kernel Instrumentation

Instrumenting the Linux kernel to measure interrupt per-
formance requires three modifications. First, a mechanism
is required to configure the performance counters to mea-
sure the desired events. Second, the interrupt handler itself
must be modified to read the performance counters upon
entry and exit and to record the observed values in a known
kernel location. Third, an interface to retrieve the measure-
ment samples recorded by the interrupt handler is needed.

The kernel instrumentation methodology used in this
work deliberately separates these tasks to minimize the in-
terference of the instrumentation with the events to be mea-
sured. The instrumented interrupt handler reads the values
of all performance counters and the time stamp register and
stores them on the stack before saving any other processor
registers. Before returning to the interrupted instruction, the
same set of counters is read again, and all values are copied
to an array in kernel memory for later retrieval. By sampling
the performance counters as close to the trap entry and exit
as possible, the difference between the observed values is
a close approximation of the true interrupt cost. Additional
code to copy the counter values into a kernel buffer is ex-
ecuted after the counters are sampled for the second time



and thus does not affect the results. On the Pentium-II/III
systems, the instrumentation adds 42 assembler instructions
to access the performance counters upon interrupt entry and
exit, for an overhead of less than 3.8 percent of the total in-
terrupt execution time. Due to the significantly larger num-
ber of performance counters offered by the Pentium-4 pro-
cessor, 189 assembler instructions are needed to access the
performance counters on this CPU, resulting in a perfor-
mance overhead of 22 percent. However, since counters are
accessed in the same order at the beginning and end of the
interrupt, the impact on the measurement results of individ-
ual counters is even smaller.

It is important to note that the programming of the per-
formance counters and the management of sample buffer
are not part of the interrupt handler. Instead, these func-
tions are performed by user-level code through extensions
of the /proc file system. Individual performance coun-
ters are configured by writing to the corresponding files in
the /proc file system. The most recently sampled counter
values can be read from files associated with the various in-
terrupt classes. This design provides flexible access to the
counters for configuration and measurement, while mini-
mizing the impact on the interrupts to be measured.

3.2. Experimental Setup

To provide a comprehensive view of I/O interrupt per-
formance, this study analyzes both disk and network in-
terrupts under different system conditions. Hard disks and
network adapters are the two most commonly found high-
performance I/O devices. Understanding the interrupt han-
dling capabilities of modern systems for these two classes
of interrupts is important for a wide variety of applications,
ranging from desktop multimedia applications to database
and web servers.

Each interrupt class is characterized under two system
conditions: idle and loaded. The idle system provides only a
minimum number of daemon services and executes no other
user processes. Except for the interrupt handling code, the
processor is idle. The loaded system executes a synthetic
load generation program that repeatedly compresses a large
region of randomly initialized memory using the GNU zlib
compression library. This state corresponds to a system ex-
ecuting a compute-intensive process that fully utilizes the
processor, caches and main memory system.

In addition to the different system states, each interrupt
class is measured when occurring at different rates. High
interrupt rates correspond to I/O intensive applications like
databases or file servers. Low interrupt rates are repre-
sentative of applications that perform I/O operations only
occasionally, for instance interactive programs like web
browsers.

Disk interrupts are triggered at a slow rate by repeatedly

invoking thedd utility to copy a small file. High disk in-
terrupt rates are generated by a program that reads a large
file without performing any other processing on the data.
To ensure that each file read request results in an interrupt,
the individual request sizes are larger than the file system
block size, and the file is read backwards, thus defeating the
read-ahead mechanism of the file system.

Network interrupts are caused by issuing a series of
ping commands on a remote machine. Frequent network
interrupts are generated by a TCP connection between the
test system and another host using thettcp utility to trans-
fer a large block of data without any further processing.

This experimental design results in the following four
measurement conditions for each interrupt class.

• no load, low interrupt rate
• no load, high interrupt rate
• load, low interrupt rate
• load, high interrupt rate

Under each condition, the most recent performance counter
values are retrieved by a script every five seconds, for a total
period of 500 seconds. Sampling the counter values at such
relatively long intervals minimizes the interference of the
script with the measurements. The results reported in the
following sections are the arithmetic mean of the 100 sam-
ples obtained for each test. In all cases, the combined mem-
ory requirements of the load generation process, test script
and interrupt trigger do not exceed the available physical
memory to avoid swapping to disk during the experiments.

3.3. Data Collected

In addition to recording the Time Stamp Counter dur-
ing each interrupt, the Performance Monitoring Counters
(PMCs) are programmed and sampled to determine what
causes performance differences between systems. In the
platforms tested, each processor provides PMCs that can
count a wide variety of events. Unfortunately, the number
of events common among all platforms is relatively small.
Thus, a direct comparison between all systems is restricted
to the number of cycles spent handling interrupts, the num-
ber of instructions decoded and retired, and branch predic-
tion performance. In addition, level-1 cache miss rates are
measured on a subset of the systems

3.4. Experimental Systems

The interrupt performance measurements are performed
on the six computer systems described in Table 1. These
configurations cover a broad range of system and processor
architectures based on the same IA-32 instruction set, and
range from a previous-generation Pentium II to a modern
Pentium 4. Varying the system architecture while leaving



Table 1. Test System Configuration
System CPU Memory Caches Chipset Network Adapter Hard Drive Bus

p2-333 Pentium II 333Mhz 384MB SDRAM 16KB/16KB Split L1,
512KB L2

Intel PIIX4 Intel EEPro 100 IDE

p2-450 Pentium II 450Mhz 384MB SDRAM 16KB/16KB Split L1,
512KB L2

Intel 440BX 3c905B IDE

p3-600 Pentium III 600Mhz 128MB SDRAM 16KB/16KB Split L1,
256KB L2

Intel 810E 3c905B IDE

p3-1266 Pentium III 1266Mhz 128MB SDRAM 16KB/16KB Split L1,
512KB L2

Serverworks
ServerSet III

Intel EEPro 100 SCSI

p4-1700 Pentium 4 1.7Ghz 512MB DDR2100 12KB/8KB Split L1,
256KB L2

SIS645 3c905TX IDE

p4-1800 Pentium 4 1.8Ghz 128MB SDRAM 12KB/8KB Split L1,
256KB L2

Intel 845 3c905 IDE

the operating system and measurement methodology con-
stant provides meaningful insight into the impact of archi-
tectural trends on interrupt performance.

4. Results

4.1. Number of Cycles

Processor cycle count is a clock frequency independent
performance metric and allows the comparison of the vari-
ous systems despite their widely different architectures. The
number of cycles spent in the interrupt handler is obtained
by sampling the Time Stamp Counter register at the begin-
ning and end of the interrupt handler and computing the
difference between the observed values. Note that the Time
Stamp Counter is read after accessing the other performance
counters upon entry, and before reading the counters the
second time before exit. Thus, most of the instrumentation
overhead is not included in the cycle counts reported here.

Figure 1 shows the interrupt handling cost in terms of
processor cycles for each platform tested under the four dif-
ferent system conditions. Although individual results vary
considerably between platforms and system conditions, the
most striking difference can be observed between Pentium-
II/III and the Pentium-4 processor. On average, processors
based on the Pentium-4 architecture require at least twice
as many cycles to handle an interrupt. It is important to
note that all experiments are performed with the same oper-
ating system kernel code. Hence, these results reflect only
differences between the architectures. The Pentium-II and
Pentium-III processors are based on the same basic microar-
chitecture with a moderately deep superscalar dynamically-
scheduled pipeline. The Pentium-4 microarchitecture em-
ploys a significantly deeper pipeline as well as smaller level-
1 caches to achieve high clock rates [9], and this organiza-
tion results in the higher interrupt cost.

Overall, network interrupts are significantly more expen-
sive than disk interrupts. In the Linux operating system, the

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

p2-333 p2-450 p3-600 p3-1266 p4-1700 p4-1800

Machine

Cy
cl

es

No Load, Low Int No Load, High Int Load, Low Int Load, High Int

(a) Network Interrupts

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

p2-333 p2-450 p3-600 p3-1266 p4-1700 p4-1800

Machine

Cy
cl

es

No Load, Low Int No Load, High Int Load, Low Int Load, High Int

(b) Disk Interrupts

Figure 1. Average Interrupt Handling Over-
head in Cycles



network interrupt handler performs a significant portion of
the TCP/IP protocol processing. Compared to the relatively
simple structure of a disk interrupt, traversing multiple lay-
ers of a network protocol stack requires more software over-
head.

4.2. Execution Time

Figure 2 shows the execution time for handling interrupts
across each processor and test condition. The Pentium-II/III
systems show a consistent decrease in execution time as
the processor speed increases. In nearly all cases, execu-
tion time scales with clock rate improvements for Pentium-
II/III platforms. Most strikingly, however, is that the much
higher clock frequency afforded by the Pentium-4 microar-
chitecture is not able to compensate for the larger number
of cycles required for the same interrupts. Consequently, a
previous-generation Pentium-III system running at 1.2 Ghz
outperforms the nominally faster Pentium-4 platforms in al-
most all cases.

4.3. Instruction-level Parallelism

Instructions Per Cycle, or IPC, is a measure of the par-
allelism and efficiency of the processor. The IPC value de-
pends both on the processor microarchitecture and the par-
allelism available in the instruction stream. Figure 3 shows
the IPC for both interrupt classes under the four system con-
ditions. It is calculated as the ratio of graduated instructions
over the interrupt execution time in cycles.

Most striking is the low number of instructions retired
per cycle. Compared to results obtained on a PentiumPro
system with Spec95 benchmarks [3], interrupt handler code
retires 5 to 20 times fewer instructions in each cycle.

Generally, network interrupts show a higher IPC for
frequent interrupts, even under additional processing load.
This observation is consistent with the lower cycle count
observed for network interrupts at high rates, and indicates
that these interrupts exhibit some amount of locality.

Overall, instruction-level parallelism decreases as pro-
cessor clock rate increases, indicating that the number and
severity of stalls is growing. Instruction-level parallelism
can be negatively affected by instruction cache misses,
pipeline flushes due to branch mispredictions or explicit se-
rialization instructions, data cache misses and TLB misses.
The following sections examine some of these potential
sources to determine the source of the low ILP.

4.4. Instruction Completion Rate

Instruction Completion Rate is a measure of a processors
speculation capabilities. It is computed as the ratio of grad-
uated instructions over the number of instructions decoded.

0

10

20

30

40

50

60

p2-333 p2-450 p3-600 p3-1266 p4-1700 p4-1800

Machine

Ex
ec

ut
io

n 
Ti

m
e 

 (
m

ic
ro

-s
ec

)

No Load, Low Int No Load, High Int Load, Low Int Load, High Int

(a) Network Interrupts

0

10

20

30

40

50

60

p2-333 p2-450 p3-600 p3-1266 p4-1700 p4-1800

Machine

Ex
ec

ut
io

n 
Ti

m
e 

(m
ic

ro
-s

ec
)

No Load, Low Int No Load, High Int Load, Low Int Load, High Int

(b) Disk Interrupts

Figure 2. Average Execution Time

Instructions do not complete if the pipeline is flushed due
to an exception, branch misprediction or an instruction that
modifies privileged state and thus requires explicit serializa-
tion. Figure 4 shows each processor’s instruction comple-
tion rate for all test conditions.

While results vary considerably between tests on the
same system, there is no significant difference between sys-
tems. Furthermore, with a few exceptions, only between
15 and 30 percent of the decoded instructions do not grad-
uate. These observations indicate that the low instruction-
level parallelism is not a result of a large number of pipeline
flushes, but stems from other stalls.

4.5. Branch Prediction

Branch prediction is an important component of high
performance processors. As pipeline depths increase, ac-



0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

p2-333 p2-450 p3-600 p3-1266 p4-1700 p4-1800

Machine

IP
C

No Load, Low Int No Load, High Int Load, Low Int Load, High Int

(a) Network Interrupts

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

p2-333 p2-450 p3-600 p3-1266 p4-1700 p4-1800

Machine

IP
C

No Load, Low Int No Load, High Int Load, Low Int Load, High Int

(b) Disk Interrupts

Figure 3. Instructions Per Cycle

curate prediction becomes more important to take full ad-
vantage of the processors execution capabilities. Figure 5
summarizes the branch prediction accuracy of all systems.

Perhaps surprisingly, branch misprediction rates are not
significantly higher than for compute-intensive codes like
Spec95 [3]. This observation indicates that branch mis-
predictions are not responsible for the low instruction-level
parallelism found in interrupt handling code. Instead, long-
latency operations such as cache misses as well as instruc-
tion fetch stalls are the most likely source of this phe-
nomenon. However, branch prediction accuracy decreases
for the Pentium-4 systems, despite its more sophisticated
branch prediction hardware. Combined with a much higher
branch misprediction penalty due to the deeper pipeline,
this effect is one reason for the interrupt performance dis-
advantage of this microarchitecure.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

p2-333 p2-450 p3-600 p3-1266 p4-1700 p4-1800

Test

No Load, Low Int No Load, High Int Load, Low Int Load, High Int

(a) Network Interrupts

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

p2-333 p2-450 p3-600 p3-1266 p4-1700 p4-1800

Test

No Load, Low Int No Load, High Int Load, Low Int Load, High Int

(b) Disk Interrupts

Figure 4. Instruction Completion Rate

Interestingly, for network interrupts, under a high rate,
the Pentium-4 systems show good branch prediction accu-
racy, while low interrupt rates lead to very poor branch pre-
diction accuracy. This effect indicates that the branch pre-
dictor is able to retain useful history information across suc-
cessive interrupts, while at low interrupt rates other system
activity causes more branch predictor interference. Inter-
estingly, the same effect is not seen for disk interrupts, most
likely because even at fast rates disk interrupts occur at large
enough intervals to not retain much prediction history.

4.6. Cache Miss Rate

Cache misses can be a significant source of pipeline
stalls that lead to degradations in instruction-level paral-
lelism and performance. Unfortunately, the cache-oriented
performance counters are not consistent across the tested



0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

p2-333 p2-450 p3-600 p3-1266 p4-1700 p4-1800

Machine

%
 B

ra
nc

he
s 

M
is

pr
ed

ic
te

d

No Load, Low Int No Load, High Int Load, Low Int Load, High Int

(a) Network Interrupts

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

p2-333 p2-450 p3-600 p3-1266 p4-1700 p4-1800

Machine

%
 B

ra
nc

he
s 

M
is

pr
ed

ic
te

d

No Load, Low Int No Load, High Int Load, Low Int Load, High Int

(b) Disk Interrupts

Figure 5. Branch Misprediction Rates

platforms, but results obtained for two representative sys-
tems are able to provide further insight into interrupt han-
dling code characteristics in general. Table 2 summarizes
level-1 instruction and data cache misses for two systems.

Under most test conditions, both the instruction and data
cache incur a significant number of cache misses, thus con-
firming memory system performance as the main bottleneck
in interrupt handling. Furthermore, data cache miss rates
rise drastically for the loaded systems, as well as for high
interrupt rates on idle systems. The first trend is expected,
as the additional processing load evicts a large number of
interrupt handler instructions and data between successive
interrupts. The second trend is a result of the experimen-
tal design, where even on an idle system thettcp client
performs a system call between successive interrupts that
evicts large portions of the level-1 caches. However, due to

Table 2. Level-1 Cache Miss Rates
I-Cache D-Cache

P2-450 Net Disk Net Disk
No Load, Low Int 2.656% 0.430% 4.246% 1.063%
No Load, High Int 3.347% 2.200% 8.025% 1.732%
Load, Low Int 2.327% 1.067% 3.792% 7.635%
Load, High Int 3.272% 1.843% 7.314% 3.811%

I-Cache D-Cache
P3-1266 Net Disk Net Disk
No Load, Low Int 0.259% 0.321% 1.116% 2.191%
No Load, High Int 1.690% 2.626% 9.591% 4.268%
Load, Low Int 0.592% 1.260% 6.402% 10.420%
Load, High Int 1.705% 1.810% 9.629% 7.039%

the high rate of interrupt handler invocations, a large num-
ber of the level-1 misses are satisfied by the second-level
cache, thus incurring a smaller miss penalty. Consequently,
these interrupts exhibit a higher IPC and require fewer cy-
cles to complete. A similar, although less strong effect can
be observed for disk interrupts, but in this case the level-
2 cache is not able to exploit as much locality and cache
misses lead to an IPC degradation.

5. Future Work

This study investigates I/O interrupt handling perfor-
mance of a variety of platforms using kernel instrumenta-
tion and onchip performance counters, with an emphasis on
relating observed effects to architectural trends. The abil-
ity to compare the same performance metric on a variety
of systems is limited by the availability of similar perfor-
mance counters on these systems. Unfortunately, on the IA-
32 family studied in this work, only a small number of per-
formance counters is common to all processors. A more de-
tailed analysis of the sources of the low ILP observed needs
to focus on individual processors that provide the required
measurement facilities.

Multiprocessor systems are becoming more popular for
I/O-intensive applications, but the characterization of SMP
systems is complicated by dynamic interrupt assignments.
While such scheduling effectively distributes the interrupt
processing load over all available CPUs, it may be detri-
mental to instruction and data locality.

Multithreading offers another dimension to characterize
interrupt performance. Multithreading technologies such as
HyperThreading present the operating system with multiple
virtual processors, while sharing many physical resources.
The performance gained by overlapping execution of the
interrupt handler and other code may be enough to counter
the latency incurred by the decreased amount of available
caching and other resources.



6. Conclusion

The work presented in this paper instruments the Linux
operating system kernel to utilize onchip performance mon-
itoring counters of IA-32 processors for a detailed per-
formance characterization of network and disk interrupts.
Results show that interrupt cost does not improve pro-
portionally to overall processor performance. The main
reason for the disappointing performance is the low de-
gree of instruction-level parallelism that even complex
dynamically-scheduled processors are able to extract from
interrupt handler code. Deepening processor pipelines
only aggrevate this problem. Even though branch predic-
tion performance and overall speculation is comparable to
compute-intensive benchmarks, interrupt handler code re-
tires only a fraction of an instruction per cycle. High in-
struction and data cache miss rates introduce significant
pipeline stalls and are one of the main sources of high in-
terrupt costs. These results confirm that interrupt handling
cost is largely determined by memory system performance.
Furthermore, on the systems tested, the high clock rate
achieved by modern microarchitectures does not compen-
sate for the performance penalty of the deep pipeline and
small level-1 caches.

7. Acknowledgments

The authors would like to thank Curt Freeland for the
use of his lab hardware for data collection and debugging.
Thanks also go to the anonymous reviewers for their time
and helpful commentary.

References

[1] Amd athlon processor x86 code optimization guide. Techni-
cal Report 22007 Rev K., Advanced Micro Design, February
2002.

[2] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger,
S. Leung, D. Sites, M. Vandevoorde, C. Waldspurger, and
W. Weihl. Continuous profiling: Where have all the cy-
cles gone. Technical Report 1997-016, Digital Equipment
Corporation Systems Research Center, Palo Alto, CA, July
1997.

[3] D. Bhandarkar and J. Ding. Performance characterization of
the pentium pro processor. InProc. Third IEEE Symposium
on High-Performance Computer Architecture (HPCA’97),
pages 288–299. IEEE CS Press, Los Alamitos, CA, 1997.

[4] R. Card, E. Dumas, and F. M̀evel. The Linux Kernel Book.
Wiley and Sons, 1998.

[5] C. C. Corporation. Alpha 21264/ev67 microprocessor hard-
ware reference manual.

[6] R. Enbody. Perfmon user’s guide.
http://www.cse.msu.edu/ enbody/perfmon/index.html.

[7] S. Graham, P. Kessler, and M. McKusick. gprof: A
call graph execution profiler. ACM SIGPLAN Notices,
17(6):120–126, June 1982.

[8] D. Heller. Rabbit: A performance counters library for
intel/amd processors and linux. Technical report, Scal-
able Computing Laboratory, Ames Laboratory, U.S. D.O.E.,
Iowa State University, October 2000.

[9] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,
A. Kyker, and P. Roussel. The microarchitecture of the pen-
tium 4 processor.Intel Technology Journal, Q1 2001, 2001.

[10] Intel Corporation. Intel Architecture Optimization: Refer-
ence Manual, 1999.

[11] Intel Corporation. IA-32 Intel Architecture Software De-
veloper’s Manual Volume 3: System Programming Guide,
2002.

[12] J. Larus and E. Schnarr. Eel: Machine-independent exe-
cutable editing. InProc. SIGPLAN’95 Conf. Programming
Language Design Implementation, pages 291–300. ACM
Press, New York, NY, 1995.

[13] L. W. McVoy and C. Staelin. lmbench: Portable tools for
performance analysis. InProc. USENIX Annual Techni-
cal Conference, pages 279–294. Usenix Assoc., Berkeley,
Calif., 1996.

[14] A. Mink, W. Salamon, J. K. Hollingsworth, and
R. Arunachalam. Performance measurement using low per-
turbation and high precision hardware assists. InProc. 1998
IEEE Real-Time System Symposium, pages 379–388. IEEE
CS Press, Los Alamitos, Calif., 1998.

[15] Motorola Inc.MPC7400 RISC Microprocessor User’s Man-
ual, March.

[16] M. Poess and C. Floyd. New tpc benchmarks for deci-
sion support and web commerce.ACM SIGMOD Record,
29(4):64–71, December 2000.

[17] K. D. Safford. A framework for using the pentium’s perfor-
mance monitoring hardware. Master’s thesis, University of
Illinois at Urbana-Champaign, 1997.

[18] L. Schaelicke, A. Davis, and S. McKee. Profiling interrupts
in modern architectures. InProc. Eighth International Sym-
posium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS-2000), pages
115–123. IEEE CS Press, Los Alamitos, Calif., 2000.

[19] M. Shand. Measuring system performance with repro-
grammable hardware. Technical Report 19, Digital Paris
Research Laboratory, August 1992.

[20] Silicon Graphics Inc. IRIXview User’s Guide, 1998.
http://techpubs.sgi.com.

[21] B. Sprunt. Brink and abyss: Pentium 4 performance counter
tools for linux. Technical report, Electrical Engineering De-
partment, Bucknell University, 2002.

[22] Standard Performance Evaluation Corporation.SPECweb99
Release 1.02 User’s Guide, 2000.

[23] A. Tamches and B. P. Miller. Fine-grained dynamic in-
strumentation of commodity operating system kernels. In
Proc. Third Symposium on Operating Systems Design Im-
plementation, pages 117–130. USENIX Assoc., Berkeley,
CA, 1999.

[24] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz. Perfor-
mance analysis using the MIPS R10000 performance coun-
ters. InProc. Supercomputing ’96 Conference. ACM Press,
New York, NY, November 1996.


