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Abstract

Continued advancements in fabrication technology and reduc-
tions in feature size create challenges in maintaining both manu-
facturing yield rates and long-term reliability of devices. Methods
based on defect detection and reduction may not offer a scalable
solution due to cost of eliminating contaminants in the manufac-
turing process and increasing chip complexity. This paper pro-
poses to use the inherent redundancy available in existing and fu-
ture chip microarchitectures to improve yield and enable graceful
performance degradation in fail-in-place systems. We introduce
a new yield metric called performance averaged yield (

�������
)

which accounts both for fully functional chips and those that ex-
hibit some performance degradation. Our results indicate that at
250nm we are able to increase the

� �����
of a uniprocessor with

only redundant rows in its caches from a base value of 85% to
98% using microarchitectural redundancy. Given constant chip
area, shrinking feature sizes increases fault susceptibility and re-
duces the base

� �����
to 60% at 50nm, which microarchitectural

redundancy then increases to 99.6%.

1 Introduction

Since the advent of the microprocessor in 1971 [5],
technology features sizes have been reduced from ���
	��
to ��
����
	�� and transistor counts have soared from 2,300
to over 100 million. While lithography trends suggest
chips containing over a billion transistors by the end of the
decade, two substantial challenges must be addressed to en-
able practical deployment of such systems.

First, shrinking lithography makes integrated circuits
more susceptible to manufacturing defects that tend to re-
duce yield. The Semiconductor Industry Association [20]
has set a target of 75% (75 good chips for every 100 manu-
factured) for overall microprocessor yield. While manufac-
turing engineers have made substantial innovations in mate-
rials and clean rooms to achieve this target at current tech-
nologies, realizing this target in future processes may prove
extremely costly.

Second, some manufacturing defects are latent and man-
ifest themselves only after the chips have been deployed and

run for some period of time. As larger commercial and sci-
entific systems are constructed from hundreds or thousands
of processors, the probability and frequency of latent fail-
ures increase. Because the cost of replacing faulty computer
system components in a large system can be high, many
vendors have developed fail-in-place systems requiring hot
spares [23].

In this paper we examine the redundancy already avail-
able within modern microprocessors that can be used to
improve chip yield and enhance the graceful degradation
of fail-in-place systems. While modern chips are typi-
cally declared correct only if all of the components are
fully functional (taking into account redundant rows to in-
crease yield in caches), we propose that chips with some
non-functioning components are still useful and can con-
tribute to both overall yield and gracefully degraded compo-
nents in a fail-in-place system. We further explore different
granularities of degraded components, from processor sub-
components to whole processors, for uniprocessor chips and
future architectures based on chip-multiprocessors [25]. To
compute the chip yield we use a microprocessor compo-
nent area model in combination with a basic yield model.
Since there can be a performance penalty depending on the
degraded configuration, we use a microprocessor simulator
to measure the chip end-performance across the range of
different configurations. Based on this analysis we extend
performance binning to include a new method of differenti-
ating chips that come off the fabrication line. Chips of dif-
ferent end-performance can be marketed at different prices,
extending the current manufacturers use of speed binning,
in which chips that run at different peak clock rates are sold
at different prices. We formalize this notion of performance
binning, and propose a new yield metric called performance
averaged yield ( ������� ) in which the total yield is a function
of the performance range of each bin and the number of
chips in the bins.

Our results indicate that the � ����� for a uniprocessor can
be improved from 85% to 98% with certain assumptions
about defect density and defect size. We extend this analy-



Yield Loss Mechanisms

Functional

Systematic

Parametric

Random

Systematic 

Random

(equipment issues, reticle defects)

(particulate contamination)

(incorrect design rules)

(defect clusters e.g., scratches, hot spots)

Figure 1. Yield Loss Components.

���������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Time

Systematic 

Yield Loss

Yield Ramp 

Phase

High Volume

Production

Yield Loss

Random Yield
Loss

Crossover point

Figure 2. Yield VS time curve of a typical
product.

sis to chip-multiprocessor architectures at future technolo-
gies, where we show that microarchitectural redundancy
provides greater benefits in improving � ����� . These re-
sults show that many random manufacturing defects can
be tolerated by exploiting microarchitectural redundancy.
They also suggest that augmenting fail-in-place systems
with chip-level diagnostics and reconfiguration could pro-
vide more graceful degradation when components become
faulty. The remainder of this paper is organized as follows.
Section 2 provides background on the trends in system de-
sign and manufacturing, such as yield, speed binning, and
built-in self-test (BIST) that motivate our work. Section 3
identifies and classifies the types of redundancy in modern
microprocessors and describes the mechanisms required to
exploit it for yield and fail-in-place enhancement. Section 4
describes the details of our yield, area, and performance
models. Section 5 presents results showing the yield ben-
efits of microarchitectural redundancy as a function of tech-
nology, defect characteristics, and architecture. Section 6
summarizes our findings and describes the synergy between
this work and other major technology and design trends.

2 Background

Understanding yield loss is a critical activity in semi-
conductor device manufacturing. The overall yield is in-
fluenced by many factors, including the maturity of the fab-
rication process, the ability of a particular design to tolerate
defects, and the ability to identify usable parts from unus-
able ones.

2.1 Sources of Yield Loss

Figure 1 provides a simple breakdown of some of the
common yield loss categories. Functional yield loss occurs
when a device fails to meet the intended functionality from
a logical point of view. Parametric yield loss occurs when

otherwise functional devices fail to fall within the allowed
range of acceptable electrical characteristics. Both types of
yield loss can be caused by either systematic defects or ran-
dom defects. Systematic defects result from problems in the
manufacturing process such as contamination of materials
or imprecise calibration of the equipment. Random defects,
on the other hand, are the result of inevitable particle im-
purities in the air and are much more difficult to overcome.
The effects of these defects over time are illustrated in Fig-
ure 2 which shows an initial phase of technology deploy-
ment dominated by systematic failures, with an eventual
crossover to a more mature phase dominated by the random
defects.

2.2 Design for Yield

The ground rules define the basic allowable structures in
a particular technology. There are several ways in which
they can be modified to incorporate additional design for
yield guidelines that minimize the effects of common yield
detractors. For example, at the circuit level, guidelines that
discourage the use of tall stacked transistor structures and
noise sensitive structures can help reduce parametric yield
losses. In layout, filling otherwise unused tracks with metal
to establish a regular pattern can enable better equipment
calibration during manufacturing. For high volume manu-
facturing, feedback from yield analysis and iteration of the
design to address these detractors is an important aspect of
yield management. A good overview of the different de-
fect tolerance techniques used in VLSI circuits is provided
in [12].

In designs with a high degree of regularity, such as
DRAMs and SRAMs, it is common to make use of explicit
redundancy to help improve yield. By including a small
number of redundant rows and columns in the structure of
the RAM, along with steering logic in the decoders, the
yield losses that would normally result from a small number
of random defects in the main array can be minimized. We



observe that many structures in modern chip design, beyond
just DRAM and SRAM, contain some degree of regularity.
In this paper we propose to extend the design for yield tech-
niques in the microarchitectural level by specifically identi-
fying the redundancy in different on-chip components and
the mechanisms by which it can be exploited.

2.3 Product Binning

Some degree of process variation across wafers and
wafer lots is a natural and accepted aspect of semiconduc-
tor fabrication. As a result of these process variations, some
chips can operate at faster clock frequencies than others.
Today, it has become common for manufacturers to sepa-
rate these parts into speed bins and to offer them for sale at
different prices. This practice enables a broader spectrum
of potential applications for the product, and effectively in-
creases the productive yield as well.

Recently, and at various times in the past, some man-
ufacturers have made use of a more general performance
binning strategy that separates parts into bins of guaranteed
performance levels rather than bins based solely on operat-
ing frequency [13]. Although the current practice is moti-
vated, at least in part, by marketing tactics, it opens up the
option for improving yield based on partially good chips
that offer a range of performance. We propose that designs
that include replicated or non-essential functions in support
of increased performance be enhanced with the capability
to disable some of these structures in face of defects de-
tected within the circuitry. The resulting product would of-
fer somewhat less performance, but when binned appropri-
ately, offers overall enhanced product yield.

2.4 Enhanced BIST

As the number of transistors on a chip increases, so does
the complexity and volume of the test patterns required to
identify and diagnose faults. Driven by the enormous po-
tential expense of suitable testers and the associated test
time, many chips today are augmented with built-in self
test (BIST) functions to partially relieve the testing burden.
Although BIST does not eliminate the need for traditional
test patterns, it is used extensively for testing on-chip RAM
structures, for stressing the design during burn-in, and for
speed binning.

The yield improvement schemes proposed in this paper
rely on the ability to specifically identify where faults have
been detected, and whenever possible, to circumvent the
problem by disabling or reconfiguring the faulty resource.
As a result, we envision the need for more advanced BIST
controllers that build on the capability that exists for array
repair to include support for other types of fault tolerance
mechanisms. The challenges here will be to define the ap-

propriate granularity for the BIST domains, and to develop
automatic pattern generators for isolating faults in structures
that contain more logic circuitry than basic RAMs.

By exploiting the natural structural regularity and repli-
cation apparent in many chips today, along with enhanced
BIST controllers, we expect to reduce both the systematic
and random yield losses. In doing so, the technique offers
the possibility of identifying more usable chips during the
critical technology learning phase, and increasing the ulti-
mate yield during the full production phase. In this paper,
we focus primarily on the yield loss due to random defects,
but recognize that many of the techniques discussed can
also help improve yield losses due to some types of sys-
tematic defects.

3 On-Chip Redundancy Model

In this paper, we identify three primary types of redun-
dancy as a basis for our redundancy model (Figure 3). Com-
ponent level redundancy ( ���! ) involves multiple exact
copies of some component in the microarchitecture. With
Array Redundancy ( "� ), array structures and the associ-
ated decoders are expanded to include redundant rows and
columns of cells. Dynamic Queue Redundancy ( #%$& ) rec-
ognizes that the use of dynamically allocated queues in-
volves a protocol that must be prepared for the possibility
that a particular queue is currently full, and new entries must
be held off until a spot opens up. Each redundancy model
is explained in detail below.

3.1 Basic Redundancy Types

In ���! , the component is typically replicated to pro-
vide additional performance through parallelism, but only
a subset is actually required for correct functionality. In
essence, each component that has ���' has a resource line
associated with it. The component’s BIST module sets the
resource line to be permanently BUSY in the event that the
component is disabled due to internal faults. The parent
control logic is then augmented to use only those compo-
nents whose resource lines are FREE. The intra and inter-
cluster issue logic and other components that use ���' can
use this mechanism to avoid defective units during execu-
tion. The Alpha 21264 [11, 7], for example, has two integer
clusters each with two integer arithmetic units. The ���! 
concept can be applied within a cluster since it can operate
correctly with only one functional unit. The clusters are not
exact copies of each other in this particular design, and the
instruction dispatch logic is statically biased to distribute
instructions between them. But it is possible to formulate a
similar design where they are symmetric, and then the ���' 
model could be applied here as well. In the future, as de-
signers continue to struggle with managing the complexity
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Figure 3. Basic Redundancy Models.

of large designs, we expect this sort of design for reuse to
become more common.

When defects are detected in rows or columns of bit cells
in the main body of the array, the "( mechanisms can be
configured to effectively steer the decode towards the redun-
dant entry rather than towards the bad row or column. This
technique is already commonly used in many types of RAM
chips as well as in the embedded RAM structures found in
more general purpose chips such as microprocessors. From
a yield perspective, the attractive thing about "� is that a
relatively small investment in area can offer excellent de-
fect tolerance for the entire structure. In many cases, this
can drive the yield loss due to these structures to very low
levels with no loss in performance.
#)$* is the third type of redundancy we explore. Ba-

sically, a valid bit is added to each queue entry that has
#%$* . If a particular queue entry has defects, it can be
permanently disabled by clearing the valid bit, and the ex-
isting protocols can be leveraged to stall the machine when
the available queue entries are full. Downstream logic sim-
ply needs to understand that queue entries marked invalid
should never be processed. In highly pipelined designs, as
well as designs that support dynamic reordering of opera-
tions, these types of queues are common. For example, in
the Alpha 21264, the reorder buffers, the issue window, the
register remappers, the load buffers, and the store buffers
are all implemented as queues. There is a minimum size to
these queues to support basic functionality, and the larger
sizes are intentionally used to gain performance. Neverthe-
less, our experiments show that disabling one or two entries
in most of these queues results in at most 1% loss in perfor-
mance. Alternatively, a design might include spare queue
entries in these structures to allow some defect tolerance
without losing any performance, similar to "� .

In some cases, it is possible for a single structure to of-
fer more than one type of redundancy. For example, a set
associative cache might be structured to allow both ���' 
(disabling one set) and "� (redundant row steering in one
of the other sets). Similarly, in the future, it is likely that
many chips will contain multiple processors. In this case,

we can imagine a set of intra-processor redundancies as
well as inter-processor redundancy at the next level of hier-
archy. As designs strive for more outstanding operations in
flight, it is likely that potential for redundancy will increase
over time.

3.2 Proposed Microarchitecture

As a basis for analysing the effects of the different redun-
dancy types, we have defined a processor model that is sim-
ilar to the Alpha 21264 [11, 7]. Both the integer and float-
ing point clusters are symmetric and each have 2 functional
units within them. The processor model also has an on-chip
L2 cache of 1MB. Table 1 shows more detail on the specific
parameters of our processor model, along with the redun-
dancy model that we have adopted for each of the on-chip
components. The base capacities characterize the processor
configuration at which it achieves maximum performance.
The spare entries provided in the components are used only
in the face of defects and do not contribute to additional per-
formance. The execution clusters and the internal ALUs are
covered with the ���' model. The hierarchial nature of the
redundancy for the clusters and ALUs provides coverage
over the control logic of these components. The L1 caches
and L2 cache are covered by both the Array Redundancy
model and, since they are set associative, the ���' model.
Consistent with the common industry practice [10], the re-
dundant rows and columns are about 2.5% of the base cache
capacity. The bank level redundancy for the caches pro-
vides coverage over the peripheral logic of these structures
also. We also allow the configuration with no on-chip L2
cache, ie., with both L2 cache banks defective. The TLBs
are covered by the "( model. All of the instruction win-
dow queues, register files, map tables, reorder buffers, and
storage queues are associated with the #%$* model, imple-
mented by providing spare entries and thereby exhibit no
loss in performance. Elements of the processor not listed
in the table, including random control logic, have no redun-
dancy coverage in our example design. Nevertheless, the
parts of the design that have coverage through redundancy



Processor Redundancy Configuration
Resource Base capacity / Spare entries Redundancy Model Minimum operational size

Integer Instruction Window 20 / 1 DQR 20
Floating point Instruction Window 20 / 1 DQR 20

Integer Register File 80 / 2 DQR 80
Floating point Register File 72 / 2 DQR 72

Integer Map Table 32 / 1 DQR 32
FP Map Table 32 / 1 DQR 32

Int Alus per cluster 2 / 0 CLR 1
Int Mult per cluster 2 / 0 CLR 1
FP Alus per cluster 2 / 0 CLR 1
FP Mult per cluster 2 / 0 CLR 1

Integer clusters 2 / 0 CLR 1
Floating point clusters 2 / 0 CLR 1

Reorder Buffer 80 / 2 DQR 80
Load queue 32 / 1 DQR 32
Store queue 32 / 1 DQR 32

ITLB (Fully associative) 128 / 2 AR 128
DTLB (Fully associative) 128 / 2 AR 128

L1 I cache (2-way associative) 64KB / 1.5KB AR, CLR 32KB
L1 D cache (2-way associative) 64KB / 1.5KB AR, CLR 32KB

L2 cache on-chip 1MB / 24KB AR, CLR 0MB

Table 1. Processor redundancy configuration

constitute approximately 85% of the total area of the pro-
cessor. This configuration and aggregate model is used for
the yield analysis described throughout this paper. Since
mainstream processors [2] already employ redundant rows
and columns in caches, the baseline yield ( ��+ ��,.- ) corre-
sponds to a processor with "� in the L1 and L2 caches.
To model the effects for larger chips in future technologies,
this same basic configuration is used with a variety of chip
mulitprocessor (CMP) topologies.

4 Methodology

Our methodology for calculating chip yield integrates a
basic yield model and a microprocessor area model with the
redundancy model of the chip components. The basic yield
model is a simple probability distribution that calculates the
random yield of a given area of silicon. The area of the
chip components themselves are estimated using the micro-
processor area model. The yield with redundancy model
breaks a component into its redundant and non-redundant
pieces before computing the component yield. The yield of
the chip computed thus is then linked with its measured end-
performance across the range of different configurations to
obtain the performance averaged yield ( � ����� ). The met-
ric of performance in this paper is throughput (measured
in instructions per clock or /10&� ), and is computed using
a microprocessor simulator. The remainder of this section
describes each of these models in greater detail.

4.1 Random Defect Limited Yield Model

Yield loss is a function of the size, material, location and
the process step in which a defect is introduced. In this
paper we have adopted the Poisson Yield model [14] for
modeling the random yield component, because it allows
us to simplify the mathematical treatment and focus more
on the interaction between the redundancy models and the
resulting yield trends. Our methodology can be extended
to use other commonly studied yield models such as the
Negative Binomial model.

The Poisson Yield ( � � ) Model [14] assumes the random
defects to be completely independent and is described by:

���32547698�:<;>= � =�?A@�B (1)

where #C� is the defect density measured in defects perD �FE , " represents the area of the component in D �GE , andH  is the kill ratio which is the fraction of the total com-
ponent area that is sensitive to defects. The kill ratio is a
function of the defect type, defect size and the feature size,
and increases as the ratio of defect size to the feature size
increases. For instance, a larger defect can more easily lead
to a bridging fault between two metal tracks. The Poisson
Yield model equation exhibits an exponential dependence
of die yield on component area, defect density, and the kill
ratio. Therefore, manufacturers can improve yield either by
reducing the chip area or by reducing the defect density;
yield tends to get worse with smaller feature sizes because
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the kill ratio increases. The ITRS [20] has set a target of
83% for the random-defect limited yield of microproces-
sors. We obtain a � + ��,.- of 85.4% at 250nm using the
defect density provided by the ITRS, for a normal defect to
feature size ratio, and a chip area of �1I
�J�)�KE . This result
validates our input parameters to the Poisson Yield model.

4.2 Chip Area Model

Estimation of individual component yield requires de-
tailed area models of the processing cores and caches. To
model the area of the on-chip L1 and L2 caches we used
Cacti 3.0 [22] which accounts for the cache capacity, sub-
bank organization, line size, associativity, number of ports
and the technology generation. Cacti also provides the
cache aspect ratio and area efficiency1 which can be used
to determine the fraction of area occupied by the periph-
eral logic and the data. Since the design style of most other
on-chip storage structures like the register files, instruction
window are similar to caches, Cacti can be appropriately
configured to derive a reasonable estimate of the area, as-
pect ratio and efficiency of these structures also. To model
the area of functional units we used an empirically derived,
technology-independent area model [8]. We used a method
of simple manual layouts to estimate the area of random
control logic components including the select, rename and
instruction wakeup logic, based on the logic level block di-
agrams that are available in the literature [16]. To estimate
the area of miscellaneous blocks such as I/O pads and clock
distribution trees we developed an empirical model based
on our analysis of the Alpha 21264 floorplan [7, 11].

We validated our area model against the Alpha 21264
microprocessor whose detailed floorplan statistics are avail-
able in [7, 11]. Alpha 21264 area from the floorplan is

1The area efficiency of a memory structure can be defined as
the ratio of the area of the memory cells to the total area of the
cache.

���MLJ�N�NE and the estimated area using the area model is
�J�1I>�N�NE , which is an error of 3.8%. Figure 4 illustrates
the uniprocessor model described in Section 3, with the L2
cache coupled to the processor core. The total area of the
chip was calculated using the area model to be �1IJO
�)�KE at
250nm. Figure 4 also shows the distribution of the chip area
among its most significant components.

4.3 Yield with Redundancy Model

To compute the yield of a component requires breaking
it into its redundant and non-redundant pieces. For exam-
ple, Array Redundancy in memory structures provides cov-
erage over defects that occur in the area occupied by the
data cells, but a defect in the decode logic would still be fa-
tal. The ability to distinguish between the regions included
in the redundancy model and those that are still vulnera-
ble to defects is fundamental to calculating the component
yield.

Yield with partial redundancy: Since defects in the
Poisson Yield model are considered to be completely in-
dependent, the yield of a component that has partial redun-
dancy can be described by the equation:

�QPR� ��S @UT � @ (2)

where ����S @ represents the yield for the area of the com-
ponent that has no redundancy, and � @ is the yield of the
region that is covered by the redundancy model. The Pois-
son Yield model alone can be directly used to compute the
yield of the area without redundancy. For storage compo-
nents that use either the AR or the DQR models we use the
efficiency of the SRAM array to evaluate the fraction of area
devoted to the peripheral logic and the data. On the other
hand, on-chip structures with CLR have their entire area
covered by the redundancy model. The yield of the area



with redundancy is also computed using the Poisson Yield
model but is a function of the redundancy model employed.

Yield with the basic redundancy models: The three re-
dundancy models we described in Section 3 offer coverage
over the building blocks of on-chip components. A compo-
nent building block is either an entry in a storage structure
or queue, or a unit such as a cluster or a functional unit,
which we will generally refer to here as a primary redun-
dant circuit ( 0* *� ). The total capacity of a component is
then the sum of its base number of 0* *�*V and the number
of spare 0* *�*V .

A redundancy model specifies the minimum number of
working 0* *�*V the component must possess to ensure cor-
rect overall functionality. The component yield is then sim-
ply the probabilty that it has at least its minimum subset of
0* ��*V working out of the total number of 0* ��*V including
the spares. A particular configuration of the component is
specified by its number of working 0* *�*V . A specified con-
figuration can be achieved in multiple ways depending on
exactly which of its 0* *�*V are working, and is calculated
using the combinations ( �*WX ) operator. Both the number of
working 0* *�*V and the number of ways in which the con-
figuration can be met decide the probability of a component
being in that configuration. The overall component yield
is therefore the sum of the probabilties of all the configu-
rations in which the component has at least the minimum
number of 0* *�*V working. The � @ from this calculation is
summarized using the well known binomial expansion:

� @ P
Y[Z]\�Z_^`
a�b�cda W Z

� 6 YeZ_\�Z_^ Bcfa W Z Tdgih 0* *�kj a
Tdgih 0* *�l#

YeZ_\mZ_^ 8 a

(3)
where PRC W is a working 0* �� , PRC D is a defective

0* �� , �Nneo�V is the subset of 0* *�*V required for correct
functionality, pqV represents the base number of 0* *�*V in
the component, and VM4 is the number of spare 0* *�*V . The
probability of a 0* *� being functional or invalid is com-
puted using the Poisson Yield model.

For example, caches that have "� are provided with
enough redundant rows and columns to greatly improve
yield and at the same time show no reduction from peak
performance. Hence in this case �)neo�V becomes equal to
prV , and the value of VM4 is dependent on the cache capac-
ity. Components with DQR also have very similar specifi-
cations. On the other hand, choosing to have CLR in the
clusters for example, introduces the possibility of having
configurations with only one cluster functional. Hence in
this case V�4 is equal to zero and �Nn[o�V is strictly lesser than
prV , with its exact value determined by the specific com-
ponent. The minimum subset of 0* *�*V for each on-chip
component determined by the specific redundancy model is

given in Table 1.

4.4 Performance Averaged Yield Model

To have a fair comparison between the processors that
are fully functional and those with /10&� degradation we
must account for the performance while calculating yield.
The processor model described in Section 3.2 defined the
peak performance of the processor as that achieved when
all of its components contain their base capacity. The over-
all yield described above includes processors that exhibit a
range of different end-performance results, which we will
refer to as �tsu�u- @ ��v�v . We have formulated the �������
metric so that it captures both the effects of redundancy—
improvements in yield and reductions from peak perfor-
mance. ������� is calculated by associating with the yield
of each possible processor configuration ( � a ), a score equal
to its performance relative to the maximum, and is given
by:

�������wP `
a1b)xzy{y1|_} WJ~ a��z� X xz�9a�} W Z

� a T
/70&� a� "���/70&�

To evaluate the performance of the various degraded con-
figurations we used the sim-alpha simulator [3] which mod-
els the Alpha 21264 core in detail. First, we configured
sim-alpha to resemble our processor model. We then mod-
ified the simulator to support symmetric clusters. We fur-
ther made modifications that enable us to simulate the dif-
ferent degraded configurations by selectively disabling on-
chip components. Figure 5 shows the benchmarks we used
in our experiments. We chose seven benchmarks from the
SPEC2000 benchmark suite and sphinx a speech recogni-
tion benchmark to provide a wide range of behavior. The
applications mesa, equake, eon, and gzip show relatively
high IPC and are more sensitive to the available execution
resources. The applications sphinx, mcf, swim and art are
memory intensive in nature and show greater sensitivity to
cache capacities. For each benchmark we simulated the
sequence of instructions which capture the representative
phase of the program, determined by using SimPoint [21].
Figure 5 also shows the number of instructions skipped to
reach the start of the execution phase ( �*�&j�# ), the num-
ber of instructions simulated (  *�*� ), and the maximum
IPC for each benchmark at the base configuration.

Figure 6 plots the normalized IPC distribution for the
range of allowed configurations. The graph shows that most
of the configurations fall into the region that is within 20%
of MaxIPC. The set of bars around 55% MaxIPC corre-
spond to the configurations with no on-chip L2 cache. To
give an idea of the sensitivity of IPC to the capacities of
different components, Table 2 shows the normalized har-
monic mean IPC values for a subset of all the chip configu-
rations allowed by our methodology. The top portion of the



Benchmark category Benchmark name FFWD RUN MaxIPC
(x100M)

INT Memory Intensive 181.mcf 336.3 100M 0.1330
sphinx 60 200M 0.5707

Processor bound 164.gzip 332 100M 1.7588
252.eon 207.3 100M 1.2909

FP Memory Intensive 171.swim 1196 100M 1.0245
179.art 66.3 100M 0.2616

Processor bound 183.equake 193.4 100M 1.1109
177.mesa 639.9 100M 1.3398

Figure 5. Benchmarks used for performance experiments
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Figure 6. IPC distribu-
tion for the different
configurations.

table contains the configurations for which the maximum
reduction in IPC is less than 20% across all benchmark cat-
egories. In the bottom portion there is at least one category
for which the relative IPC drops below 80%. When we com-
bine this IPC binning with the yield model, our results in-
dicate that the number of chips with less than 80% MaxIPC
rapidly approaches zero.

5 Results

This section presents our results for the yield and defect
density projections at future technologies and chip microar-
chitectures. We begin by describing the three different chip
architectures that are investigated in this paper. We pro-
ceeed to examine the yield trends for a uniprocessor with
and without redundancy. We then analyse the benefits of
microarchitectural redundancy for chip-multiprocessor ar-
chitectures, and finally end with a comparison of the yield
improvements attained using different redundancy models.

5.1 Chip Topologies

Future chip microarchitectures have substantial flexibil-
ity in using the larger number of transistors that can fit in a
given chip area, to achieve their target performance. If the
desired functionality remains fairly constant with time, as
in the case of special purpose processors, the required per-
formance can be achieved with no addtional features in the
processor architecture. The constant-architecture scheme is
shown in Figure 7a, where the capacities of the microar-
chitectural structures are kept constant across all technolo-
gies. Because the capacities are kept constant, the area of
the uniprocessor decreases rapidly with decreasing feature
size. However, trends in general purpose processor design

have demonstrated that die sizes do not shrink with succes-
sive microprocessor generations. Instead microarchitectural
features have been added that enhance the processor’s func-
tionality and consume the silicon area. Figure 7b illustrates
the constant-area uniprocessor model, where the chip area is
kept constant across all technologies and hence the sizes of
the microarchitectural strucutures are allowed to increase.
The relative proportions of the core area and the area occu-
pied by caches are kept approximately constant.

Technology scaling trends and considerations on multi-
thread performance have influenced some emerging archi-
tectures to include multiple processors within a single chip,
which has substantial implications for yield. Figure 7c illus-
trates the � � 0 model built using the constant-architecture
uniprocessor model as the building block. The number of
processors that can be accomodated per chip increases from
1 at 250nm to 24 at 50nm, given that the fraction of chip
area consumed by L2 caches is kept approximately at 49%
across all technologies.

5.2 Uniprocessor Yield

Technology advancements in the future are expected to
involve introduction of new process steps and materials,
thus potentially increasing the yield sensitivity to particles
and the defect density. Figure 8 plots � + ��,1- of the unipro-
cessor chip assuming that the defect densities are kept con-
stant at their value at 250nm, with substantial investments
in process control mechanisms. The ��+ ��,.- for a unipro-
cessor with constant area decreases from 85% at 250nm to
60% at 50nm. As the area of the uniprocessor increases
the area of the components without any redundancy also
increases. This factor is compounded by the growing kill
ratio at smaller technologies to result in considerable yield



Configurations Benchmark Category
IntFus FpFus IL1 DL1 L2 Integer Memory Integer Memory FP Memory FP Memory All

(KB) (KB) (MB) Intensive Non-Intensive Intensive Non-Intensive Benchmarks
4 4 64 64 1 1.0 1.0 1.0 1.0 1.0
3 4 64 64 1 0.998 0.97 0.997 0.94 0.975
2 4 64 64 1 0.986 0.874 0.999 0.884 0.932
4 3 64 64 1 0.999 0.987 0.997 0.95 0.983
4 2 64 64 1 0.999 0.999 0.997 0.95 0.986
4 4 32 64 1 0.999 0.904 0.997 0.999 0.973
4 4 64 32 1 0.995 0.956 0.995 0.937 0.97
4 4 64 64 0.5 0.94 0.999 0.872 0.949 0.938
2 2 64 64 1 0.986 0.868 0.999 0.882 0.93
2 2 32 32 0.5 0.928 0.80 0.877 0.80 0.848

1 1 64 64 1 0.935 0.56 0.961 0.625 0.728
1 1 32 32 0.5 0.885 0.54 0.848 0.609 0.689
4 4 64 64 0 0.492 0.618 0.76 0.8737 0.654
2 2 32 32 0 0.474 0.369 0.749 0.555 0.503
1 1 32 32 0 0.432 0.319 0.702 0.450 0.439

Table 2. Relative IPCs for the different classes of benchmarks
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Figure 7. Chip topologies.

loss. On the other hand, � + ��,.- for a uniprocessor with
constant architecure increases from 85% at 250nm to 93%
at 50nm. This increase in yield is because the gain from the
rapidly decreasing chip area outweighs the increased sus-
ceptibility to yield loss due to the higher kill ratio. For both
uniprocessor models, � + ��,.- decreases with larger defect
size because of the higher kill ratio.

Figure 9 shows how defect densities must scale with
technology to achieve the target 83% yield. While ag-
gressive reductions in defect densities are required in the
constant-area uniprocessor model, larger defect densities
can be tolerated at future technologies in the constant-
architecture model. The reasons for this trend are logically
the same as for Figure 8. Therefore, in the absence of mi-
croarchitectural redundancy, manufacturers must either in-
vest in more aggressive mechanisms to decrease the defect
sensitivity in the designs or accept lower final yields at fu-
ture technologies.

Figure 10 shows � su�u- @ ��v�v obtained by incremen-
tally adding different flavors of on-chip redundancy to the
constant-architecture uniprocessor model. At 100nm for

example, the maximum contribution comes from L2 bank
level redundancy, which increases ��su�u- @ ��v�v to 96% from
a � + ��,.- of 92.2%. ���! in the functional units domi-
nates among all the other types of redundancy, which to-
gether further increase ��su�u- @ ��v�v to 99.2%. Since bins
with finite number of chips have an observed performance
loss of at most 20% (Section 4.4), regardless of technol-
ogy, ������� (indicated by the dotted line) is 98.8%, which
is only 0.4% less than ��su�u- @ ��v�v . Across technologies,
�t+ ��,.- increases from 85.4% to a maximum of 93.7%, the
contribution of L2 bank level redundancy continues to be
significant, and all the other types of redundancy give pro-
gressively diminishing returns. This is because the L1 and
L2 caches occupy almost 70% of the chip area and the ac-
tual area occupied by the remaining components becomes
vanishingly small at smaller feature sizes. As a result,
��s<�u- @ ��v�v with all the types of redundancy increases from
98% at 250nm to 99.6% at 50nm, and ������� is at most 0.4%
below �tsu�u- @ ��v�v across all technologies. The above result
is significant because it shows that even though � + ��,.- im-
proves with technology, ������� can be further improved by
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Figure 8. The effect of technology and pro-
cessor model on yield.
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Figure 9. Target defect densities required to
achieve 83% random-defect limited yield.

adding microarchitectural redundancy.
Unlike the constant-architecture model where the area of

some components become insignificant at smaller feature
sizes, the area of all the components remain constant with
technology in the constant-area model. As a result, adding
redundancy to a component will provide sustained benefits
at all technologies. Hence adding microarchitectural redun-
dancy will offer even greater improvements to ������� in the
constant-area model.

5.3 Multiprocessor Yield

In this paper, we explore two types of multiprocessor re-
dundancy. In intra-processor redundancy, a chip can have its
processors in any of the allowed internally degraded states,
but the entire chip is considered bad once the available re-
dundancy is exhausted in even one of its processors. On
the other hand in a chip with inter-processor redundancy,
any defect within a processor will render the whole proces-
sor bad, all the remaining processors have maximum per-
formance and the chip can continue to function as long as
there is at least one operational processor.

Regardless of the redundancy model employed, multi-
processor performance is determined by two parameters—
the total number of cores ( � | ), and the performance of
each core ( /10&� a ). The performance of an individual core
( /10&� a ) is dependent on the application characteristics, the
communication overhead among threads, and the level of
degradation. Our base assumption in this study is that
threads are all independent of one another. Therefore the

performance of a workload can be defined as the aggregate
performance of all the cores on the chip.

Extending the equation for � ����� from Section 4.4 to a
multiprocessor with intra-processor redundancy:

� ����� P `
�<b%xzy{y1|_} W7~ a��z� X xz�9a�} W Z

� � T
� Su�a�bm� /10&� a��� � | T
� "���/10&� |_} X ^��

(4)
where,

� "���/10&� |_} X ^ is the peak IPC of a fully func-
tional processor. Since the atomicity of failure in the inter-
processor redundancy model is a whole processor, a core
has at most two states corresponding to

� "���/70&� |_} X ^ or
zero IPC. The expression for � ����� of a multiprocessor with
inter-processor redundancy is then given by:

�������wP `
�ub)xzy{y.|_} WJ~ a��z� X xz�9a�} W Z

� � T
��� �
� | (5)

where, ��� is the number of fully functional processors on
the chip.

5.3.1 Yield with Intra-processor Redundancy

Figure 11 plots � su�u- @ ��v�v , across all technologies, ob-
tained by incrementally adding redundancy to processor
components in a multiprocessor with intra-processor re-
dundancy. The xaxis shows the feature size and the num-
ber of processors per chip at each technology. At a given
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Figure 10. Yield for a constant-architecture uniprocessor model at normal defect size.

technology e.g., 70nm, adding redundancy dramatically im-
proves � su�u- @ ��v�v from 68.2% to 93.8%. Since functional
units exhibit the maximum amount of ���! they provide
the greatest improvement in yield. The benefits from L2
bank level redundancy, #%$* in the queues, and ���! in
the clusters are comparable across all technologies. Our
experiments indicate that with all the types of redundancy,
the fraction of degraded processors per chip is small. Fur-
ther, the observed performance loss at the different proces-
sor configurations is also small (Table 2). As a result, �������
(indicated by the dotted line) is within 0.1% of ��s<�u- @ ��v�v .

The total amount of intra-processor redundancy on the
chip increases linearly with the number of processors. As
a result the addition of ���' and #%$* lead to greater im-
provements in yield at smaller feature sizes. For instance,
at 180nm � s<�m- @ ��v�v with #%$* in the on-chip queues is
91.1% which is improved to 95.5% by adding ���' in the
functional units. At 50nm, ��su�u- @ ��v�v with #%$* in the
on-chip queues is 73.4% which increases to 85.8% with
���' in the functional units. The greater difference be-
tween the two �ts<�m- @ ��v�v values implies that there are
more degraded chips at smaller technologies. But as the
area occupied by a single processor decreases, its � + ��,.-
increases (see Figure 10), and hence the probability of it
being defective decreases. Combined with the increasing
number of processors per chip, the fraction of degraded pro-
cessors per chip decreases with technology. As a result,
� ����� continues to be within 0.2% of � su�u- @ ��v�v at all
technologies. Although there are significant benefits from
adding redundancy, ��su�u- @ ��v�v with all the types of redun-
dancy drops from 98% at 250nm to 91.3% at 50nm due to
higher kill ratio.

5.3.2 Yield with Inter-processor Redundancy

Figure 12 plots � ����� for a multiprocessor with inter-
processor redundancy. Inter-processor redundancy gives
coverage over the entire area of the chip and hence dra-

matically improves �ts<�m- @ ��v�v , approaching 100% at tech-
nologies beyond 180nm. The yield at 250nm alone is
low because only one processor resides on the chip, which
amounts to having no redundancy at all. Also recall that
the fraction of degraded processors per chip decreases with
technology. As a result, � ����� increases uniformly from
85% at 250nm to 98% at 50nm.

5.3.3 Combining Intra and Inter-processor Redun-
dancy

Since intra and inter-processor redundancy offer different
types of coverage, combining the two redundancy models
provides even greater benefits in yield. Figure 13 com-
pares � ����� obtained using four different redundancy mod-
els. Having both intra and inter-processor redundancy pro-
vides consistently high ������� ranging from 98% at 250nm
to 99.6% at 50nm, with a maximum improvement in �������
of 3.75% over having only one of the types of redundancy.

A comparison of the improvements offered by intra and
inter-processor redundancy models shows that, down to
100nm ������� obtained using intra-processor redundancy
is higher than from inter-processor redundancy after which
we see greater benefits from the inter-processor redundancy
model. The crossover point is dependent on the defect pa-
rameters and the processor granularity at each technology.
While the analysis has assumed a constant defect density
across technologies, larger defect densities will shift the
crossover point to the right because the fault susceptibility
of a given area of silicon increases, and hence fine grained
redundancy becomes more appropriate. Also a more coarse-
grained � � 0 built out of much larger uniprocessor cores
will have fewer number of processors per chip. Conse-
quently, there will be substantially more intra-processor
than inter-processor redundancy, which will again shift the
crossover point to the right.
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Figure 11. Yield with intra-processor redun-
dancy at normal defect size.
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Figure 12. Yield with inter-processor redun-
dancy at normal defect size.
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Figure 13. Comparison of � ����� for different redundancy models.

6 Conclusions

In this paper, we examine the features of modern mi-
croprocessors that can be used to enhance their reliabil-
ity by exploiting regularity and redundancy within the chip
microarchitecture. We also evaluate the trade-off between
performance and yield through the use of redundant com-
ponents within the context of a microprocessor and a chip
multiprocessor. We focus on relatively coarse grain compo-
nents within the microarchitecture such as execution units
and cache banks, and show that mechanisms already ex-

ist within the processor control logic that easily disable the
defective components from being used during program ex-
ecution. By exploiting such intra-processor redundancy, we
demonstrate that the total fraction of functional chips at
50nm can be increased from 60% to 91.3%, with a max-
imum reduction in performance in any chip of less than
20%. Inter-processor redundancy, in which some process-
ing cores in a chip multiprocessor are allowed to be de-
fective, has a similar effect. Based on these observations,
we propose a new yield metric called performance aver-
aged yield ( ������� ) which accounts for the level of perfor-



mance degradation on all functioning chips. Exploiting mi-
croarchitectural redundancy can improve ������� to as high
as 99.6% at 50nm, a substantial improvement from 60%
achieved when only considering the defect-free parts.

These same techniques of intra and inter-processor re-
dundancy can be applied to fail-in-place systems. Today’s
systems that provide fail-in-place capabilities do so at the
system level and typically provide hot spares for power sup-
plies, processors chips, memory modules, and disks [23].
We advocate pushing fail-in-place inside the boundaries of a
single chip or processor and allowing defective components
to continue to operate, perhaps with somewhat degraded
performance. Defects can be detected through periodic in-
system testing such as built-in self test (BIST), and defec-
tive components can be disabled dynamically, with the over-
all system experiencing graceful degradation. Of course
fail-in-place also requires mechanisms for recovery from
failures that occur during a program’s execution. Hardware
and software techniques that offer this capability are sum-
marized in the literature [1, 6, 17, 18, 4].

The regularity and redundancy that we exploit in this pa-
per is also synergistic with several technology and design
trends. First, design complexity has grown dramatically as
more transistors have become available to integrated circuit
designers. Managing this complexity has become a tremen-
dous challenge for both design and verification, and will de-
mand modular design techniques that reuse hardware com-
ponents within a chip, thus creating redundancy opportuni-
ties. Second, the increase in wire delay relative to transistor
switching time will likely lead to partitioned architectures
composed of replicated hardware modules, whether they be
processors, ALUs, or a combination of both [24, 15]. Fi-
nally, looming limits on energy and heat have led architects
to suggest trading power for performance by modulating the
clock frequency in different regions of a chip [19], dynam-
ically reducing memory structure sizes, or selectively dis-
abling microarchitecture components [9]. We expect that
future systems designers will take advantage of replication
and partitioning to meet these joint goals of power, perfor-
mance, reliability, and ease of design.

References

[1] T. Austin. DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design. International Symposium on Mi-
croarchitecture, pages 196–207, November 1999.

[2] D. C. Bossen, A. Kitamorn, K. F. Reick, and M. S. Floyd.
Fault-tolerant design of the ibm pseries 690 system using
power4 processor technology. IBM Journal of Research and
Development, 46(1):77, January 2002.

[3] R. Desikan, D. Burger, and S. W. Keckler. Measuring exper-
imental error in microprocessor simulation. In Proceedings
of the 28th Annual International Symposium on Computer
Architecture, pages 266–277, July 2001.

[4] E. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson.
A survey of rollback-recovery protocols in message-passing
systems. ACM Computing Surveys, 34(3):375–408, Septem-
ber 2002.

[5] F. Faggin, M. E. Hoff, S. Mazor, and M. Shima. The history
of the 4004. IEEE Micro, 6(16):10–20, December 1996.

[6] J. Gaisler. A portable and fault-tolerant microprocessor
based on the SPARC V8 architecture. In International Con-
ference on Dependable Systems and Networks, pages 409–
415, june 2001.

[7] B. A. Gieseke, R. L. Allmon, D. W. Bailey, J. Bradley, S. M.
Briton, J. D. Clouser, H. R. Fair, J. A. Farrell, M. K. Gowan,
C. L. Houghton, J. B. Keller, T. H. Lee, D. L. Leibholz, S. C.
Lowell, M. D. Matson, R. J. Matthew, V. Peng, M. D. Quinn,
D. A. Priore, M. J. Smith, and K. E. Wilcox. A 600MHz
superscalar RISC microprocessor with out-of-order execu-
tion. In Proceedings of the IEEE International Solid-State
Circuits Conference, pages 176–178, February 1997.

[8] S. Gupta, S. Keckler, and D. Burger. Technology indepen-
dent area and delay estimations for microprocessor building
blocks. Technical Report TR-00-05, Department of Com-
puter Sciences, The University of Texas at Austin, Austin,
TX, Feb. 2001.

[9] A. Iyer and D. Marculescu. Microarchitectural level power
management. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 10(3):230–239, June 2002.

[10] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam,
P. Patnaik, and J. Torellas. FlexRAM: Towards an Advanced
Intelligent Memory System. International Conference on
Computer Design, October 1999.

[11] J. Keller. The 21264: A Superscalar Alpha Processor with
Out-of-Order Execution. Microprocessor Forum presenta-
tion, October 1996.

[12] I. Koren and Z. Koren. Defect tolerant vlsi circuits: Tech-
niques and yield analysis. In Proceedings of the IEEE, vol-
ume 86, pages 1817–1836, September 1998.

[13] K. Krewell. Marketing PC Performance. Microprocessor
Report, November 2001.

[14] W. Maly and J. Deszczka. Yield estimation model for vlsi
artwork evaluation. In Electronic Letters, volume 19, pages
226–227, March 1983.

[15] R. Nagarajan, K. Sankaralingam, D. Burger, and S. W. Keck-
ler. A design space evaluation of grid processor architectures.
In Proceedings of the 34th Annual International Symposium
on Microarchitecture, pages 40–51, December 2001.

[16] S. Palacharla. Complexity-Effective Superscalar Processors.
PhD thesis, Department of Computer Sciences, University
Of Wisconsin Madison, 1998.

[17] S. K. Reinhardt and S. Mukherjee. Transient Fault Detection
via Simultaneous Multithreading. In International Sympo-
sium on Computer Architecture, pages 25–36, July 2000.

[18] E. Rotenberg. AR/SMT: A Microarchitectural Approach to
Fault Tolerance in Microprocessors. In International Sympo-
sium on Fault Tolerant Computing, pages 84–91, 1998.

[19] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Al-
bonesi, S. Dwarkadas, and M. L. Scott. Energy-efficient pro-
cessor design using multiple clock domains with dynamic
voltage and frequency scaling. In 8th International Sym-
posium on High-Performance Computer Architecture, pages
29–40, February 2002.

[20] The International Technology Roadmap for Semiconductors.
Semiconductor Industry Association, 2001.



[21] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Au-
tomatically characterizing large scale program behavior. In
In the proceedings of the Tenth International Conference on
Architectural Support for Programming Languages and Op-
erating Systems, October 2002.

[22] P. Shivakumar and N. P. Jouppi. Cacti 3.0: An integrated
cache timing, power and area model. Technical report, Com-
paq Computer Corporation, August 2001.

[23] L. Spainhower and T. A. Gregg. IBM s/390 parallel en-
terprise server g5 fault tolerance: A historical perspective.
IBM Journal of Research and Development, 43(5/6):863–
873, September/November 1999.

[24] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat,
B. Greenwald, H. Hoffman, P. Johnson, W. L. Jae-Wook Lee,
A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen,
M. Frank, S. Amarasinghe, and A. Agarwal. The RAW mi-
croprocessor: A computational fabric for software circuits
and general-purpose programs. IEEE Micro, 22(2):25–35,
March 2002.

[25] J. M. Tendler, J. S. Dodson, J. J. S. Fields, H. Le, and B. Sin-
haroy. Power4 system microarchitecture. IBM Journal of
Research and Development, 26(1):5–26, January 2001.


