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Abstract

Speculative Multi-Threading (SpMT) can improve
single-threaded application performance using the multi-
ple thread contexts available in current processors. We pro-
pose a minimal SpMT model that uses only two thread
contexts. The model achieves significant speedups for
single-threaded applications using a low-overhead scheme
for detecting and selectively recovering from data de-
pendence violations, and a novel Wrong Path Predic-
tor to reduce the number of speculative threads executing
along the wrong path. We also study the interactions be-
tween three previously proposed SpMT thread spawning
policies that can be implemented dynamically in hard-
ware – Fork on Call, Loop Continuation and Run Ahead
policies – and show it is beneficial to implement all
three policies together in a processor. While the individ-
ual thread spawning policies show performance bene-
fits of 14%, 5% and 4% respectively on our SpMT model
over a base processor that does not exploit SpMT, com-
bining all three policies shows an average performance
gain of 20%. Finally, we identify the sources of SpMT ben-
efits – on average, 58% of the performance benefits due to
SpMT comes from cache prefetching, 33% from instruc-
tion reuse, and 9% from branch precomputation and show
all three sources of SpMT benefits must be utilized to real-
ize the full potential of SpMT.

1. Introduction

Multithreaded processors are becoming increasingly
common. Major hardware vendors are providing mul-
tiple cores on chip (Power5 [6]) or multiple threads on
the same core (Pentium 4 [8]). While such designs bene-
fit throughput oriented applications, mechanisms that ex-
ploit this trend towards multithreaded architectures to help
single-thread performance are highly desirable.

Speculative Multi-Threading (SpMT) [1, 3, 5, 10, 15, 17]
is an approach to speed up the performance of single-
threaded applications by breaking the application into many
threads of control, each running on a different context. At
any time, the oldest thread is always non-speculative and
the remaining threads are speculative. The non-speculative
thread benefits from cache prefetching, instruction reuse,
and branch precomputation effects produced by the spec-

ulative threads resulting in improved single-threaded appli-
cation performance. Hence, SpMT is an attractive option for
applications running on multiple context processors that do
not exhibit thread-level parallelism. While SpMT has been
extensively studied, realistic implementations proposed typ-
ically use many thread contexts but gain little performance
on many non-numeric applications. Implementation over-
head and performance potential of a minimal SPMT model
that uses the least number of threads (only 2 contexts) are
not clear.

This paper presents a study of a low-overhead dual-core
SpMT model that exploits various sources of speculative
multithreading benefits: cache prefetching, branch precom-
putation, and instruction reuse. In this model, one core exe-
cutes the speculative threads, while the other executes non-
speculatively. To detect data dependence violations in the
speculative threads, the model features a simple register de-
pendence violation detection scheme that uses a single bit
vector, and a simple, novel memory ordering mechanism
that allows selective recovery from memory ordering vio-
lations in the speculative threads. When a data dependence
violation is detected, only instructions affected by data de-
pendence violations are re-executed, while the results of in-
structions that are executed by the speculative threads but
not affected by data dependence violations are buffered and
later committed by the non-speculative thread. The SpMT
model uses a cache hierarchy where the first level caches
are physically separate but logically shared for inter-thread
memory data value communication, and to allow the spec-
ulative threads to prefetch into the first level caches of the
non-speculative processor.

Using this SpMT model, we identify one key perfor-
mance challenge in speculative multithreading, and that is
ensuring the speculative threads remain on the correct path
with respect to the non-speculative thread. Wrong path exe-
cution is an important source of performance loss for SpMT
processors. Unlike conventional processors where a wrong
path execution is detected and corrected when the branch
is resolved, in SpMT processors the speculative threads
are executing based on incomplete information–the spec-
ulative thread lacks register values computed by the non-
speculative thread after the speculative thread is spawned.
We show significant performance loss due to wrong path
execution, yet prior work on SpMT has failed to address
this important aspect. To ensure speculative threads exe-
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Figure 1. SpMT Machine Model

cute along the correct path, we propose a novel Wrong Path
Predictor. The Wrong Path Predictor is based on the fact
that sometimes a speculative thread branch prediction could
convey better information about a program’s correct path
than the branch execution in the speculative thread context.
Section 4 discusses Wrong Path Predictor results in detail
and shows the mechanism significantly reduces the number
of speculative threads executing along the wrong path.

Paper Contributions: The paper makes the following con-
tributions:

1. A minimal dual-core SpMT model that achieves sig-
nificant performance benefits. The model uses a simple
memory ordering scheme that allows selective recovery of
results computed by speculative threads.

2. A novel Wrong Path Predictor to overcome a key
SpMT performance limitation.

3. A detailed study of the interaction of SpMT thread
spawning policies and their performance benefits.

4. Analysis of the source of performance benefits in
SpMT. We find 58% of the benefits comes from Instruction
and Data Cache prefetching, 33% from Instruction reuse
and 9% due to Branch precomputation.

This paper is organized as follows. Section 2 de-
scribes our SpMT machine model and Section 3 dis-
cusses our simulation methodology. Section 4 presents the
Wrong Path Predictor results. Section 5 compares differ-
ent thread spawning policies and their interactions. Sec-
tion 6 analyzes the source of SpMT benefits and Section 7
discusses related work. Finally Section 8 presents conclud-
ing remarks.

2. SpMT Machine Model

Our SpMT machine model uses 2 processor
cores/pipelines as shown in Figure 1. One of the cores is
the Non-Speculative Processor (NSP) and the other core is
the Speculative Processor (SP). Each core supports a sin-
gle thread context. The results in this paper were simulated
for Intel Itanium 2 [13] processor core.

(a) Procedure (b) Loop (c) Cache
Calls Continuations Misses
FOC LOOPC RA

Figure 2. Thread Spawning Policies

Only the NSP spawns threads and the SP speculatively
executes these threads. The NSP spawns threads (Fig-
ure 2) when it encounters a procedure call (FOC) or a loop
(LOOPC), and spawns a Run Ahead (RA) [4, 12] thread
once a load misses the cache and accesses DRAM. We
call such points spawn points. When the NSP spawns a
thread, it remembers the starting program counter of the
thread, which is the address of the first instruction af-
ter a call, end of loop, or a load that misses the cache.
We call the start of a speculative thread the specula-
tion point. While the NSP executes the code between the
spawn point and the speculation point (Figure 2, solid
line), the SP executes code after the speculation point (Fig-
ure 2, dashed line).

The SP executes using the live-out register values from
before the spawn point as inputs. Since the SP does not have
the results computed between the spawn point and the spec-
ulation point, SP’s execution of the threads is data specu-
lative and hence we call these threads speculative threads.
SP’s execution cannot begin until it receives all of NSP’s
live-out registers from before the spawn point. We model a
minimum register transfer time of 2 cycles. For design sim-
plicity, we do not use value prediction to initialize live-in
values to a thread.

The SP cannot modify the architectural state of the pro-
cessor and hence does not commit its results to the archi-
tectural register file or to the memory system. Instead, the
SP accumulates its execution results in a Trace Buffer (TB).
Once the NSP reaches a thread’s speculation point, it en-
ters replay mode and starts reusing/committing valid results
from the thread’s TB, while re-executing instructions from
the SP thread that are invalid due to data mis-speculation.
Our SpMT model uses eight 512-entry TBs. There are more
TBs (8) than thread contexts (1) in the SP to handle nested
procedure calls and loops. In the event of such nested pro-
gram structures, a thread corresponding to an outer proce-
dure/loop gets killed to give way to a thread correspond-
ing to an inner procedure/loop. The results from the killed
outer procedure/loop thread are kept in a trace buffer for
later reuse by the NSP. Thus, in our model, even though
only one speculative thread can execute at any time in the
SP, the results of up to eight speculative threads can be wait-
ing to be committed by the NSP.



During replay mode, when the NSP replays all instruc-
tions in the trace buffer computed by the SP, or if the NSP
finds the SP has mis-executed a branch and has gone down
the wrong path, the NSP exits replay mode, resets the spec-
ulative thread, and resumes regular execution.

2.1. SpMT Memory Communication

To handle communication of memory data values, we
have a single 128 entry (32 sets, 4 way associative) store
buffer in the SP. The store buffer is indexed by load or store
address. Stores from the SP write to the store buffer that
forwards data to later speculative loads to the same mem-
ory address from the same thread. When a new thread starts
executing in the SP, the store buffer is cleared.

“NSP stores” to “SP loads” data communication happens
using shared data caches at all levels in the hierarchy. The
level one data caches are physicaly separate but are logi-
cally shared in SpMT mode since committed stores from
the NSP and line fills from the L2 cache write to the L1
caches of both the NSP and the SP. The other cache lev-
els are physically shared. This organization lets loads in the
SP prefetch (and in some cases, pollute) data values needed
by the NSP. If the SP processor issues a load that depends
on a non-committed NSP store a memory dependence vio-
lation occurs that will later be detected and corrected by the
NSP processor, as described in the next subsection.

2.2. SpMT Data Dependence Violation Detection

To identify which instructions can be reused from the
TB without re-execution, the NSP needs to resolve regis-
ter and memory dependences between the non-speculative
thread and a speculative thread.

2.2.1. Register Dependences. To correctly resolve regis-
ter dependences, the NSP maintains a list of all registers
that it modifies between the spawn point and the speculation
point1. During replay mode, the NSP re-executes only in-
structions dependent on one of the modified registers. This
information is propagated down dependence chains using
a simple bit vector, with a single bit per register. The re-
execution information can be determined very early in the
pipeline (in the register rename stage) and hence instruc-
tions not requiring re-execution simply pass through the
pipeline similar to a no-op and get committed.

2.2.2. Memory Dependences. To detect memory depen-
dence violations due to SP load execution, the NSP uses a
load buffer.

1 The Pentium architecture does not use a register stack for procedures
like Itanium. Hence, register value matching is needed to identify SP
FOC mis-speculated inputs after NSP reloads registers from memory
stack.

NSP Store Address match +
ID mismatch

NSP Store Address match +
ID match + Store reuse

NSP Store Address match +
ID match + Store re−execute

Data Valid = 0 Data Valid = 1

SP Forwarded Load
SP Cache Load

Figure 3. Load Buffer Entry State Diagram

Load Buffer Organization: We use a 512 entry, 4 way as-
sociative load buffer in the NSP. The load buffer is accessed
using load and store addresses. Each entry in the load buffer
has an address tag to identify the load, a thread ID to iden-
tify the speculative thread to which the load belongs, and a
store ID to identify a forwarding store if the SP store buffer
has forwarded data to the load. Each load buffer entry also
has a Data Valid bit that indicates if such forwarding was
valid or not.

Load Operation in the SP: When a load executes in the SP,
it is allocated a load buffer entry. In case the store buffer for-
wards to the load, the forwarding store ID and thread ID are
written in the entry, and the data valid bit is set to 0 indicat-
ing that the forwarding ID needs to be validated later by the
NSP processor. Otherwise, the load gets its data from the
cache and the data valid bit in the load buffer entry is ini-
tialized to 1, as shown in Figure 3. If there is no free load
buffer entry in the set corresponding to the load address, the
TB entry of the load is marked as having to re-execute dur-
ing replay mode.

NSP Stores Snoop Load Buffers: The NSP re-validates
all load-store dependences observed by the SP thread. All
stores are committed in-order by the NSP and snoop the
load buffer. Multiple stores can hit the same load buffer en-
try, but the last store that hits should be the data forwarding
store since stores are committed to memory in order.

Figure 3 shows the state transitions of the load buffer en-
try Data Valid bit. The final value of the Data Valid bit de-
pends on the last store that hits. If the ID of the last store
matches the forwarding store ID in the entry, the valid bit is
set to 1. Otherwise, the valid bit is cleared. Moreover, in or-
der to support selective recovery of instructions affected by
memory dependence violations, when a store ID match oc-
curs on a snoop hit and the store is re-executing due to an
earlier data dependence violation, the data valid bit is set to
0. This way, load instructions dependent on a re-executed
store can be identified and re-executed.

NSP Loads Snoop Load Buffer: The NSP issues all loads
to check the Data Valid bits in the load buffer entries of
their speculative counterparts. If the Data Valid bit for a
load is 0, a memory dependence violation has occured and
the pipeline is flushed to re-execute the load and all instruc-
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Figure 4. Branch Example

tions after it in the pipeline.

Minimizing Costly Pipeline Flushes: A valid bit in the
trace buffer load entry mirrors the Data Valid bit in the load
buffer entry. The TB entry valid bit is checked early in the
pipeline when a NSP load is renamed. This early detection
of memory dependence violations often allows the NSP to
re-execute and correct a mis-speculated load and its depen-
dents, without having to flush the pipeline.

2.3. Wrong Path Predictor

Branch mis-predictions and the associated wasted spec-
ulative execution are a known problem in conventional
micro-architectures. They are more of a problem in a ma-
chine exploiting SpMT for the following reason. Since the
SP executes using speculative data (the SP does not have the
results of computations that occur between the spawn point
and the speculation point), often the SP is unaware of the
program’s correct path. Hence it is possible that even after
a branch has finished execution in the SP, the SP may con-
tinue execution along the wrong program path.

Consider the scenario shown in Figure 4, where a branch
(B1) in the speculative thread is dependent on a result (R1)
that is computed by instruction I1 in the NSP. Assume B1 is
‘Taken’. However, since the value of R1 is not available to
the SP, SP’s execution may incorrectly resolve B1, i.e. SP’s
execution using the wrong value for R1 may indicate B1
should be ‘Not Taken’. Once B1 has been resolved by the
SP, execution will resume/continue along the ‘Not Taken’
path in the SP. However, since the correct direction for B1 is
‘Taken’, the SP must be prevented from executing along the
‘Not Taken’ path and forced to continue down the ‘Taken’
path. We use a Wrong Path Predictor (WPP) for this pur-
pose. The WPP is trained to detect cases where the path
found by SP’s execution does not match the actual program
path. In such cases, it will be beneficial to follow WPP’s
predicted path rather than SP’s execution path.

The WPP chooses between SP’s branch prediction and
the branch outcome computed by SP’s execution. Since the
purpose of the WPP is to detect cases where SP’s execu-
tion does not match NSP’s execution, the WPP is trained
using NSP’s execution since the NSP alone knows the pro-
gram’s correct path. The WPP’s choice matters only during

the event that SP’s prediction and the branch outcome com-
puted by SP’s execution differ. If the WPP chooses SP’s pre-
diction and the SP determines that the branch execution dif-
fers from the branch prediction, the SP ignores the branch
execution and continues executing along the predicted path
without invoking a branch recovery event.

3. Simulation Methodology

3.1. Experimental Setup

Our simulator is cycle-accurate and execution-driven,
running binaries compiled with Intel Electron compiler [2,
9] for the Itanium architecture with maximum compiler op-
timizations, including those based on profile driven feed-
back, such as aggressive software prefetching, software
pipelining, control speculation and data speculation.

We use 9 benchmarks (crafty, gap, gcc, gzip, mcf,
parser, twolf, vortex and vpr) from the SPECint2000
suite for which user binaries are available to us. We omit
the SPECfp2000 benchmarks because they have a lot
of loops and hence benefit the most from the loop itera-
tion thread spawning scheme (LOOPI). The LOOPI scheme
works best with compiler support to setup loop index vari-
ables and minimize loop carried dependences [16]. Since
this paper focuses on hardware only schemes, we present
all results using just the integer benchmarks.

We use the train data sets of the benchmarks. For each
benchmark, we execute 5 different samples of 2.5 million
instructions each. We fast-forward the simulator for 1 bil-
lion (1B), 1.5B, 2B, 2.5B, and 3B instructions for the dif-
ferent samples. Since the complete runs of crafty, gzip, and
parser run longer than the other benchmarks, these three
benchmarks are sampled at 11B, 11.5B, 12B, 12.5B, and
13B instructions. The results presented for each benchmark
are averages of the 5 samples. We warm up the caches be-
fore the start of each simulation.

3.2. Base Machine Parameters

Our base machine smulator models an EPIC Itanium 2
processor [13]. It is a 2-bundle wide machine where each
bundle comprises up to 3 instructions. It also consists of a
16KB L1 cache with a 2 cyle latency, a 256KB L2 cache
with a 6 cycle latency and a 3MB L3 cache with a 14 cy-
cle latency, on die. Our base machine uses a 2K entry gshare
branch predictor with a 11-bit global history. Since our base
processor uses an in-order execution model, we did not ex-
periment with complex branch predictors.

3.3. Thread Spawning Policy Implementation

This section presents implementation details specific to
individual thread spawning policies.



Fork On Call (FOC) Policy: For the FOC policy, a proce-
dure call instruction is the spawn point and the first instruc-
tion after the corresponding return instruction is the specu-
lation point. The spawn point and speculation point can be
trivially identified by examining the instruction opcode and
the current program counter (PC).

Loop Continuation (LOOPC) Policy: For the LOOPC
policy, we consider any backward branch as a potential
loop. Thus, any backward branch is a potential spawn point.
If the same backward branch is encountered multiple times
consecutively corresponding to successive iterations of a
loop, only one LOOPC thread is spawned. We also need
the PC of the first instruction after the loop, to be used as
the thread speculation point. For most loops, it is the fall-
through PC of the loop’s backward branch. However, for
some loops the loop exit may be a taken branch in the mid-
dle of the loop body and identifying the speculation point in
such cases may not be trivial.

For this purpose, we monitor the NSP’s commit stream
and associate the first PC greater than the loop’s backward
branch as the speculation point for the loop. This works well
in most cases, but in some cases the first PC following a
loop could vary and hence the speculation point predicted
by the above scheme may never be reached after loop exit.
We have a throttling mechanism to weed out such threads
from being spawned after several consecutive failures to
reach the speculation point.

Run Ahead (RA) Policy: For the RA policy, an L3 cache
load miss is the spawn point and the first instruction after
the load is the speculation point. The RA thread executes in
the SP and can continue execution even after the cache miss
is satisfied. In order not to be constrained by a finite window
size, the speculative thread pseudo-commits [12] completed
instructions as well as instructions dependent on incomplete
loads and frees up window space. We extened the RA model
to include instruction reuse in addition to prefetching bene-
fits.

4. Wrong Path Predictor Results

This section presents the performance benefits of the
Wrong Path Predictor using FOC spawn policy. The WPP
benefits for the other policies are similar.

Figure 5 shows the performance benefits due to SpMT
with and without the WPP. The performance improvement
of SpMT with the WPP over without the WPP, is 4% on av-
erage. We find WPP reduces the percentage of threads get-
ting killed because they execute along the wrong path by
50% on average. Correspondingly, the amount of wasted
speculative execution due to threads executing along the
wrong path also decreases from 28% to 15%.

The benchmarks twolf and vpr benefit the least from
WPP. For these benchmarks, both SP’s prediction and the
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Figure 5. Wrong Path Predictor Benefits
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Figure 6. SpMT Performance Benefits

speculative execution are wrong and hence the WPP does
not help. gzip benchmark benefits the most from WPP. For
gzip, 80% of the threads are killed because they execute
along the wrong path without the WPP. With WPP this num-
ber drops to almost 0%. The performance benefit due to
SpMT increases from -1% without WPP to 16% with WPP.

5. Thread Spawning Policy Interactions

In this section we use our SpMT model with the Wrong
Path Predictor turned on, and present results on individual
thread spawning policies as well as their interactions and
benefits when combined all together.

5.1. Individual Thread Spawning Policies

Figure 6 shows the performance benefits due to the three
policies. The average performance gain due to the FOC,
LOOPC and RA policies are 14%, 5% and 4% respectively.

The benchmarks gap, gcc and vortex benefit the most
from the FOC policy. These benchmarks have a procedure
call every 200 instructions and their performance gain from
FOC is greater than 20%. gcc shows the highest perfor-
mance gain of 25%. parser too has a call every 200 instruc-
tions but most of these called procedures are small (less than
60 instructions) and so the NSP catches up quickly with the
SP. crafty and gzip have a call nearly every 400 instructions



Table 1. Thread Policy Characteristics

Characteristic FOC LOOPC RA
Useful Speculative Execution 76 57 84
Re-execution percentage 28 31 21
Speculative Processor Busy 42 18 6

and their performance gain due to FOC is around 15%. vpr,
twolf and mcf have fewer than one call every 1000 instruc-
tions and their performance benefit from FOC is also lower.

The benchmarks twolf and vpr benefit the most from the
LOOPC policy, 16% and 15% respectively. For these two
benchmarks, a LOOPC thread is spawned every 500 instruc-
tions and each thread executes 200 instructions on average.
The other benchmarks either have very few loops (less than
one loop every 1000 instructions) or short loops (average
LOOPC thread length less than 100 instructions) and hence
do not benefit much from the LOOPC policy.

The benchmark mcf benefits the most from the RA pol-
icy (21%). mcf misses the L3 cache often and stalls wait-
ing for data from main memory. An RA thread is created
nearly every 600 instructions for mcf and each thread ex-
ecutes on average 200 instructions. The benchmarks twolf
and vpr also have a significant number of L3 cache misses
(and hence RA threads) and show 9% and 6% performance
improvements respectively.

Table 5.1 shows different characteristics of each thread
spawning policy. The Useful Speculative Execution met-
ric shows the percentage of instructions executed by the
SP, that are replayed by the NSP. The remaining instruc-
tions executed by the SP are wasted because they are on the
wrong path due to data mis-speculation. The Re-execution
percentage metric shows the percentage of replayed instruc-
tions that need to be re-executed. The LOOPC policy has
more wasted speculative execution and more re-executions
than the FOC and RA policies. This suggests that for the
LOOPC threads, there are more data dependences between
instructions before and after the speculation point. Note that
less than a third of the replayed instructions need to be re-
executed for all the policies.

The Speculative Processor Busy metric shows the per-
centage of cycles the SP is busy executing speculative
threads. Since the FOC policy shows the most benefits, it
also keeps the SP busiest. The individual benchmarks that
benefit the most from the LOOPC and RA policies do oc-
cupy the SP more than the average. From the Speculative
Processor Busy numbers, we can see that the SP is not busy
all the time with just one thread spawning policy and there
is scope for increasing the SP busy cycles by implement-
ing more than one policy at a time.

The best individual spawning policy in our model is
FOC, with 14% performance gain. Next section shows the
performance gain from combining all spawning policies.

Table 2. Speculative Coverage Intersection

F L R FL LR RF FLR
crafty 34 4 0 0 0 0 0
gap 48 4 1 2 0 0 0
gcc 32 4 0 1 0 0 0
gzip 37 7 0 5 0 0 0
mcf 2 1 32 0 0 0 0
parser 21 3 0 1 0 0 0
twolf 6 27 15 0 5 2 0
vortex 53 4 0 1 0 1 0
vpr 22 31 8 4 1 1 0
average 28 9 6 2 1 0 0

5.2. Combined Thread Spawning Policies

Before combining the different policies, we study the in-
tersection in speculative coverage areas between the poli-
cies. Speculative coverage area is the region of a program
benefitting from SpMT. Since two different policies could
be helping the same portion of an application, such a study
would give us an idea of the maximum speculative coverage
area we can hope to achieve by combining these policies. To
do this, for each thread spawning policy, we generate traces
of all instructions that were speculatively executed and then
retired using that policy. We then post-process the traces, to
determine the intersecting and non-intersecting portions for
different combinations of policies.

Table 5.2 provides the speculative coverage intersection
results. In Table 5.2, we refer to the FOC, LOOPC and RA
policies as F, L and R respectively. The first three columns
show the areas exclusively covered by individual policies
and indicate no policy is a proper subset of another policy.
Each policy has some exclusive speculative coverage area
and hence implementing all three policies together in a ma-
chine could be beneficial.The next four columns show the
common speculative coverage areas for groups of two and
three policies. These numbers indicate there is not much in-
tersection in the speculative coverage areas of the three poli-
cies. The benchmarks gzip, twolf and vpr have some inter-
sections between the FOC, LOOPC and RA policies, but
the intersections are not dominant.

Figure 7 presents performance results for all policies
together (F+L+R). For each benchmark, the MAX(F,L,R)
scheme statically selects a single policy that performs the
best for that benchmark. We find for crafty, parser and vpr
benchmarks, the benefits due to F+L+R is significantly bet-
ter than any individual policy. For vpr, the maximum per-
formance gain from any individual policy is 15% achieved
by the LOOPC policy while F+L+R achieves a 22% per-
formance improvement. On average, F+L+R achieves an
overall speed up of 20% over a base configuration without
SpMT. This compares well with the 18% for MAX(F,L,R)
(which would also require all three policies to be imple-
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Figure 8. Source of SpMT Benefits

mented in a machine) and 14% if only one thread spawning
policy were to be implemented.

6. Source of SpMT Benefits

SpMT benefits come from three main sources: cache
prefetch, reusing speculative thread instructions that do
not violate data dependences, and branch precomputation
where the NSP avoids mispredictions from branches pre-
computed by the speculative threads. To isolate the bene-
fits of SpMT from cache prefetching, instruction reuse and
branch precomputation, we first turn off branch precompu-
tation by not reusing branch execution information from the
TB during replay mode. Next, we disable instruction reuse
altogether and use SP’s execution only for prefetching.

Figure 8 plots the portion of the SpMT benefits due to
the three different sources listed above. These results are
for the combined F+L+R configuration. On average, 58%
of the SpMT benefits are due to Instruction and Data Cache
prefetching, 33% due to Instruction reuse, and 9% due to
Branch precomputation. However, these results vary for the
different benchmarks. The benchmarks gap and vortex ben-
efit the most from Instruction reuse, while gzip and parser
benefit equally from both cache prefetching and instruction
reuse. Hence, to realize the full potential of SpMT, all three
sources of SpMT benefits must be utilized.

7. Related work

SpMT Models: The Multiscalar [5, 15] model relies on
the compiler to identify parallel tasks and to convey reg-
ister and memory dependences between tasks. Our model
is completely dynamic and maintains binary comaptibil-
ity. DMT [1] is a hardware-based scheme but requires a
large and complex data-flow engine outside the execution
pipeline including a large ROB that spans all threads to re-
cover from data and control mispredictions. The SpMT ar-
chitecture in this paper has a continuous non-speculative
thread that consumes speculative thread results, detects data
dependence violations, and initiates recovery.

Marcuello and Gonzalez [10] propose a Data Specula-
tive Multi-threaded (DaSM) Architecture to parallelize loop
iteration threads. They use data value prediction, and pre-
dict number of reads and writes in each thread. Their re-
covery mechanism is coarse and they squash a thread vio-
lating a data dependence and all subsequent threads. In con-
trast, our model does not require value prediction or number
of reads and writes prediction, and allows fine grain recov-
ery.

Zilles and Sohi [17] use speculative helper threads to
prefetch data required by later delinquent loads and to pre-
execute hard to predict branches. Their model is simple but
achieves only two of the three benefits of SpMT - cache
prefetching and branch precomputation. However, our re-
sults show that instruction reuse constitutes a significant
portion (33%) of the benefits of SpMT on average. Instruc-
tion reuse is the main contributor to SpMT benefits for sev-
eral benchmarks as we see in Section 6.

The Slipstream processor [14] uses two streams, an ad-
vanced stream (A-stream) and a redundant stream
(R-stream). The A-stream prefetches data and control in-
formation to the R-stream to use. The R-stream verifies
A-stream’s exeuction and identifies ineffectual instruc-
tions and passes the information to the A-stream, so
it can skip executing those instructions. In SpMT, the
SP core is similar to the A-stream that runs ahead and
the NSP that consumes the results of SP’s computa-
tion is similar to the R-stream. In SpMT during replay
mode, the NSP needs to execute only a subset of instruc-
tions exeucted by the SP that need re-execution. However,
the R-stream in Slipstream needs to execute all program in-
structions (albeit at a faster rate).

SpMT Thread Spawning Policies: Marcuello et. al. [11]
present a control quasi-independent points (CQIP) scheme
where the compiler determines points in the program that
have very few control and data dependences. They show the
CQIP scheme performs better than a combination of FOC,
LOOPI and LOOPC policies, using an aggressive 16 pro-
cessor elements SpMT model. Codrescu and Willis [3] eval-
uate the Fork On Call (FOC) and Loop Iteration (LOOPI)
thread spawning policies individually and propose improv-



ing speculative thread coverage using the static mem-slicing
algorithm to create additional threads at memory operation
boundaries. In contrast, our SpMT model uses simple ex-
tensions to a dual-core processor and a combination of the
dynamic thread spawning policies, FOC, LOOPC and RA
to exploit the benefits of SpMT.

SP Branches: Gummaraju and Franklin [7] deals with frag-
mented branch history and incorrect history to improve
branch prediction for SpMT processors. They do not ad-
dress incorrect SP branch execution.

8. Concluding Remarks

This paper presents a dual-core speculative multithread-
ing design that achieves significant performance benefit
with low-overhead hardware. One key design feature of the
proposed model is a novel and effective inter-thread mem-
ory dependence handling scheme. We identify a key prob-
lem of SpMT processors that previous research in the field
has not addressed – correctly resolving branch directions in
the back-end of a speculative processor – and propose the
Wrong Path Predictor optimization to handle it. The Wrong
Path Predictor significantly reduces the number of specu-
lative threads executed along the wrong path and improves
the overall performance gain due to SpMT. Measurements
using our SpMT model reveals all three policies, Fork on
Call, Loop Continuation and Run Ahead, are beneficial for
different applications or different portions of the same ap-
plication, and that all three sources of SpMT benefits, cache
prefetching, branch precomputation and instruction reuse,
must be harvested to realize the full potential of SpMT.
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