
Automatic Synthesis of Composable Sequential Quantum Boolean Circuits

Li-Kai Chang and Fu-Chiung Cheng
Department of Computer Science and Engineering, Tatung University

Taipei, Taiwan, R.O.C.
{lkchang, cheng}@gamma.cse.ttu.edu.tw

Abstract

This paper presents a methodology to transfer
self-timed circuit specifications into sequential quantum
Boolean circuits (SQBCs) and composable SQBCs
(CQBCs). State graphs (SGs) are used to describe the
behaviors of self-timed circuits and then are translated
into SQBCs based on Toffoli gates. The concept of IP
(Intellectual Property) reuse is applied to the
constructed SQBCs to produce reusable and composable
quantum Boolean circuits (CQBCs). Therefore, these
reusable CQBCs as basic modular components can be
exploited to construct more complicated quantum
Boolean circuits.

A set of self-timed components is successfully and
automatically synthesized into CQBCs by our
methodology. These CQBCs can be used as building
blocks to compose control-path components of self-timed
systems.

Keywords: Quantum Boolean circuits, Sequential
circuits, Asynchronous circuits, State graph, Synthesis.

1. Introduction

Due to the discovery of Shor’s prime factorization
and Grover’s fast database search algorithm [12, 13]
quantum computing becomes one of the most rapidly
expanding research fields. To perform quantum
algorithms, required unitary operations should be
expressed as a sequence of basic operations which can
be implemented by a quantum computer. To implement
a quantum computer, quantum Boolean circuits need to
be constructed first [1].

The major differences between conventional
circuits and quantum ones are their logic gates and wires
[6]. Firstly, conventional circuits are based on AND, OR
and NOT gates and quantum Boolean circuits are based
on NOT, Controlled-Not and Controlled-Controlled-Not
gates (i.e. Toffoli gates) [8]. Secondly, the wires in
conventional circuits are used to connect components.
This is very different in quantum Boolean circuits
because wires represent time evolution.

Due to the above differences, a completely different
methodology to synthesize quantum Boolean circuits
must be investigated and proposed. Tsai and Kuo [1]
propose a methodology to synthesize combinational
quantum Boolean circuits based on transformation tables.
Any general m-to-n bit combinational Boolean logic can
be synthesized by using Toffoli gates. Iwama et al. [6]
propose transformation rules for optimize
Controlled-Not-based combinational quantum Boolean
circuits and point out a design theory for a sequential
quantum circuit is very interesting. Miller et al. [15]
propose a transformation based algorithm for
synthesizing the combinational circuits and reduction
rules for optimizing the synthesized circuits. Younes and
Miller [17] propose an automated method to build

CNOT based quantum circuits for Boolean functions. To
the best of our knowledge there are no related works on
synthesizing sequential circuit behaviors into quantum
Boolean circuits yet.

This paper presents a novel methodology to transfer
self-timed circuit specifications into composable
sequential quantum Boolean circuits. State graphs [4, 9]
are used to describe the behaviors of self-timed circuits
and then are translated into SQBCs based on Toffoli
gates by our synthesis tool.

A set of self-timed components [7, 14] is
successfully and automatically synthesized into CQBCs
by our methodolgy. These CQBCs can be used as
building blocks to compose control-path components of
self-timed systems.

The rest of this paper is organized as follows:
Section 2 introduces basic knowledge on quantum
systems and self-timed systems. Section 3 and 4 present
our methodologies to synthesize SQBCs and reusable
CQBCs based on state graph specifications, respectively.
The experimental results of SQBCs and CQBCs
synthesis are given in section 5. Section 6 concludes this
paper as a whole and provides some suggestions for
future work.

2. Background

This section provides the background knowledge
on quantum systems and self-timed systems. For
quantum systems quantum bits, quantum gates and
quantum circuits are briefly described and for self-timed
system, state graphs are presented and used in this paper.

2.1. Fundamental of quantum systems

Circuit design and data representation in
conventional computers and quantum ones are different
in nature. In classical computers data are represented by
bits and circuits are networks of logic gates while in
quantum computers data are represented by quantum
bits (Qubits) and quantum circuits are made of a
sequence of unitary operations which are represented by
quantum gates and quantum wires [2, 6, 8, 11].

2.1.1. Quantum gates

In classical gates, any function can be realized by
NAND gates alone, which is thus known as a universal
gate. In quantum Boolean circuits, any multiple qubit
logic can be composed from controlled-NOT (CNOT)
type logic gates.

In order to construct quantum Boolean circuits, any
classical circuit can be replaced by an equivalent circuit
of only reversible element, by making use of a reversible
gate known as the Toffoli gate [8, 12, 13].

The Toffoli gate, shown in Fig. 1(a), has three
qubits. The third qubit is the target qubit which is

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

flipped when both control qubits (i.e. the first two qubits)
are set to 1.

The action of the Toffoli gate can be summarized as
|a, b, c |a, b, c ab . Furthermore, applying the
Toffoli gate twice has the effect |a, b, c |a, b, c ab

 |a, b, c , and thus the Toffoli gate is reversible.

(a) (b)

Figure 1: (a)Toffoli gate and (b)a quantum Boolean circuit

2.1.2. Quantum Boolean circuits

In quantum computing the behaviors of a quantum
circuit are represented by a sequence of unitary
operations applied to the qubits of the quantum circuit.
The results can be read out by measuring the quantum
states of the qubits. That is quantum circuits consist of a
sequence of unitary operations represented by quantum
gates and quantum wires.

Fig. 1(b) shows a QBC with N qubits, denoted by
| 1 | 2 …| N . The sequence of unitary operations are
applied from left to right to corresponding qubits | 1 to
| N . | 1 | 2 …| N on the left-head-side is regarded as
the input to the quantum circuit, and the states on the
right-head-side side keep the final result. A quantum
Boolean circuit can use any finite number of auxiliary
qubits for storing intermediate states [6].

There are three different kinds of logic gates in
Toffoli gates: one-controlled gates (denoted by closed
circles), zero-controlled gates (denoted by open circles)
and target gates which are similar to sum (mod 2). When
all controlled gates in the same wire (i.e. quantum
operation) are active, the target gate flips [8].

2.2. Self-timed systems

The operations of a quantum Boolean circuit are
quite different from those of a classical synchronous
circuit which are controlled by a global clock. In
quantum Boolean circuits, a sequence of operations are
applied to the qubits and are not controlled by a global
clock. Furthermore, a quantum operation cannot be
applied to a QBC unless the previous one is complete
and the quantum system is stable. This behavior is
similar to the fundamental mode of asynchronous
circuits [9, 10, 16].

In the fundamental mode of asynchronous circuits,
when the inputs of logic block are triggered, outputs are
changed by the inputs and current states, and the next
states of circuits are stored in the latches. The changes in
inputs are forbidden until the system is stable.

Because the operations of a quantum Boolean
circuit are similar to asynchronous circuit behaviors in
the fundamental mode [9, 16], we exploit the
specifications of asynchronous circuit design to
construct sequential quantum Boolean circuits. Note that
asynchronous circuits can also operate in input-output
mode. For more information on this topic please refer to
[9, 10].

2.2.1. State graph

State graphs (SGs) [3, 4] can be used to specify the

behaviors of circuits. State graphs are directed binary
coded graphs containing states (or nodes) and directed
edges. An edge in SGs is labeled with input or output
signal transitions. Each signal transition can be
represented as xi or xi for the rising (0 1) or falling
(1 0) transition of signal xi.

A node in SGs represents one state of the circuit.
Each state s S is labeled with binary code s(1),
s(2), …, s(n) , and the value of s(i) is 0 or 1. The state
binary code is formed by an input binary code and an
output binary code. Suppose the circuit has m-bits input
and n-bits output. The input and output binary codes of
node i are defined as follows:

ib(i) {0, 1}m is the input binary code function,
ob(i) {0, 1}n is the output binary code function.
The state binary code of node i, sbc(i), can be

defined as ib(i) + ob(i) where the symbol ‘+’ denotes the
concatenation. And, the k-th state bit of node i is denoted
as sbc(i, k).

For example, a modulo-3 element [7] has one input
a and two outputs, Y (yes) and N (no). The specification
of the module-3 in prefix-closure form is
Pref(a?N!a?N!a?Y!)*. That is output Y is triggered when
input a is triggered three times. Valid partial behaviors
are: a, a N, a N a, a N a N, a N a N a, a N a N a Y, …. A
possible implementation of the modulo-3 element using
XOR and toggle elements is shown in Fig. 2(a).

(a) (b)

Figure 2: The (a) classical circuit and (b) SG of modulo-3

The SG of the modulo-3, shown in Fig. 2(b), has 6
states and 6 edges. The state binary code of node 1 is
“000” since the ib(1) is ‘0’ (i.e. a=0) and ob(1) is “00”
(i.e. Y=0, N=0).

2.2.2. Unique state coding

An unambiguous state assignment is required for
deriving logic. An SG has the Unique State Coding
(USC) [3, 18] property if no two distinct states in the
state graph have identical binary codes. A state graph is
USC-conflict if any two states in the state graph have
the same state binary code. To be synthesizable, a state
graph specification of a circuit must satisfy the USC
requirement.

3. Synthesis of sequential QBCs

For synthesizing SQBCs state graphs are used to
specify the behaviors of circuits and are transferred to
SQBCs automatically. The complete synthesis flow of
our synthesis methodology, shown in Fig. 3, consists of
five main steps.

First, SGs (i.e. classic circuit specifications) are
transformed to USC reversible state graphs (USCRSGs)
by using unique state encoding. Second, USCRSGs are
transformed to self-timed transformation graphs (STTGs)
which are quantum circuit specifications. Third, STTGs
are transformed to decomposed STTGs (DSTTGs). Then,
the DSTTGs can be optionally transformed into composable

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

and thus reusable STTGs. Fourth, DSTTGs are synthesized
into SQBCs based on Toffoli gates. Finally, the SQBCs
are optimized based on reduction rules [1].

 Figure 3: Synthesis flow of SQBCs

3.1. Perform reversible checking and unique
state encoding

To be synthesizable, USC property is required for
both classic and quantum circuits. Quantum circuits
must consist of only reversible gates; therefore, to be
synthesizable for QBCs, a SG must have reversible
property. Here we define reversible SG without proof as
follows: a SG is irreversible if for any node j in the SG
either the indegree(j)=1 or indegree(j)>1 and for all
source nodes of j, i1, i2,…, ik, ob(i1)=ob(i2)=…=ob(ik).
The USGSG shown in Fig. 2(b) is reversible since the
indegree of all nodes in USCRSG is equal to one.

Figure 4 illustrates an irreversible SG which is the
circuit specification of a call module [16]. This SG
cannot be synthesized since node 10 has two source
nodes, node 7 and node 8 and ob(node 7 ob(node 8).

Figure 4: The irreversible SG of call module

Since an unambiguous state assignment is needed
to construct both classic circuits and SQBCs, unique
state encoding algorithm is applied first to avoid USC
conflict. To satisfy the USC requirement, different
auxiliary state bits are appended to the original state
binary code to distinguish states in SGs. Two states
(nodes) are called USC-conflict states if and only if their
state binary codes are the same. If there are s states in
the SG and the number of USC-conflict states for each
state binary code is di (0 i s), then the number of
auxiliary state bits needed is k = log max(di) .

For example, the states 1, 3 and states 4, 6 in the
RSG of modulo-3 of Fig. 5, have the same state binary

codes. Thus one auxiliary state bit is appended to each
node in the USCRSG. The auxiliary state bit appended to
states 1 and 6 is ‘0’ and to states 3 and 4 is ‘1’. The
USCRSG for modulo-3 is shown in Fig. 5(a). Note that
there are some other ways to form a USC. [3, 18]

Figure 5: (a) The USCRSG and (b) STTG of modulo-3

3.2. Construct ST transformation graphs

For a USC reversible state graph (USCRSG)
specifying a sequential circuit with m-bit input, n-bit
output and e edges (i.e. e next-state functions), the
corresponding self-timed transformation graph (STTG)
is a hyper-graph which consists of e transformation
sub-graphs (TSG) and each TSG consists of two nodes
connecting to each other by two direct edges. If the
nodes in a TSG have the same state binary code, such a
sub-graph degenerates into a self-loop sub-graph. A
USCRSG is transformed into a STTG which is the
specification for constructing QBC.

Each edge in a STTG represents a transition from
one state to another. For each edge e with source node i
and target node j in a USCRSG, a corresponding
transformation sub-graph (TSG) is formed for the target
node j. The TSG consists of two new nodes source and
target connecting to each other by two directed edges
(i.e. source target, target source). These two direct
edges are called quantum links and are marked in dashed
lines.

The quantum states for the source node and target
node in each TSG are reversible due to the quantum
links while applying quantum operations.
The state binary codes of the source and target nodes are
labeled with ib(j) + ob(i) + ab(i) and ib(j) + ob(j) + ab(j),
respectively. The function ab(i) is the binary code
function of auxiliary state bits which is similar to ib(i)
and ob(i) in section 2.2.1.

For example, the USCRSG of modulo-3, shown in
Fig. 5(a), can be transferred to the STTG, shown in Fig.
5(b). The STTG contains 6 TSGs. The dashed line
connected two nodes in a TSG are the quantum links.

3.3. Perform state decomposition

To construct SQBCs based on Toffoli gates, the
state binary codes of adjacent nodes in the TSGs must
differ in only one bit [1]. This property can be retained
by performing state decomposition.

If two nodes in a TSG have Hamming distances
more than one, they have to be decomposed and some
appropriate states are added between them so that any
adjacent states differ only one bit. Furthermore, the
added states must be never used in the STTG.

Taking the STTG of modulo-3, shown in Fig. 5(b),
as an example, the states of the 3rd and 6th TSGs have to
be decomposed. The possible state decompositions for
the states, (0010, 0001), of the 3rd TSG are (0010, 0000,
0001) and (0010, 0011, 0001). The first transposition is
illegal since the state 0000 is used in 1st TSG. In the

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

same way, the possible state decompositions for the
states, (1111, 1100), of the 6th TSG are (1111, 1101, 1100)
and (1111, 1110, 1100). The first transposition is illegal
since the state 1101 is used in the 4th TSG. Therefore, the
state decomposition of (0010, 0001) and (1111, 1100)
becomes (0010, 0011, 0001) and (1111, 1110, 1100),
respectively. The complete STTG of modulo-3 is shown
in Fig. 6.

Figure 6: The decomposed STTG of modulo-3

3.4. Construct quantum Boolean circuits

Once a STTG is decomposed, the corresponding
quantum circuit based on Toffoli gates can be
constructed. Quantum wires (i.e. quantum operations)
based on Toffoli gates can be generated by each state
transposition of TSGs.

Taking the first TSG (labeled as 2) of the STTG,
shown in Fig. 6, as an example, the states in the TSG are
1000 and 1010. S=1000 1010=1000 so the 1st qubit uses
the one-controlled-gate. Similarly, since
R= (1000 1010) =0101, the 2nd and 4th qubits use the
zero-controlled-gate. Finally, I=1000 1010=0010 so
the 3rd qubit uses the target gate. Therefore a quantum
operation can be formed by the above Toffoli gates in
the QBC.

The SQBC of modulo-3 is constructed and shown
in Fig.7, where the qubit a is the input, the qubits Y and
N are the outputs and the qubit s0 is the auxiliary qubit
for assisting in the work of circuits.

0 1 2 3 4 5 6 7 8 9

Figure 7: The SQBC of modulo-3

3.5. Optimize quantum Boolean circuits

The optimization of QBCs is to simplify and merge
the Toffoli gates and wires in QBCs and thus reduce the
complexity of circuits. Two reduction rules [1] are used
to optimize QBCs:
(1) For any two quantum operations in a QBC, if they

are identical then they can be removed from the
QBC.

(2) For any two quantum operations in a QBC, if they
are identical except one qubit in which one of the
logic gates is one-controlled gate and the other is
zero-controlled gate then the different logic gates
can be removed and these two operations can be
merged into one.
For example, the SQBC of the modulo-3, shown in

Fig. 7, has 10 quantum operations (labeling from left to
right with 0 to 9). Applying the above reduction rules,
the 0th and 7th and the 2nd and 5th quantum operations can

be merged. Thus the number of quantum operations and
gates are optimized from 10 to 8 and 40 to 30,
respectively. The optimized SQBC of the modulo-3 is
shown in Fig. 8.

Figure 8: The optimized SQBC of modulo-3

4. Synthesis of Composable QBCs

In the classical domain, the large circuit can be
constructed by several reusable IP components. Hence,
if the synthesized SQBCs are reusable and composable
like IPs, they can be exploited to construct a large and
more complicated QBC rapidly.

Unfortunately, the SQBCs cannot be exploited
immediately to construct QBCs as the circuit
specifications will be violated by the reversible
characteristic if SQBCs are composed together.

The composable problems and a new methodology
for synthesizing composable QBCs (CQBCs) are
proposed and described in the following sections.

4.1. Composibility problems of CQBCs

For classical circuits, an input change may cause
some output and state changes. When a circuit is stable,
the same input pattern reapplying again to the circuit can
change neither output nor state signals.

This is not true in quantum circuits. Applying the
same input pattern twice in quantum circuits may result
in the different or wrong state as quantum operations are
reversible and the states are always changed according
to the matched patterns. This makes QBCs not reusable
and large quantum Boolean circuits cannot be composed
by basic QBCs like classical circuits.

Figure 9: The (a) SG and (b) STTG of toggle

For example, a toggle [7, 10] has one input t and
two outputs a and b. The circuit specification of a toggle
is Pref(t?a!t?b!). The first transition on t triggers the
output signal a and the second transition on t triggers the
output signal b. Thus a toggle element can trigger two
transition signals alternatively.

The state graph of the toggle is shown in Fig. 9(a).
Initially the toggle is in the target node of state 1 with
the state code “000.” If t is turned on then it goes to the
target node of state 2 with the state code “110.” Now if
t=1 is applied again then it goes to the source node of
state 2 with state code “100.” The state sequence is 100,
110, 100, 110, … by applying the same input pattern
more than once.

To make QBCs composable and reusable, only one
extra auxiliary qubit added to QBCs is sufficient. The
idea is to reset the auxiliary qubit before applying
operations so that the quantum system will not go to the
un-expected state.

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

In the Fig. 10(a), the state is changed between the
source node (state code “100”) and target node (state
code “110”) which is the expected state in this circuit
specification. The expected state has to be hold while
applying operations more than once.

Figure 10: TSG (a) without and (b) with an auxiliary qubit

To solve the above problem, an extra auxiliary
qubit has to be exploited. If an extra auxiliary qubit is
added, an auxiliary state copied from the state of the
target node (the auxiliary qubit is set to one) can be
added into the TSG to keep the state staying in the
expected one. In order to do so, the extra auxiliary qubit
has to be reset before applying any operation.

The TSG with an extra auxiliary qubit is shown in
Fig. 10(b). The dash line is the state transition without
resetting the auxiliary qubit; the states are always
changed between 1000 and 1101. The solid line is the
modified state transition with resetting the auxiliary
qubit; the state will be changed from 1000 to 1100 and
then always from 1100 to 1101. As the pattern “1101”
will be changed to 1100 by resetting the auxiliary qubit
before applying this operation, the state transition
“1101 1000” will become to “1100 1101". The new
state sequence is: 1000, 1100, 1101, 1101, … and that
follows the circuit behavior.

Therefore, the composable problem can be solved
by adding only one extra auxiliary qubit.

4.2. Construction of CQBCs

To synthesize CQBCs, the composable STTGs are
transferred from decomposed STTGs. An auxiliary qubit
with initial value 0’s is appended to each state binary
code of all nodes in STTGs. An auxiliary node with
sbc(the corresponding target node) is added for each
TSG in a STTG and then set the auxiliary bit of the
auxiliary node to 1. The new STTGs are called
composable STTGs.

The composable STTGs contains two operation
blocks: a core operation block representing the same
circuit behavior of non-composable QBCs and a
composable operation block preventing going to a
wrong state if repeated operations are applied. The core
operation block is made by the quantum operations
constructed with the source and target nodes and the
composable operation block is made by the quantum
operations with the target and auxiliary nodes.

Figure 11: The composable STTG of toggle

The STTG of a toggle is transferred by the
composable synthesis methodology proposed in the
section 4.1 and the resulting composable STTG is shown
in Fig. 11. The CSTTG consists of a core operation
block STTG (STTG0) which is composed by the source
and target nodes and a composable operation block

STTG (STTG1) which is composed by the target and
auxiliary nodes. A composable QBC is generated by
cascading STTG1 with STTG0. The resulting CQBC of
the toggle through optimizations is shown in Fig. 12 and
the composable operation block and core operation
block are from the 0th to 3rd and 4th to 5th quantum
operations, respectively.

Figure 12: The CQBC of toggle

The composable operation block is used to prevent
going to the wrong state when an input is applied to a
QBC more than once. For the CQBC in Fig. 12, initially
all input, output and auxiliary qubits are set to zero.
Suppose the input t is turned on, the system will go to
the state with state binary code “1101.” If “1101” is
applied again, the system will go to the state with state
binary code “1000.” Now if the input t is turned off, the
system ends up with the state with state binary code
“0001” which is a wrong state. Since the auxiliary qubit
is to prevent the system going to the wrong state, the
correct operation is to reset the auxiliary qubits when
applying any input pattern to the system. Thus the
correct input for the system is “1100” (by resetting the
fourth qubit) and the system stays in the state with state
binary code “1101.”

4.3. Composition of composable QBCs

Once CQBCs are synthesized by the above
methodology they can be exploited to construct a larger
quantum Boolean circuit rapidly like classic circuits.

For example, the circuit implementation of classic
mod-4 counter can be directly composed by two toggle
elements, shown in Fig. 13(a). The quantum version of
mod-4 counter can be constructed similarly, shown in
Fig. 13(b).

Figure 13: The (a) classical and (b) quantum circuit
implementation of mod-4 counter

Figure 14: The QBC of mod-4 counter

Figure 14 shows the QBC of mod-4 counter. If the
output (i.e. b0) of the first toggle element connects to the
input (i.e. t1) of the second toggle element, they share
the same qubit (i.e. b0/t1) in the QBC. The QBC of the

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

mod-4 counter has 7 qubits, 12 quantum operations and
44 logic gates. Furthermore, mod-4 counter is
composable since the toggle element is composable.

5. Experimental results

A set of self-timed components [14] is used to test
QCAD and the circuit specifications of these self-timed
components are shown in Table 1. These components
can be used as building blocks to compose control-path
components of self-timed systems.

The synthesis results are shown in Table 1.
Columns 2 and 3 (i.e. #N and #E) are the numbers of
nodes (states) and edges (transitions) of SGs,
respectively. Column 4 shows the number of total qubits
required for the QBC containing input, output and
auxiliary state qubits. Column 5 and 6 show the number
of quantum operations and logic gates for the
synthesized QBC and the optimized QBC, respectively.
The modulo-3 example is also shown in the row 6 of
Table 1.

The results of Table 1 show that the optimization
algorithm can significantly reduce the numbers of
quantum operations and logic gates for the self-timed
components. And Table 2 shows the results of
composable QBC synthesis.

Table 1: The result of SQBC synthesis

Qubits
Quantum

Operations
Logic
gatesCircuit #N #E

I O aux org. opt. org. opt.
Fork 2 2 1 1 0 2 1 4 1
Merge 4 8 2 1 0 4 1 12 1
Join 6 12 2 1 1 2 2 8 8
Toggle 4 4 1 2 0 4 2 12 4
Modulo-3 6 6 1 2 1 10 8 40 30
If-Else 16 20 5 4 0 16 16 144 144
Call 12 16 Non-synthesizable
2P-4P 6 6 2 2 1 10 10 50 50
4P-2P 6 6 2 2 1 10 10 50 50

Table 2: The result of CQBC synthesis

Qubits
Quantum

Operations
Logic
gatesCircuit

I O aux org. opt. org. opt.
Fork 1 1 1 4 3 12 8
Merge 2 1 1 8 5 32 18
Join 2 1 2 4 4 20 20
Toggle 1 2 1 8 6 32 22
Modulo-3 1 2 2 14 10 70 46
Modulo-4 1 2 2 12 12 44 44
If-Else 5 4 1 32 32 320 320
Call Non-synthesizable
2P-4P Convertor 2 2 2 32 192 32 192
4P-2P Convertor 2 2 2 32 192 32 192

Since CQBCs have an additional composable
operation block, the number of quantum operations of
CQBCs is much larger than the non reusable QBCs. This
is because the optimization algorithm can not reduce any
operations or logic gates in the composable operation
block.

6. Conclusions and future works

This paper presents a novel methodology to transfer
self-timed circuit specifications into sequential quantum
Boolean circuits (SQBCs) and Composable SQBCs
(CQBCs). State graphs (SGs) used for self-timed system
design are exploited to describe the behaviors of circuits
and then are automatically translated into SQBCs based
on Toffoli gates.

The concept of IP reuse is also applied to the
constructed SQBCs to produce reusable and composable
quantum Boolean circuits (CQBCs). These reusable

CQBCs as building blocks can be exploited to construct
more complicated quantum Boolean circuits.

To the best of our knowledge there are no related
works on synthesizing sequential circuit behaviors into
quantum Boolean circuits.

A set of self-timed components is successfully
synthesized into CQBCs by our methodology. These
CQBCs can be used as building blocks to compose
control-path components of self-timed systems.

Our future work will focus on synthesizing
data-path components and translating Quantum
algorithms into QBCs.

7. References

[1] Tsai, I.-M.; Kuo, S.-Y.; Quantum Boolean Circuit
Construction and Layout under Locality Constraint,
IEEE-NANO 2001. Proceedings of the 2001 1st IEEE
Conference on , 28-30 Oct. 2001 Pages:111 – 116

[2] Wei-Min Zhang, Introduction to Quantum Information
Processing, Lecture notes in the 2003 Symposium on
Digital Life and Internet Technologies

[3] Pastor, E.; Cortadella, J.; An efficient unique state coding
algorithm for signal transition graphs, Computer Design:
VLSI in Computers and Processors, 1993. ICCD '93.
Proceedings., 1993 IEEE International Conference on 3-6
Oct. 1993 Page(s):174 - 177

[4] Al Davis and Steven M. Nowick. An introduction to
asynchronous circuit design. The Encyclopedia of
Computer Science and Technology, vol. 38, 1996

[5] David L. Dill, Trace theory for automatic hierarchy
verification of speed-independent circuits. Pages 51-65,
1987

[6] Iwama, K.; Kambayashi, Y.; Yamashita, S.;
Transformation Rules for Designing CNOT-based
Quantum Circuits, Design Automation Conference, 2002.
Proceedings. 39th, 10-14 June 2002 Pages:419 - 424

[7] Priyadarsan Patra, Donald Fussell, Building-blocks for
Designing DI Circuits, Technical report tr93-23, Dept. of
Computer Sciences, The Univ. of Texas at Austin,
November 1993

[8] M. A. Nielsen and I. L. Chung. Quantum Computation
and Quantum Information. Cambridge Univ. Press, 2000

[9] Chris J. Myers, Asynchronous Circuit Design, Wiley &
Sons, Inc., 2001

[10] Jens Sparso; Steve Furber, Principle of Asynchronous
Circuit Design, Kluwer Academic Publishers, 2001

[11] Julian Brown. Minds, Machines, and the Multiverse.
Simon & Schuster, 2000

[12] Arthur O. Pitternger, An Introduction to Quantum
Computing Algorithm. Birkjauser, 1998

[13] Michael Brooks, Quantum Computing and
Communications. Springer, 1998.

[14] J.C. Ebergen, Translating programs into delay-insensitive
circuits. Stichting Mathematisch Centrum, Amsterdam,
1989.

[15] Miller, D.M.; Maslov, D.; Dueck, G.W.; A Transformation
Based Algorithm for Reversible Logic Synthesis, Design
Automation Conference, 2003. Proceedings, 2-6 June
2003 Pages: 318 – 323

[16] S. H. Unger. Asynchronous Sequential Switching Circuits.
Wiley-Interscience, New York, 1969.

[17] Ahmed Younes, Julian Miller, Automated Method for
Building CNOT Based Quantum Circuits for Boolean
Functions, arXiv:quantum-ph/0304099 14 Apr 2003

[18] Meng-Lin Yu; A new approach for checking the unique
state coding property of signal transition graphs,
Subrahmanyam, P.A.; Design Automation, 1992.
Proceedings. [3rd] European Conference on 16-19 March
1992 Page(s):312 – 321

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

