
Incorporating Efficient Assertion Checkers
into Hardware Emulation

Marc Boulé and Zeljko Zilic
McGill University, Montréal, Canada
{mboul, zeljko}@macs.ece.mcgill.ca

Abstract

Assertion–based verification (ABV) is emerging as a
paramount technique for industrial–strength hardware
verification, especially through the emerging Property
Specification Language (PSL). Since PSL introduces
significant overhead to simulators, in this paper we
present the infrastructure for hardware emulation capa-
ble of supporting ABV. We develop a tool that generates
hardware assertion checkers for inclusion into efficient
circuit emulation. The MBAC checker generator is
outlined, together with the algorithms for optimized
assertion–circuit generation. Experiments show that
MBAC outperforms the best known checker–generator.

1. Introduction

The ever–increasing complexity of integrated circuits
requires a powerful verification methodology as a key
to increased productivity and design quality, as well as
a shorter time to market. Verifying that the implemen-
tation of a given circuit correctly performs its intended
behavior is by itself a complex task that can be tackled in
a number of ways. Assertion–Based Verification (ABV)
is the modern verification paradigm that is equally
suitable across the spectrum of formal verification and
simulation–based approaches. The assertion is a verifi-
cation directive that requires that a certain property be
respected by the Design Under Verification (DUV). The
Property Specification Language (PSL) [2, 3] is quickly
emerging as the key Hardware Verification Language
(HVL), and is undergoing IEEE standardization through
the IEEE 1850 working group.

One of the goals of PSL is to offer means of cap-
turing specification (design intent) formally and at a
higher level of abstraction than the standard Hardware
Description Languages (HDLs). With formally defined
syntax and semantics, PSL allows designers or verifica-
tion engineers to model the proper behavior of a given
design module in a clear, unambiguous manner. These

specifications are then used by the verification tools
during the verification process.

Verification can be formally performed by automated
theorem provers or model checkers, which check all
valid inputs and computation paths. Because of state ex-
plosion issues, formal methods usually scale worse than
the simulation approaches. The prevalent verification
method hence involves simulating a sufficiently large set
of test vectors, or testbenches to ensure proper behavior.
When simulation times become excessive, designers
often resort to emulation, mostly using programmable–
logic devices such as FPGAs.

It is apparent that assertion–based verification intro-
duces significant overhead to the simulation procedure.
For a large circuit, in addition to simulating the bare
circuit, a large number of fairly complex assertions have
to be simulated and checked as well. For this reason,
the use of hardware emulators in ABV is especially
appealing. Rather than adding the assertions in series to
the simulator execution, they can be handled in parallel
to the circuit under verification. To address such a
real need to incorporate assertions into the emulation
process, a hardware–checker generator is needed to
transform the PSL statements into efficient HDL code
that can be seamlessly included with the DUV. This pa-
per presents the tool that addresses both the performance
and usability of hardware–supported ABV.

Figure 1 shows an example in which a logic assertion
related to the input/output signals of a counter is realized
by an added circuit that can be emulated in hardware.
Without checking the assertion, a design error in the
DUV could affect blocks much further downstream and
many clock cycles later. By improving observability,
assertions provide the possibility of detecting faults
exactly where they appear and can therefore ease the
debugging process considerably. The high–level ex-
pressive power of PSL, when used with the checker
generator, alleviates the need to design assertion circuits
explicitly in the HDL; manually writing and maintaining
checkers can be a demanding process [1].

PSL assertions are starting to be incorporated into

D

D

load
Up-down
counter
(DUV)

en_load
en_ud

up_ndown
clk

reset

cnt

assert always (prev(en_load) == 1) ->
(cnt == prev(load));

=
Assertion
compiler

PSL

HDL

HDL

Figure 1. Incorporating an assertion to
hardware emulation.

some simulators, such as Mentor Graphics’ ModelSim.
Synopsys’ VCS can handle many assertions such as Sys-
tem Verilog Assertion (SVA) and verification libraries,
however, PSL is not supported. Research is also being
performed to incorporate assertions to the SystemC
modeling environment [4, 6, 10]. The process of trans-
forming PSL into HDL code has been recently accom-
plished by IBM–AlphaWorks’ FoCs property checkers
generator [1, 7]. However, as will be observed in
Section 5, this tool is not ideal for emulation purposes,
as not all of the circuits it produces are synthesizable.
Furthermore, many important constructs are not handled
by FoCs. Experiments also show that more work is
needed in order to attain minimal resource usage for
assertion circuits. A comparison with the 0–in Assertion
Compiler [8] was not possible because the tool is not
freely available, and no details are made public.

In this paper we present the development of MBAC,
a hardware–checker generator specialized for use in
the context of emulation. Section 2 overviews PSL
and discusses the use of a checker generator. In Sec-
tion 3, the mapping of PSL assertions to a target HDL
is presented. The MBAC checker generator is also
introduced. Section 4 discusses how assertion circuits
are used in the context of hardware emulation, and
shows an example application of hardware assertions.
Experimental results are presented in Section 5.

2. The Property Specification Language

The Property Specification Language allows design-
ers to formally capture design specifications and proper-
ties for use in the verification process. This language
was built upon IBM’s Sugar language and was intro-
duced to the wider design community by Accellera. The
Language Reference Manual [2] is currently the main

reference for the syntax and semantics of PSL.
PSL allows specifications to be used both by formal

verification tools (static verification) and by simulation
tools (dynamic verification). In formal verification,
no stimulus is required and properties are evaluated
mechanically. For example, one could state the property
that in any possible path rooted at a given state, the
idle state is reachable. Such branching–time logics
are obviously not simulatable and for this reason, the
simple–subset [2] of PSL is often used in place of the
full language. In the simple subset, operators such as “∀
paths” and “∃ path” are disallowed. Hence there is only
one path through future states, and in our context, it is
imposed by the testbench or the environment. Formal
methods, however, have many applications, even mak-
ing their way into the System–On–Chip domain [11].

In this paper, the intended use of the assertions is
for hardware emulation, therefore the presentation and
usage of PSL will be in the context of the simple subset.
For PSL to be widely applicable, four different flavors
are supported by use of flavor macros [2]: VHDL,
Verilog, SystemVerilog and GDL. Because the initial
version of the checker generator presented in this paper
uses Verilog syntax, the Verilog flavor of PSL will be
used throughout.

For brevity, we present herein a subset of PSL con-
structs. All PSL expressions will be implicitly clocked
to the default clock using the following PSL directive:

default clock = (posedge clock sig);

In PSL, the Boolean Layer is comprised of the expres-
sions of the underlying HDL, to which Boolean impli-
cation (–>), equivalence (<–>) and built–in functions
are added. Built–in functions include:

• prev(sig) and prev(sig, N): returns the previous
value of the sig signal, one clock or N clocks
previous to the current cycle;

• stable(sig), rose(bit), fell(bit): behavior of a bit
value compared to its previous value, returns a
Boolean. stable() also allows bit–vector arguments.

While many relevant assertions can be built using the
Boolean layer, the expressive power of PSL comes
from the Temporal Layer. The main construct in the
Temporal Layer is the sequence. A sequence is a
regular expression that can be seen as a list of Boolean
expressions or other sequences that occur in successive
clock cycles. A sequence is enclosed in curled braces
{}. The list separator is a semicolon. The colon can also
be used to fuse sequences together, in which case the
last cycle of the left–hand sequence overlaps with the
first cycle of the right–hand sequence. For example, in
simulation context, the sequence:

{req == 1; ack == 1; req == 0}
evaluates to true in the current cycle if req is 0, and in
the previous clock cycle ack was asserted and prior to
that, req was asserted. PSL sequences are somewhat
similar to those found in the e Language and in SVA.

The repetition operator [∗n] can also be used to
construct a sequence, and can be applied to a Boolean
expression or another sequence. A range of numbers
[∗l:h] can also be specified for the repetition. Sequences
can be used with the suffix implication operators:

• Sa |=> Pb: if sequence Sa is true, then property
Pb must start on the cycle after Sa finishes (a
sequence is a type of property). When the Sa

precondition is true, the implication fails on the first
cycle in which Pb fails. If sequence Sa is false, then
the resulting suffix implication is vacuously true.

• Sa |–> Pb: same as |=> except that the last cycle
of Sa overlaps with the first cycle of Pb.

A property is constructed with statements from the
Temporal and Boolean Layers. To add more temporal
control over how properties should behave during exe-
cution, simple temporal operators can be used:

• always X : property X must always be true;

• never X : property X must never be true;

• next X : property X must be true in the next cycle;

• eventually! X : property X must eventually be true.

A simple temporal operator and its property are also
considered a property. The eventually! has a “!” to
indicate it is a strong temporal operator. This means that
the property must eventually hold and must do so before
the end of execution. It should be noted that Boolean
implication is also part of the Temporal Layer, because
it also allows a property as the right–hand side.

In general, the verification methodology involves
writing properties that should be respected by the design
under verification. The assert verification directive is
used to express the fact that a given property must
be verified. An example for watchdog verification is
shown in Figure 2. The statements are grouped into the
vunit (verification unit) vu1, which is bound to the HDL
module entitled circuit. Hence, all the local signals used
in the circuit can be used in the vunit for constructing
PSL statements.

The watchdog example shows an assertion and how it
can be used to verify one of the correctness properties
of the given circuit. This is the key principle at the
foundation of assertion–based verification. In this paper,
the term assertion is used to describe the verification

vunit vu1(circuit) {
default clock = (posedge clock);
property watchdog works = always

{(∼active)[*10]} |=> {watchdog==1};
assert watchdog works;

} //vu1

Figure 2. Watchdog verification example.

statements as they appear in PSL form. The term
assertion circuit is used to describe the same assertions,
once they are transformed into HDL form. An assertion
signal is the output of an assertion circuit or of a
simulation kernel’s implementation of an assertion. It
is this signal which is monitored during an emulation
or simulation run. If an execution terminates and no
assertion signals fired, then all is working properly. It
is important to keep in mind, however, that verification
is only as powerful as the assertions that are used.

The signal resulting from an assertion circuit behaves
according to the following assertion–polarity definition.
Definition 1: assertion polarity. The assertion polarity
defines the meaning of the logic–level of an assertion
signal. The assertion signal is at logic–0 when its
property is true, and is asserted when the property fails.

The polarity of the PSL assertion is thus inverted
relative to the trueness of the property. In assertion
semantics, assertions are meant to catch failures. Hence,
a property that evaluates to true (asserted) corresponds
to an assertion that is deasserted, and vice–versa.

In the experimental component of this paper, the
assertion distance is used for comparison purposes.
Definition 2: assertion distance. For two given traces
of assertion signals, the assertion distance is defined as
the number of clock cycles in which the two assertion
signals disagree. The signals in question are typically
from two different implementations of the same PSL
assertion. If many assertions are being compared, the
distance is the sum of the distances between each pair of
assertion signals.

3. Generating Assertion Circuits

Incorporating assertions into hardware emulation in-
volves transforming the PSL statements into a hard-
ware language description suitable for inclusion into the
DUV. All the concepts described in this section were
implemented in our checker generator called MBAC.

Each vunit in the PSL file must be bound to a module
from the source design. The generator produces a
file which contains one Verilog module corresponding
to each vunit in the PSL file. These modules are
referred to as assertion–circuit modules. The source file
of the DUV is supplied as input to the tool in order

to facilitate the automatic generation of the following
aspects: automatic detection of signal dimensions to
avoid having to write signal–mapping files; replication
of used functions’ declarations so that they may be
used in the PSL statements; replication of parameter
declarations thereby allowing parameterized assertions
to generate parameterized assertion–circuits.

The interface of an assertion–circuit module is com-
prised of the following signals: an output vector of
assertion signals; inputs for each signal, clock or integer
referred–to in a vunit; and a reset signal to properly
initialize FFs (flip–flops) present in the generated code.

The transformation method and algorithms intro-
duced in this paper differ substantially from the ap-
proach used by FoCs. FoCs transforms each property
into a non–deterministic finite automaton, which is
then transformed into a deterministic finite automaton,
and then transformed to the target language [4]. The
advantages of the new approach presented here are
exemplified in Section 5.

3.1. Checker–Generator Architecture

PSL statements are transformed by traversing the
parse tree in which they are stored. Sub–expressions are
recursively connected by the use of precondition/result
signals. A given node in the parse tree accepts a pre-
condition signal from its parent, recursively transforms
itself into the proper circuit, and then returns the result
signal to the parent.

The two primary modes in which expressions must
be interpreted are defined below. This distinction arises
because of the nature of simulatable PSL. Nuances
between formal and simulatable verification were also
observed in [9], wherein a new simulation–friendly
Generalized Symbollic Trajectory Evaluation (GSTE)
specification is introduced.
Definition 3: must–mode. Context in which the non–
occurrence of an expression results in a false result
signal, which is otherwise at logic–1. Each cycle in
which the expression’s precondition is asserted starts an
obligation to observe the given expression, for which at
most one failure can occur.
Definition 4: if–mode. Context in which the occurrence
of an expression results in an asserted result signal,
which is otherwise at logic–0. Each cycle in which
the expression’s precondition is asserted starts a request
to observe the given expression, for which at most one
detection can occur.
Definition 5: mode scope. The mode scope refers to the
mode which applies to a given node in the parse tree.
Unless the operator at a node forces a specific mode on
its children nodes, this mode applies by default to the

subtree of expressions rooted at the node. The subtree is
therefore under the mode scope of the parent node.

In either mode, while a sequence is being observed,
other preconditions may be simultaneously occurring.
This high amount of concurrency does not allow com-
plex sequences to be generally transformed into state
machine circuits. The state machines described in
Section 4 of [5] are only meant to catch the first failure,
and are inefficient in terms of resource usage.

As will be seen next, some constructs rely on the
mode type to influence their transformation mehtod,
while others force the mode type onto their subtrees
(arguments). The following subsections describe how
each type of PSL expression is transformed into its
circuit–form, as it is recursively encountered.

3.2. Transforming the Boolean Layer

As stated previously, the Boolean Layer expressions
consist of the underlying HDL’s expressions, the im-
plication and equivalence operators, and the built–in
functions. The first two types of expressions are easily
transformed: HDL expressions are output directly as
they appear. The equivalence operator a <–> b
becomes (a & b) | (∼ a & ∼ b).

Implication (a –> b) is transformed as follows: the
left–hand side (LHS) is transformed in if mode and
the right–hand side (RHS) in must mode. The result
of the LHS is fed into the precondition of the RHS.
The LHS’s precondition is the precondition received
by the implication itself. The result returned by the
implication is the result of the RHS. This scheme allows
implications to support properties in the RHS.

The built–in functions require additional signals to be
defined. For the prev(sig, N) expression, N registers
are created, each having the same width as sig. A shift–
register chain is built, which allows the N th previous
value to be accessible, with respect to the current cycle.
The rose(), fell() and stable() functions are transformed
in a similar manner with additional Boolean operators.

With the exception of implication, the mode type is
forced onto the top–level signal of a Boolean expression
by combining its result signal b with the precondition
signal p in two ways.

Lemma 1: In must mode, (∼ p | b) is returned.
Proof : for a deasserted precondition, b can not cause a
failure and the property must be true. If the precondition
is true, a failure of b will cause the property to fail.

Lemma 2: In if mode, (p & b) is returned.
Proof : a deasserted precondition means there is nothing
to detect.

3.3. Transforming the Temporal Layer

As outlined in Section 2, the majority of expressions
in the Temporal Layer make use of temporal operators,
sequences and suffix implication. This subsection shows
how these constructs are transformed into circuit–form.

3.3.1. Transforming Temporal Operators
The temporal operators make no use of the mode

scope. They instead force their argument’s subtree into
a specific mode, as shown next.

The always keyword creates a FF that is reset to
0, and only rises to 1 when its precondition signal
becomes asserted. This FF’s signal is referred–to as a
precondition extension. Once set, the FF can only be
reset by the abort operator, or an extension–cancellation
signal from the argument. If the precondition is the
start–of–execution signal (discussed in Section 3.4) and
no aborts are present, no FF is created and a logic–
1 is instead passed to the argument. The argument is
transformed in must mode, and the return signal is that
of its argument. The never keyword is transformed in a
similar way as always except that the complement of the
signal returned by its argument is returned, and the child
is transformed in if mode.

The eventually! is transformed similarly to the never
keyword with minor differences. First, the inversion
is omitted. Second, failure is signaled at the end of
execution if the precondition extension is asserted (i.e.
the argument never occurred). This is implemented by
indirectly forcing the related assertion signal to fire.
An eventually! node always returns the true signal to
its parent. Use of this operator requires an end–of–
execution signal, which should be asserted for two clock
cycles when execution is finished.

The next temporal operator is created by passing
a delayed version of its own precondition signal, as
the precondition to its argument. The argument is
transformed in must mode, and the return signal is that
of its argument.

3.3.2. Transforming Must–Mode Sequences
When the top–level of a must sequence is first en-

countered, precondition/result signals are not used to
recursively connect sub expressions’ circuits together, as
is the case for most operators. Instead, explit sequences
(ESEQs) are returned by the nodes. Parent nodes merge
children ESEQs in different ways, depending on the
sequence operators in question (:, ;, &&, &, |, etc.).
Definition 6: explicit sequence. An explicit sequence is
a two dimensional representation of a sequence. Each
row is one of the possible paths through the sequence,
and all possible paths are listed. Each column in an
explicit sequence corresponds to one clock period. An

LHS
result

{a; b} |=> {d[*2:4]; e; c} d ; d ; e ; c

d ; d ; d ; e ; c

d ; d ; d ; d ; e ; c

RHS
Precondition Compile ESEQD

RHS result

Terminal
symbols

Figure 3. Must–sequence example.

1: FCT: TRANSESEQ MUSTMODE(precond, eseq)
2: init propag signals (uses precond & other propag)
3: init taps signals (uses precond and also propag)
4: init carryover column’s entries to NULL
5: for each column h in eseq, left to right do
6: and carryover column with column h
7: find terminals in column h
8: update propag with terminals using and gate
9: update taps with eseq entries using or gate

10: compute carryover for column h + 1
(terminals do not cause carryovers)

11: print HDL code for propag and taps signals
12: return and of all taps signals

Figure 4. Must–mode ESEQ algorithm.

entry in an ESEQ is the Boolean expression that must
occur at that given instant in time.

For fixed–length sequences, the explicit sequence has
only one row. For non–fixed–length sequences, such as
those containing repetition ranges, all the combinations
are explicitly stored in the rows. Figure 3 shows an
example of how a sequence is explicitly represented.
This ESEQ is assembled recursively as the RHS is
traversed in the parse tree. When returning to the top–
level of the sequence, a separate transformation step is
performed to treat the entire sequence in one pass. This
process makes use of split points (represented by black
dots) and terminal symbols.

The algorithm for must–mode transformation of an
explicit sequence is shown in Figure 4. In essence, the
algorithm generates a causality chain for each row. As
each row fails (only one row can occur), the causality is
stopped. If at any time, a row reaches a terminal symbol,
the sequence has passed, and the others are inhibited
from indicating failures if they continue. If at any time
no row is active, a failure occurs (result signal is pulled
low). The carryover column and the propag signals
are used for the causality chains, and the taps signals
are used to indicate the result for each column. Split
points are used to avoid redundancy in common prefixes
in rows. Transforming non–fixed–length sequences in
must mode is one of the strengths of MBAC, and will be
visible in the results section.

1: FCT: TRANSESEQ IFMODE(precond, eseq)
2: init taps signals to NULL
3: init carryover column’s entries (uses precond)
4: for each column h in eseq, left to right do
5: and carryover column with column h
6: find terminals in column h
7: update taps with terminals using or gate
8: compute carryover for column h + 1

(terminals do not cause carryovers)
9: print HDL code for taps signals

10: return or of all taps signals

Figure 5. If –mode ESEQ algorithm.

{a; b; c}

Da
b

D

c

d e

D D

{a; b; c} |=> {d; e}

Figure 6. Suffix implication example.

3.3.3. Transforming If–Mode Sequences
If –mode sequences are also transformed using ex-

plicit sequences. Once the ESEQ is recursively con-
structed, the top–level transformation is performed us-
ing the algorithm in Figure 5. An asserted precondition
represents a request to start looking for the sequence,
starting only in the given clock cycle. For brevity, the
handling of aborts, along with precondition extensions
and extension–cancellation signals was omitted from the
must and if mode algorithms.

3.3.4. Transforming Suffix Implication
Suffix implication ignores the current mode scope and

transforms the LHS in if mode, and the RHS in must
mode. The precondition for the LHS is the precondition
received at the suffix implication node. The LHS result
signal is fed into the precondition signal of the RHS. For
the non–overlapped implication (|=>), the precondition
signal is delayed by one clock cycle. The return signal
for the suffix implication is the return signal of the RHS.

The following example implication generates Verilog
code, whose equivalent circuit is shown in Figure 6:

{a; b; c} |=> {d; e}
The LHS is transformed in if mode, and the RHS in
must mode. The and gate at the top of the figure has
the effect of inhibiting error reporting on e, when d has
failed (provided the LHS occurred). This is consistent
with a characteristic given in definition 3: for each
precondition, a sequence should complete at most once.

3.4. Transforming PSL Directives

Generating the assert construct involves first declar-
ing an assertion signal in the output code. The precon-
dition of its argument is the start–of–execution (SOE)
signal, and the argument is transformed in must mode.
The result is the complement of the argument’s result
signal, in accordance with Definition 1.

The SOE signal is asserted on the first clock cycle
after reset, and is deasserted for the remainder of execu-
tion. This allows statements such as “assert a” to be
properly handled. In this example, a is only required to
be true on the first cycle of execution.

Encountering the default clock statement requires
only that the internal clock string be updated with the
new clock expression. Typically this string is of the form
“posedge clock”. This string is used whenever a
sequential element must be generated. The scope of the
default clock extends to all PSL statements that follow
it, until it is redefined. In the figures in this section, any
clock input not connected is by default connected to the
default clock currently in effect.

4. Assertions in Emulation and Simulation

When PSL assertions need to be simulated, one
option is to use a simulator with built–in PSL support.
For many reasons, this may not always be possible and
other means must be considered. In these cases, the
simulator can be made to indirectly support PSL by
using the proposed checker generator to transform the
verification statements into HDL code, which is then
easily simulated.

For large circuits where simulation is not practical,
the circuit is emulated by FPGAs and tested extensively
before committing to silicon. Using the tool proposed in
this paper, the assertion hardware can simply be added
to the emulated circuits via synthesizable HDL code.
Because the assertion circuits enter the implementation
process at its foremost level, all synthesis–related op-
timizations are also applied to the assertion hardware.
Once the assertion circuits are part of the design to
be emulated, the assertion signals must be externally
monitored during execution. These will inform the
verification engineer as to the parts of the design that
do not respect the intended specifications.

Assertion monitoring in emulation can be done in the
following ways: by routing assertion signals to unused
pins; by routing signals to the shared registers used in
the interface between emulator and host; and by using
scan–chain techniques to read the state of the circuit
along with its assertions when failures are detected.

vunit vu1(udcounter) {
default clock = (posedge clk);
assert always (prev(en ud) == 0 && prev(en load) == 0) -> (stable(cnt)); //P1
assert always (prev(en load) == 1) -> (cnt == prev(load)); //P2: ensure load works
assert always (prev(en load) == 0) -> (prev(cnt) != ∼cnt); //P3: no rollover
assert never (en load == 0 && en ud == 0)[*10]; //P4: no prolonged inactivity

}
Figure 7. PSL verification statements for up–down counter.

4.1. Example: Up–Down Counter

As an application example of the checker generator,
a simple up–down width–parameterized counter will
be verified. Figure 7 shows four properties that are
to be validated for the DUV. Properties 1 and 2 are
used to ensure proper operation of the implemented
counter. Properties 3 and 4 are not properties of the
counter as such, rather they are properties of the way
the counter will be used. In this example, the use of
the counter is such that rollover should never occur,
and the environment should be updating the counter
periodically. Assertions are useful for verifying both the
intrinsic operation of a circuit, and to verify that it is
properly used in its intended environment.

By running MBAC on the .psl file from Figure 7 and
the HDL file of the counter in Figure 1, a synthesizable
Verilog module of the assertion circuits is generated.
Typically, the assertion–circuit module is instantiated in
the circuit under verification and the assertion signals
are propagated upward to the appropriate level in the
design hierarchy for monitoring.

5. Experimental Results

In this section, MBAC is compared to the FoCs
checker generator, using examples from [3], the counter
from the previous section, and other example assertions.
In order for the counter’s assertions to be handled by
FoCs, the stable() keyword was expanded using prev()
and the repeated expression was enclosed in curled
braces. Because only the generated modules were sim-
ulated and synthesized, assertion signals were added as
outputs to the modules generated by FoCs. Hardware–
emulation metrics were obtained using the synthesis tool
from Xilinx ISE 6.2, targeting a XC2V1500–6 FPGA.
Simulations were performed using ModelSim 6.0c SE.

The abort keyword was removed from a few state-
ments from the examples in [3] because it is not fully
supported by FoCs. In the ahbCompliance example,
because we are not performing formal verification, the
two assume directives were changed to assert, and two
formal verification assertions were removed. Further-
more, the NumberBeats integer was changed to an 8–bit

register because it was incorrectly mapped to a single–
bit input by FoCs. In the first eleven test cases, simple
expressions are used as Boolean primitives so that the
behavior of the generated circuits is emphasized and
gives a truer measure of the effect of the tool.

MBAC was also configured to add a second vector
of assertion signals with the same polarity as FoCs, and
to sample each assertion signal with a FF before it is
output. Comparisons with FoCs were done with this
output vector, and comparisons with ModelSim were
done with the normal output vector.

Table 1 shows hardware metrics for different test
cases. The following abbreviations are used in the
table: N.S.Y. = Not Supported Yet, T.O. = Synthesis
Timed–Out after 10 minutes (all other synthesis times
were negligible), L.L. = Levels of Logic. The single
disagreement point with ModelSim is, in our opinion,
an error with ModelSim’s PSL. In the second–to–last
test case, FoCs utilizes fewer resources; however, this
is not significant because the distance to MBAC (hence
to ModelSim also) is non–zero.

The assertion distance was measured in simulation to
determine if the circuits produced by MBAC are behav-
ing correctly, according to the golden standard. In all
experiments, ModelSim is used as the golden standard
for simulatable PSL. In all cases, the testbench provides
105 random test vectors to all circuits. The random–
stimulus comparison method used here is obviously not
a proof that the circuits generated by MBAC are correct,
however, it does offer reasonable assurance.

It is important to mention that the timing metrics
(MHz and Levels–of–Logic) measure only the worst
segment between two FFs on the critical path. For
example, in the ahbCompliance test case, the worst–
case pad–to–FF delay is 5.99 ns and 7 levels of logic
for MBAC, and 6.41 ns with 8 levels of logic for FoCs.

Resource usage is shown to be noticeably better in
most cases, and very similar in the AMBA examples,
where the coding style was purposely restricted to sim-
ple assertions by their author. In other examples, we
observe a two to five–fold reduction in logic primitives.
Simulation times for the circuits produced by both tools
are generally similar. In the first two test cases, however,
MBAC’s circuits simulate ten to twenty times faster.

Table 1. Comparison of MBAC and FoCs.
Hardware Emulation Metrics Asr. Distances

MBAC FoCs MBAC MBAC
Assertion(s) FF LUT MHz LL FF LUT MHz LL MSim FoCs

assert always {a;b} |=> {d[*2:4];e;c} 12 16 357 3 T.O. 0 0
assert always {e} |=> {a;{b;c;d}|{e;b;a;d};a} 12 18 357 3 T.O. 0 0
assert always {e} |=> {a;{b;c;d}&{e;b;a;d};a} 7 12 357 3 T.O. 0 13901
assert always a –> never {b;c} 3 4 487 2 N.S.Y. 0 N.S.Y.
assert never {a;d;{b;a}[*2:4];c;d} 14 14 622 1 25 24 622 1 0 1910
assert always {a;{b;c;d}&{e;b;a;d};a} |=> {e} 7 7 680 1 39 45 479 2 0 0
assert always {e} |=> {a;{b;c;d}&&{e;b;a};a} 6 10 428 2 20 34 269 4 0 32975
assert always {a;b;c[*2]} |=> (never {d;e}) 7 7 483 2 N.S.Y. 0 N.S.Y.
assert always {a} |=> {b;c;d} abort e 4 6 487 2 N.S.Y. 0 N.S.Y.
assert always {a} |=> {b[*0:2] : c} 3 3 622 1 T.O. 0 0
assert never {{b[*0:1];c[*1:2]}&&{d[*1:2]};a} 5 6 616 1 9 9 609 1 5851 0
vunit from Fig. 7 (udcounter ex., width=8) 31 24 307 6 42 34 307 6 0 0
Traffic light ex. (11 assertions), Ch. 7 [3] 22 21 622 1 N.S.Y. 0 N.S.Y.
AMBA mem slave ex. (29 asr.), Ch. 8 [3] 52 118 373 2 47 109 355 3 0 12541
AMBA ahbCompliance ex. (25 asr.), Ch. 8 [3] 58 207 622 1 58 225 622 1 0 0

Furthermore, the code produced by MBAC is noticeably
smaller and easier to read. In the third test case, FoCs
produced a 1.89 MB Verilog file, while MBAC produced
a 1.27 kB file!

6. Conclusion and Future Applications

As designers increasingly incorporate assertion–
based verification (ABV) in their design methodology,
performance will become an important bottleneck. The
proposed tool introduces improvements to the emulation
of PSL statements, and allows assertions to effortlessly
follow into the emulation hardware. A hardware–
checker generator was developed in order to produce
resource–efficient, synthesizable and behaviorally cor-
rect assertion circuits.

Future applications of assertion circuits generated
by our checker generator are numerous and diverse.
Assertion–circuit outputs could be used as triggers or
inhibitors for controlling trace memories used in debug-
ging, or even to generate hardware monitors to catch
implementation faults related to timing or technology
mapping issues. Moreover, the proposed hardware–
checker generator could be used to ease the development
of a verification IP library, such as the OVL (Open
Verification Library) or OpenVera’s Verification IP.

The approach and algorithms presented in this pa-
per should apply equally well to other popular HVLs
such as OpenVera Assertions (OVA) and SystemVerilog
Assertions (SVA). Future work involves the handling
of possibly–infinite–length sequences (as exhibited, for
example, by the [*] operator).

References

[1] Y. Abarbanel, I. Beer, L. Glushovsky, S. Keidar, and
Y. Wolfsthal. FoCs: Automatic Generation of Simula-
tion Checkers from Formal Specifications. Conference
on Computer Aided Verification, pages 538–542, 2000.

[2] Accellera. PSL Language Reference Manual, ver. 1.1.
www.eda.org/vfv/docs/PSL-v1.1.pdf, June 2004.

[3] B. Cohen, S. Venkataramanan, and A. Kumari. Using
PSL/ Sugar for Formal and Dynamic Verification. Vhdl-
Cohen Publishing, Los Angeles, California, 2004.

[4] A. Dahan et. al. Combining System Level Modeling
with Assertion Based Verification. Intl. Symposium on
Quality Electronic Design, Paper 3A.1, 2005.

[5] M. Gordon, J. Hurd, and K. Slind. Executing the Formal
Semantics of the Accellera Property Specification Lan-
guage by Mechanised Theorem Proving. Lecture Notes
in Computer Science, 2860:200–215, Oct. 2003.

[6] A. Habibi and S. Tahar. Design for Verification of
SystemC Transaction Level Models. Design Automation
and Test in Europe, Paper 5A.4, Mar. 2005.

[7] IBM AlphaWorks. FoCs Property Checkers Generator
ver. 2.02. www.alphaworks.ibm.com/tech/FoCs, 2005.

[8] Mentor Graphics. 0–in Assertion Synthesis. http://www.
mentor.com/products/fv/abv/0-in/index.cfm, 2005.

[9] K. Ng, A. Hu, and J. Yang. Generating Monitor Circuits
for Simulation–Friendly GSTE Assertion Graphs. Intl.
Conference on Computer Design, pages 488–492, 2004.

[10] J. Ruf, D. Hoffmann, T. Kropf, and W. Rosenstiel.
Simulation–Guided Property Checking Based on Multi–
Valued AR Automata. Design, Automation and Test in
Europe, pages 742–748, 2001.

[11] A. Sen, J. Bhadra, V. Garg, and J. Abraham. Formal
Verification of a System–on–Chip Using Computation
Slicing. Intl. Test Conference, pages 810–819, 2004.

