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Franjo Ivančić�, Ilya Shlyakhter�, Aarti Gupta�, Malay K. Ganai�, Vineet Kahlon�, Chao Wang�, Zijiang Yang�
�NEC Laboratories America, 4 Independence Way, Princeton, NJ 08540

�Dept. of Computer Science, Western Michigan University, Kalamazoo, MI 49008

Abstract— With the success of formal verification techniques
like equivalence checking and model checking for hardware
designs, there has been growing interest in applying such tech-
niques for formal analysis and automatic verification of software
programs. This paper provides a brief tutorial on model checking
of C programs. The essential approach is to model the semantics
of C programs in the form of finite state systems by using
suitable abstractions. The use of abstractions is key, both for
modeling programs as finite state systems and for reducing
the model sizes in order to manage verification complexity.
We provide illustrative details of a verification platform called
F-SOFT, which provides a range of abstractions for modeling
software, and uses customized SAT-based and BDD-based model
checking techniques targeted for software.

I. INTRODUCTION

Model checking is an automatic technique for the verifi-
cation of concurrent systems. It has several advantages over
simulation, testing, and deductive reasoning, and has been used
successfully in practice to verify complex sequential circuit
designs and communication protocols [1]. In particular, model
checking is automatic, and, if the design contains an error,
model checking produces a counterexample, i.e., a witness of
the offending behavior of the system that can be used for
effective debugging of the system. The procedure normally
uses an exhaustive search of the state-space of the considered
system to determine whether a specification is true or false.
A brief overview of model checking techniques is provided in
Section II.

While model checking of hardware designs and protocols
has been extensively studied, its application to software ver-
ification had been limited to use of specialized modeling
languages to capture program semantics. The capability of
directly model checking source code programs written in
popular programming languages, such as C/C++ and Java, is
relatively new [2]. The general approach is to extract suitable
verification models from the given source code programs, on
which back-end model checking techniques are applied to
perform verification. Given the popularity of these languages,
and the increasing costs of software development, verifying
programs directly written in these languages is very attractive
in principle. However, there are many challenging issues –
handling of integers/floating point data variables, pointers
(in C), recursion and function/procedure calls, concurrency,
object-oriented features such as classes, dynamic objects, and
polymorphism. Different choices can be made in modeling
these features in terms of accuracy, resulting in various trade-
offs. Some of these are described for C programs in Section III.

The overall focus is usually on reducing the size of the

resulting verification models, by use of appropriate abstrac-
tions, in order to manage verification complexity. The two
important measures to keep in mind are: soundness, i.e. any
property proved true is indeed true (no false positives); and
completeness, i.e. any property that is true can be proved
true (no false negatives). Typically, modeling and abstraction
techniques may sacrifice completeness in practice (even if
guaranteed in principle) due to loss of precision in the abstract
models. Furthermore, much useful high-level information may
be lost during the translation from programs to a verification
model. Therefore, several software model checkers make a
special effort to exploit high-level information such as control
flow and procedure/function boundaries, both during transla-
tion to and during analysis of the verification models. Such
use of high-level information in back-end model checkers is
described in Section IV.

In terms of general abstraction techniques, predicate ab-
straction has emerged to be a popular technique for extracting
verification models from software [3], [4], [5], [6]. Details
of predicate abstraction and refinement, along with recent
improvements, are described in Section V. Basically, predicate
abstraction is used to abstract out data, by keeping track of
predicates which capture relationships between data variables
in the program. In the abstract model, each predicate is
represented by a Boolean variable, while the original data
variables are eliminated. In this way, predicate abstraction
allows translation of a given concrete model to an abstract
model, which simulates the concrete model but is usually much
smaller. Due to conservative abstraction, the abstract model
has many more behaviors than the concrete model. Therefore,
correctness of a property on the abstract model guarantees
correctness on the original concrete model. However, a prop-
erty shown to be false on the abstract model needs further
investigation. In particular, an abstract model can contain so-
called spurious counterexamples, that do not correspond to any
feasible counterexample in the concrete model. Such spurious
counterexamples can be eliminated by generating a refinement
of the abstraction. This process of abstraction and refinement
can be iterated until the property is either proved correct on
the abstract model (thereby guaranteeing that it is also correct
on the concrete model) or disproved (by demonstrating exis-
tence of a real counterexample on the concrete model). Such
techniques are similar to counterexample-guided abstraction
refinement [7], [8] demonstrated for hardware designs.

We have developed a prototype software model checking
tool called F-SOFT [9], which utilizes many of the ideas
presented here. This is described in detail in Section VI. F-
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SOFT has been used primarily for verification of sequential C
programs. It considers reachability properties for verification,
in particular whether certain labeled statements are reachable
in the program. It also includes checkers for a set of standard
programming bugs such as array bound violations, NULL
pointer dereferences, use of uninitialized variables, memory
leaks, lock/unlock violations, division by zero, etc. These
checkers are implemented by automatically adding property
monitors to the given source code programs. Verification is
performed via a translation of the given C program to a finite
state circuit model, derived automatically by considering the
control and data flow of the program (under the assumptions
of bounded data and bounded recursion). Optionally, predicate
abstraction is supported by a fully automated abstraction
refinement framework. The back-end model checking is per-
fomed by a tool called DiVer [10], which includes several
state-of-the-art symbolic model checking techniques.

The outline of the paper is as follows. We start by providing
a brief background on model checking in Section II. In
Section III we discuss software modeling techniques that
are useful for deriving verification models from C programs.
We describe various back-end model checking techniques in
Section IV, with an emphasis on heuristics targeted to improve
verification efficiency on models generated from software pro-
grams. In Section V we discuss automatic predicate abstraction
and refinement techniques. We present our prototype software
verification tool F-SOFT in Section VI, along with detailed
description of two verification case studies. Finally, we offer
some concluding remarks in Section VII.

II. BACKGROUND: MODEL CHECKING

This section provides a brief overview and terminology for
model checking – more details can be found in the related
book [1]. Model checking is a popular technique for checking
correctness properties, in which the design to be verified is
represented as a finite state transition system, and the property
is specified as a temporal logic formula. Temporal logics
are very useful for specifying dynamic behavior over time.
Different variants of temporal logics have become popular,
such as Linear Temporal Logic (LTL) and Computation Tree
Logic (CTL), depending on whether a linear or a branching
view of time is considered, respectively. In this paper, we
focus mainly on simple safety properties, denoted in CTL as
AG�. This formula specifies that on all (A) paths of a system,
globally (G) in each state of the path, the property � holds.
Such properties can be verified by an exhaustive traversal of
the state space to check that � holds in every reachable state,
i.e. it is an invariant. Alternately, safety properties can also
be checked by searching for a counterexample, which shows
reachability of an error state (where � is false).

Model checking can be applied directly for verification of
finite state systems, such as sequential circuits and protocol
controllers. In addition, by use of suitable abstractions, fi-
nite state models can also be extracted from infinite state
systems, for subsequent verification using model checking.
These applications include real-time system verification [11],

parameterized system verification [12], and software program
verification [2], [13]. Furthermore, model checking techniques
have also been extended to pushdown systems [14], [15],
i.e. systems with a finite control but with an unbounded
stack. Such systems allow a direct modeling of recursion
inherent in software programs. In this paper, we will focus
on techniques for extracting finite state models from C pro-
grams, as described in detail in Section III. These ideas also
apply to extraction of pushdown models, such as Boolean
programs [15].

Explicit state model checkers, such as SPIN [16], use an
explicit representation of states and transitions in the system,
and enumerate all reachable states explicitly. They utilize many
additional techniques such as state hashing for compaction
of state representations, and partial order methods to avoid
exploring all interleavings of concurrent processes. The scala-
bility issue in explicit state enumeration makes these checkers
unsuitable for hardware designs, although they have found
practical success in verification of controllers and software.

In contrast, symbolic model checkers, such as SMV [17],
avoid an explicit enumeration of the state space by using
symbolic representations of sets of states and transitions.
They typically use Binary Decision Diagrams (BDDs) [18],
which provide a canonical symbolic representation of Boolean
formulas and efficient graph-based algorithms for symbolic
manipulation. For hardware designs, where these symbolic
representations effectively capture the regularity in the state
space, symbolic model checking has significantly extended the
ability to handle large state spaces.

Despite the considerable benefits of symbolic model check-
ing using BDDs, the basic verification approach of exhaustive
analysis does not scale well in practice. An alternative is
the use of falsification approaches, such as bounded model
checking (BMC) [19], which focus primarily on the search
for finding bugs. In BMC, the problem of searching for
a counterexample of length � is translated to a Boolean
formula (by unrolling the transition relation of the design �

times), such that the formula is satisfiable if and only if there
exists a counterexample of length �. In practice, � can be
increased incrementally to find a shortest counterexample if
one exists. Additional reasoning, in the form of completeness
thresholds [19] or proofs by induction [20], [21], can be
combined with BMC to ensure completeness when desired.

The Boolean satisfiability (SAT) check in the BMC ap-
proach is typically performed by a back-end SAT solver. Most
modern SAT solvers use a DPLL-style search based decision
procedure, with distinct methods and heuristics for making
decisions (choosing a variable and value to explore), for
Boolean constraint propagation (making implications on other
variables), and for performing conflict analysis and backtrack-
ing in case a conflict is found. Due to many recent advances in
SAT solvers [22], [23], verification techniques based on SAT
have become very popular (see a recent survey [24] for useful
pointers). In particular, SAT-based BMC is often successful
in finding bugs in much larger hardware designs than BDD-
based approaches, and has also been used successfully for
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verifying C programs [25], [9]. A related important devel-
opment has been the use of resolution-based proof-analysis
techniques [26], [27] for SAT-solvers. These techniques were
developed in order to independently check the unsatisfiability
result of a SAT-solver. In addition, these techniques can also
identify a set of clauses from the original problem, called the
unsatisfiable core, that are sufficient for implying unsatisfia-
bility. The unsatisfiable core has been used very effectively
for proof-based abstraction [28], [29], refinement [30], and
for interpolant-based verification [31], [32]. These methods
allow SAT-based BMC to be combined effectively with other
techniques to provide complete verification mtehods. There
has also been growing interest in the use of SAT for unbounded
model checking [33], [34], [35]. However, these techniques are
not as robust as SAT-based BMC techniques.

III. SOFTWARE MODELING FOR C PROGRAMS

Symbolic model checkers (both SAT- and BDD-based) work
on a symbolic transition relation of a finite state system,
typically represented in terms of a vector of binary-valued
latches and a Boolean next-state function (or relation) for each
latch. For reachability properties, unsafe states can be specified
quite simply as a predicate on the latches. In this section, we
describe an approach (implemented in the F-SOFT tool) for
translating a given C program into a finite state model whose
traces represent C program traces, and to represent this model
symbolically using binary-valued latches and their transition
relations. In other words, all high-level C constructs (arrays,
pointers, dynamic memory, control flow) require faithful mod-
eling, ultimately in terms of binary-valued latches and Boolean
functions. Note that high level synthesis systems, i.e., systems
that synthesize RTL hardware descriptions from high-level C
specifications also face this task, although they need to handle
only a subset of C sufficient for describing hardware [36], [37].

We begin with full-fledged C and apply a series of source-to-
source transformations into smaller subsets of C, until program
state is represented as a collection of simple scalar variables
and each program step is represented as a set of parallel
assignments to these variables. This representation is then
converted to a Boolean representation by allocating latches
to each C variable and converting next-state C expressions in
terms of C variables into Boolean expressions in terms of the
latches.

Formally, the transformations produce a verification model
of the program. The model consists of a control flow graph
(CFG) � � ����� with a non-empty set of basic blocks
� � ���� � � � � ���. Each edge � � ���� �� � ���� � �

represents a guarded transition between basic blocks. For a
given �, the conditions ��� are mutually exclusive, i.e. program
flow is deterministic. The set of assignments in a basic block
�� are rewritten to a parallel form as described later. We often
use the term location 	 � � interchangeably with a basic block.

Let 
 denote the set of all variables in the program. We
denote a type-consistent valuation of all variables in 
 by
�, and the set of all type-consistent valuations by � . Let
the set of allowed C-expressions be denoted by �. Then, the

parallel assignments in each basic block can be written as
����� � � � � ��, where � � ���� � � � � ���� ���� � � � � ��� � 


and ���� � � � � ��� � �.
We define a state of a program to be a tuple �	���, consisting

of a location 	 � � representing the basic block, and a type-
consistent valuation of data variables � � � , where out-of-
scope variables at 	 are assigned the undefined value �. We
consider the initial state of the program to be an initial location
	�, where each variable in 
 can take any value that is type-
consistent with its specification. The set of initial states is
thus 
� � ��	���� � � � ��. For checking reachability in
programs, we define a set of blocks Bad � � to be unsafe,
and model checking is used to prove or disprove that these
basic blocks can be reached. Formally, we define a path of
length � in the state space to be a sequence of � states
�	������ � � � � �	��������� such that �	����� � 
� is an initial
state and �� 	 � � � 
 � � �	����� � �	���������, where
� denotes a transition between the states. A counterexample
of length � is a path that ends in an unsafe location, that is
	��� � Bad.

A. Modeling of C Program Memory

One of the biggest difficulties in modeling C programs,
lies in modeling indirect memory accesses via pointers, such
as x=*(p+i) or *(q+j)=y. This includes array accesses,
since A[e] is equivalent to *(A+e). We replace all indirect
accesses in the C program with expressions involving only di-
rect variable accesses, by introducing appropriate multiplexing
expressions as described below.

Modeling pointers. We build an internal memory represen-
tation of the program by assigning to each variable a unique
number representing its memory address. Variables that are
adjacent in C program memory (for example, adjacent ele-
ments of one array) are given consecutive memory addresses in
our model; this facilitates the modeling of pointer arithmetic.
Pointers are modeled as integers: pointer variable p points
to simple variable x by storing the integer memory address
assigned to x.

We perform a points-to analysis [38] to determine, for
each indirect memory access, the set of variables that may
be accessed (called the points-to set). If we determine
that pointer p can point to variables a,b,...,z at a
given program location, we can rewrite a pointer read
*(p+i) as a conditional multiplexing expression of the form
((p+i)==&a ? a : ((p+i)==&b ? b : ...))
where &a,&b,... are the numeric memory addresses we
assigned to the variables a,b,... respectively.

Modeling the heap and stack. The C language specification
does not bound heap or stack size, but our focus is on
generating a bounded model only. Therefore, we model the
heap as a finite array, adding a simple implementation of
malloc() that returns pointers into this array. We also add a
bounded depth stack as another global array, in order to handle
bounded recursion, along with code to save and restore local
state for recursive functions only.
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B. Modeling C Control Flow

In this section, we discuss the modeling techniques em-
ployed to handle control flow constructs.

Functions. We make all variables global1, and move the
code of all functions into main(). Each function is inlined
exactly once; function calls are replaced with gotos to the
function’s first statement. Parameters and return values are
passed via global variables, by adding assignments at each
function call. Function return is handled by storing a unique
id of the call site in a global variable before the call, and
replacing returns with groups of gotos conditioned on this
variable. An alternative is to inline each function at each call
site [25], but this can significantly increase the model size.

Control flow graph. The C program now consists of labeled
blocks of assignments followed by conditional gotos, giving
a control flow graph (CFG) illustrated in Figure 1 on a small
example. We rewrite the assignments within each basic block,
so that their parallel execution corresponds to the original
sequential semantics: if a variable v is assigned expression
e in some statement, all appearances of v on the right-hand
side of subsequent statements are replaced with e. We can
prune irrelevant blocks by backward slicing from the error
block, i.e., by removing those blocks whose execution can not
affect the program’s ability to reach the error block. Finally,
we add a variable pc representing the program counter, to
encode the number with which we identify each basic block
(shown as numbers inside hexagons in Figure 1).

We can now construct symbolic transition relations for
pc, and for each data variable appearing in the program.
For pc, the transition relation reflects the guarded transitions
between basic blocks in the CFG. Formally, every edge
� � ���� �� � ���� contributes to the transition relation of the
pc, such that ��� � �� iff ��� �� ��� � ��� , for all �� �,
where pc (pc’) refers to the old (new) value of the
program counter. For the example in Figure 1, we have
pc’= (pc==0? 1 : (pc==1? (x>4? 3 : 2):...)).

For a data variable, the transition relation is built from ex-
pressions assigned to the variable in various blocks. Let � � de-
note the right hand side (rhs) of an assignment to � in block � �

if � is assigned in ��. Then �� � �� iff ��� �� ���, for all �.
For example, in Figure 1, the variable t is assigned in blocks
6 and 7 and its value is unchanged in all other blocks; we
have t’ = (pc==6 ? t-3 : (pc==7 ? l+2 : t)).

Finally, we construct a Boolean formula representation of
these transition relations resembling a hardware circuit. For
the pc variable, we allocate ������ latches, where � is the
total number of basic blocks. For each C program variable,
we allocate a vector of 	 latches, where 	 is the bitwidth
of the variable. For example, for a variable of type int,
we typically allocate �� latches. We also translate next-state
expressions written in terms of C variables into vectors of
next-state Boolean functions written in terms of the associated
latches. For example, to translate addition of two 	-bit integer

1This is for the purpose of explanation here; in actual practice the back-end
model checker can quantify out local variables earlier.

int foo(int s){
int t=s+2;
if (t>6)

t -= 3 ;
else

t--;
return t;

}

void bar(){
int x = 3,
y = x - 3;
while (x<=4){

y++ ;
x = foo(x);

}
y = foo(y);

} foo

to foo
passing

parameter

updating
return
values

bar

y++;

t := l+2;

t−−;

t−=3;

l := x;
rtr := 0;

l := y;
rtr := 1;

y := t;

x := 3;
y:=3−3;

5

6 7

3

0

1 2

4

8

9
10

t > 6

t <= 6

x <= 4

rtr

!rtr

x > 4

x := t;

Fig. 1. Computing the control flow graph

values we construct an 	-bit binary adder; to translate a
relational expression, we construct a binary comparator, etc.
In order to reduce the number of latches and the associated
logic for each C variable, we can use static analysis to bound
the range of values of each variable (see Section VI-A). The
correctness property for the C program “can error label be
reached” translates to “can the latches representing the pc
variable take the value of the error block number”.

IV. VERIFYING SOFTWARE MODELS

While conversion of C programs to a finite state repre-
sentation allows application of well-studied model checking
techniques, it can also lose much of the high-level information
present in the programs. There are many ways to incorporate
such high-level knowledge in back-end model checking tech-
niques. The two most popular are: by use of additional high-
level constraints on the model description, and by controlling
model checker parameters such as decision heuristics in a
SAT solver. As shown by experimental results reported in
Section VI, these techniques can significantly impact the
performance of back-end model checking.

A. SAT-based Model Checking

Consider verification performed by SAT-based BMC, where
each unrolling corresponds to a block-wise execution of the
program. For verification models extracted from CFGs, as
described in the previous section, the control flow is intuitively
more important than the data flow. This is because each control
state (the program counter) uniquely determines which data
variables get updated, and which control states the program
can possibly go to in the next state (depending on the transition
guards). A good SAT heuristic is to increase the decision score
of program counter variables relative to the data variables. This
allows the SAT solver to make decisions first on control flow,
rather than on data flow. In particular, an assignment to the
program counter variables at a given time step, immediately
makes constraints arising from other basic blocks irrelevant at
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that time step. Thus, even though an unrolling for SAT-based
BMC may include a copy of the transition relations for all
basic blocks, most of them quickly become irrelevant once
the SAT solver chooses a particular program path to explore.

The importance of control flow can be further emphasized
by adding a “one-hot encoding” of the program counter in
the verification model. In this encoding, a new binary-valued
variable is introduced for each basic block in the CFG, such
that the variable is true if and only if the program control
is in that block. Correspondingly, in the BMC unrolling,
each unrolled one-hot variable is true if and only if the
program control is in that block at the associated time step.
By introducing one-hot variables, the SAT solver can make
“word-level” decisions on the program counter: with a single
decision on a one-hot variable, the SAT solver effectively
assigns all bits of the binary-encoded program counter. Again,
the decision scores of these one-hot variables can be increased,
making it likely that the SAT solver will assign these variables
early in the search.

Another kind of high-level information that can be exploited
concerns the transition structure of the CFG. For example,
each basic block typically has a small number of predecessors.
Additional constraints can be added to ensure that the choice of
an active block � in a given time frame � restricts the choice of
the active block in time frame ��� to be one of the immediate
predecessors of � in the CFG. Note that these constraints are
already implied by the transition relation for the �� variable,
i.e. these constraints are redundant. However, adding them
explicitly can increase the efficiency of the SAT search. On the
other hand, adding too many redundant constraints can slow
down the SAT solver, and negate the advantage of explicitly
restricting the search space.

B. BDD-based Model Checking

The above description focused on use of SAT-based BMC.
However, the finite state models extracted from C programs,
with or without use of predicate abstraction, allow use of
unbounded verification methods also. In particular, standard
BDD-based reachability computation can be used to compute
the set of reachable states, and to prove the absence of errors.

BDDs are very sensitive to the number of state variables. It
is therefore preferable to keep the model sizes small, e.g. by
not using the one-hot encoding described above. Furthermore,
additional high-level information can be used to reduce the
number of state variables. Examples of such techniques in-
clude use of range analysis for statically bounding the values
of data variables (Section VI-A); and use of register sharing
techniques to reduce the number of control variables (Sec-
tion V-B). Other improvements include use of disjunctively-
partitioned image computation [39], which works better for
software models than the conjunctively-partitioned technique
used typically for hardware designs.

V. PREDICATE ABSTRACTION AND REFINEMENT

Model checking suffers from the state explosion problem,
and abstraction is an important technique for reducing the state
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Fig. 2. Predicate abstraction refinement loop

explosion problem [1]. In the domain of software verification,
predicate abstraction has emerged to be a popular technique
for extracting verification models from source code [6]. It
abstracts data by keeping track of certain predicates on the
data, but keeps the control flow of the original program. Each
predicate is represented by a Boolean variable in the abstract
program, while the original data variables are eliminated.
The original program, also called the concrete model, is thus
abstracted using a set of predicates into an abstract model, as
shown in Fig. 2.

The abstract model and the (reachability) property is then
passed on to a model checker. If the property is proved correct
on the abstract model, then the property is also valid on the
concrete model. However, the abstract model may contain so-
called spurious counterexamples that do not correspond to any
feasible counterexample in the original system. Such spurious
counterexamples are prevented by producing a more detailed
abstract model using a refinement of the abstraction. This
process is iterated as shown in Fig. 2 until the property is
either proved or disproved.

A. Abstraction Computation

Given a concrete software model represented as a control
flow graph � � �����, and an �-dimensional tuple of
predicates � � �	�� 
 
 
 � 	�� over program variables, an
abstract state � is defined as a pair consisting of a location
� and a combination of Boolean values �, i.e. � � ��� �� �

� � � � �

� , where � � ��� ��. The set of initial abstract
states is 
�

�
� ����� ���� � �

��. An abstract state usually
corresponds to a set of concrete states which can be computed
using the concretization function �� � �� � �� defined on
the truth value vector � as:

�� ��� � �� � ���� � 	���� 	 
 
 
 	 �� � 	�����
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For each basic block, the abstraction tracks how the truth
values of the Boolean predicates are affected by statements
in the block, given the truth values of the Boolean predicates
when entering the block. If we consider the concrete transition
relation �� � � � as a representation of the steps in the
CFG of the original program, we can then define the abstract
transition relation��� ����� given a vector of predicates
� � ���� � � � � ��� as:

��� ���� ���� ��� �� �� � �� ������ � �� �����

������ ��������

In other words, there exists a transition between two abstract
states if and only if there exists a transition in the concrete
model between some pair of corresponding concrete states.

We can then obtain the abstract transition relation � ��� � ��
for a basic block with assignments of expressions ��� � � � � ��
to the set of program variables � as:

� ��� ��� �� �� � � �
�

�

�� � ����� �

�

�

��

� � ����		��� � � � � �������

Here, ����		��� ��� � � � � ��� denotes a point-wise substitution
in �� of the � variables by the corresponding expressions in
the assignments.

The abstract transition relation can be computed using deci-
sion procedures such as theorem provers or SAT-solvers [34].
However, building the most accurate abstract model is often
prohibitively expensive, and may not be required for verifica-
tion purposes. In order to reduce the abstraction computation
time, various heuristics have been proposed to compute ap-
proximate or coarse abstract models. In Microsoft’s SLAM
[40], for example, coarse abstractions are generated using
techniques such as Cartesian approximation and the maximum
cube length approximation [41]. These techniques limit the
number of predicates in each decision procedure call.

As an illustrative example, consider the program given on
the left hand side of Figure 3. The property to be analzyed
is whether the label ERROR is reachable in the program. As
can be easily seen, the label is actually not reachable. Fig. 3
also shows an abstraction of the source code by using two
predicates b1 and b2. Here, these predicates appear in the
two conditions in the program, namely x==m, represented by
b1, and y!=m+1 represented by b2. Note that for illustration
purposes, we show the abstraction on a statement-by-statement
basis, instead of showing it for basic blocks. We use the
symbol * to represent a nondeterministic choice; that is, in
line (1), the predicate b1 can nondeterministically take the
value true or false.

Since the assignment to variable x in line (1) does not
affect either y or m, it does not impact the predicate b2. This
assignment does change the value of x, which means that the
predicate b1 may be impacted. In this case however, since no
relationship between c and m is known or representable using
the current set of predicates, the assignment to x causes a

(1) x = c ;
(2) y = c+1 ;
(3) if ( x==m )
(4)     if ( y!=m+1 )
(5)         ERROR: ;

(1) b1 = * ;
(2) b2  = * ;
(3) if ( b1 )
(4)     if ( b2 )
(5)         ERROR: ;

b1: x==m
b2: y!=m+1

Fig. 3. Predicate abstraction computation using two predicates b1 and b2

nondeterministic update to b1. Similar reasoning can be used
to understand the translation of the remaining statements. In
particular, note that the two if-conditions in lines (3) and (4)
are translated to simple checks on b1 and b2, respectively, as
shown in the abstract model on the right in Fig. 3.

Recent efforts [32], [42] describe improved approaches,
where predicates can be added locally to certain basic blocks,
but not to others, which we will call henceforth localization
of predicates. On average the number of predicates at each
program location is small and thus, localization of predicates
enables the abstraction computation to scale to larger software
programs. Details about the refinement techniques employed
are discussed in Sec. V-D.

B. Model Checking the Abstract Model

The generated abstract model can also be represented as a
CFG where all data variables are of Boolean type. The previ-
ously described approaches for verifying the resulting models
(described in Section IV can therefore be directly applied. In
particular, the BDD-based model checkers are often used in
practice, to try and complete successful proofs of correctness,
since this guarantees correctness on the original program as
well. The performance of BDD-based model checkers depends
crucially on the number of state variables. When the number
of predicates is large, model checking of the abstract model
can become a bottleneck even with a symbolic representation
of the state space. In [42], the locality of predicates is used to
reduce the number of (Boolean) state variables in the abstract
model. The fact that each predicate is only locally useful can
be used to represent different predicates in different parts of
the program by same state variable. We call the reuse of state
variables in the abstract model register sharing.

Register sharing thus enables more efficient model checking
of the abstract models. However, maximal register sharing
might also result in a large number of refinement iterations
as described in the following. Consider a sequence 
� of
statements from � to ��, which does not modify the value
of a predicate � . Suppose � is localized at the statements
� and ��, but not at any intermediate statement in 
�. In
abstraction with register sharing, � may be represented by two
different Boolean variables �� and �� at � and ��, respectively.
Because the value of � remains unchanged along 
�, the
value of �� at � should be equal to the value of �� at ��. If
this is not tracked, we may obtain a spurious counterexample
by assigning different values to �� at � and �� at ��. This
problem can be avoided, if � is represented by one Boolean
variable � in a large scope of the abstraction. We call a
Boolean variable which represents only one predicate for a
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large scope a dedicated state variable. The decision about
when to assign a dedicated Boolean variable to a predicate
can be made heuristically, based on the the fraction of blocks
where a predicate is used.

Returning back to our example in Fig. 3, the model checker
may find an abstract counterexample that first sets b1 to true
in line (1), then sets b2 to true in line (2), and then proceeds
through the if-statements to reach the ERROR label. The
next step is to analyze this abstract counterexample to check
whether it is feasible in the concrete model or not.

C. Counterexample Feasibility Analysis

In order to check if a sequence of statements in the C
program is (in)feasible, one can use either a theorem prover or
a SAT-solver. Formally, we define an abstract path of length �

to be a sequence of � abstract states ���� ���� � � � ������ �����
such that ���� ��� � ��

� is an initial abstract state and �� �
� � � � � � ���� ��� �

� ������ �����, where �� denotes a
transition in the abstract model. An abstract counterexample
of length � is a path that ends in an unsafe location, that is
���� � Bad.

For the counterexample feasibility analysis, we define an
expression � in the concrete state space that corresponds to a
prefix of the counterexample of length �. We define prefixes
for � � � � � as: ���� �� � � � � � � � � �, where � � denotes
the unrolled concrete transition relation at step �. In case that
��� � �� is satisfiable, we have found a counterexample in
the original program, and the verification is complete. If the
expression ���� is unsatisfiable for some � � � � �, we have
discovered that the counterexample is indeed spurious. In this
case, we need to perform a refinement of the abstraction as
discussed in the following.

Reconsider the example presented in Fig. 3 and the abstract
counterexample discussed in Section V-B. The expression gen-
erated for the counterexample is x�c � y�c+1 � x�m �

y ��m+1. It is easy to see that this expression is unsatisfiable,
thereby showing that this trace is indeed spurious.

D. Refinement

There are two possible reasons for a spurious counter-
example in the abstract model. The first reason is that the
considered predicates are not adequate to prove correctness of
the property. One possible approach to discover new predicates
is based on weakest pre-conditions at the point of infeasibility
of the abstract trace. For example, if ���� is satisfiable, but
��� � �� is not, then using the weakest pre-conditions of
changed predicates in basic block �� (or its predecessor blocks
using the assignments in those blocks) can provide a new set of
predicates that will eliminate this spurious counterexample [?]

Consider again the example in Fig. 3. While the expression
x�c � y�c+1 � x�m is satisfiable, it can be seen that
adding the conjunct y ��m+1 makes the expression unsat-
isfiable. By performing a backward search of the abstract
trace to find the last assignment to either y or m before
the last if-statement, we can find the assignment to y at
line (2). Computing the weakest pre-condition for the predicate

(1) x = c ;
(2) y = c+1 ;
(3) if ( x==m )
(4)     if ( y!=m+1 )
(5)         ERROR: ;

(1) b1 = !b3 ;
(2) b2  = b3 ;
(3) if ( b1 )
(4)     if ( b2 )
(5)         ERROR: ;

b1: x==m
b2: y!=m+1
b3: c!=m

Fig. 4. Refinement step

y!=m+1 for this assignment y=c+1 provides a new predicate
c!=m. In the refinement step, this new predicate is added to the
abstract model (as predicate b3). The abstraction computation
is performed again with the updated set of predicates, with the
resulting abstract model as shown in Figure 4. Since predicates
b1 and b2 hold different values in the abstract model, the
label ERROR cannot be reached anymore, thereby proving the
orignal program correct.

The second reason for a spurious counterexample is that a
coarse abstraction might have been computed, which omitted
certain details about the relationship between predicates in
the abstract model. While the first reason requires additional
predicates, the second reason can be resolved by adding more
precision to the abstract model based on the same predicates.
In the SLAM toolkit, for example, such spurious behavior
based on inexact predicate relationships is removed by a
separate refinement algorithm called CONSTRAIN [43].

The BLAST tool [44] introduced the notion of lazy ab-
straction, where the abstraction refinement is completely
demand-driven to remove spurious behaviors. In [32], a new
refinement scheme based on interpolation [45] is described,
which exploits the unsatisfiable core generated from a proof
of unsatisfiability, to add new predicates to some program
locations only. Our contribution in F-SOFT [42] is inspired by
the lazy abstraction approach and the localization techniques
implemented in BLAST [32]. Given an infeasible trace, and
the unsatisfiable core from the proof of unsatisfiability, we find
predicates whose values need to be tracked at each statement
in order to eliminate the infeasible trace. For any program
location we only need to track the relationship between the
predicates relevant at that location. Furthermore, since we use
predicates based on weakest pre-conditions along infeasible
traces, most of the predicate relationships are obtained from
the refinement process itself. This enables us to significantly
reduce the number of calls to back-end decision procedures
leading to a faster abstraction computation.

To illustrate the localized predicate abstraction approach
with register sharing, consider Figure 5. As explained in [42],
the set of predicates is computed using weakest pre-condition
propagation. For this example, the same set of predicates
as shown in Fig. 4 is computed. However, the localization
approach limits the scope of each predicate. For example,
predicate x==m is used only after statement (1) until state-
ment (3). Similarly, the predicate y!=m+1 is used only after
statement (2) until statement (4). Lastly, the predicate c!=m
is needed only before statement (2) is executed. We can thus
define a mapping from the three predicates (b1, b2, b3) to
two registers (r1, r2) depending on the program locations.
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(1) x = c ;
(2) y = c+1 ;
(3) if ( x==m )
(4)     if ( y!=m+1 )
(5)         ERROR: ;

(1) r1 = r1 ;
(2) r2 = r2 ;
(3) if ( r1 )
(4)     if ( r2 )
(5)         ERROR: ;

b1: x==m
b2: y!=m+1

r1: b1@1..3,!b3@S
r2: b2@2..4,b3@S..1

b3: c!=m

Fig. 5. Localized predicate abstraction with register sharing

As shown in the figure, r1 represents first the negation of
predicate b3 at the start (S) of the program, while it represents
predicate b1 after the first statement is executed. Similarly, r2
represents initially the predicate b3, and the predicate b2 after
statement (2) is executed. Since r1 and r2 represent !b3 and
b3, respectively, we add an additional constraint to the model
r1 ��r2. The abstraction in Figure 5 is thus enough to prove
the correctness of the program.

VI. F-SOFT TOOL OVERVIEW

In this section we describe our prototype model checking
tool F-SOFT [9], shown in Figure 6. In the front-end, we
first use CIL [46] to make all expressions side-effect-free
(adding temporary variables as needed), to make all identi-
fiers globally unique, and to rewrite complex C constructs
in terms of simpler ones (e.g. switch and for in terms
of if and goto). Next, we perform various static analyses,
such as computing the control flow graph of the program,
performing program slicing with respect to the property and
performing range analysis as described later in this section.
Then, software modeling is performed to extract a finite state
model represented as a circuit, as described earlier in Sec. III,
along with information for additional heuristics for SAT-
based BMC. Optionally, a localized predicate abstraction with
register sharing can also be performed, as described in Sec. V.
The back-end verification of the resulting verification models
is performed by the DIVER [10] tool, which includes several
BDD-based and SAT-based model checking techniques. If a
true counterexample is discovered, a testbench program (in C)
is automatically generated, which can be executed in the user’s
favorite debugger for analyzing the trace.

A. Range Analysis

Since model checking suffers from the state explosion
problem, which is further exacerbated in the context of soft-
ware verification, it is important to reduce the sizes of the
abstract models where possible. In F-SOFT we efficiently
determine conservative ranges for values of program variables
by performing static analysis. Such range information for each
variable can be used to generate smaller models, both in terms
of number of state elements and in the size of the datapath
logic. This improves the efficiency of back-end model check-
ing engines, especially those based on BDDs. Furthermore,
additional range constraints can also help in improving the
efficiency of predicate abstraction, by constraining the search
space of the concrete model while computing the abstraction.
Although range analysis techniques have been used for other
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Fig. 6. F-SOFT tool overview

applications [47], [48], [49], [50], we believe we are the first
to use them for software model checking.

Our main method is based on the framework suggested
in [49] which formulates each range analysis problem as
a system of inequality constraints between symbolic bound
polynomials. It then reduces the constraint system to an LP
(linear programming) problem, which can be analyzed by
any available LP solver. The solution to the LP problem
provides symbolic lower and upper bounds for the values of
all variables. More details on the range analysis computation
used in F-SOFT and the heuristics targeted for its application
to software verification are discussed in [51].

B. Testbench Generation and Debugging

As mentioned earlier, the back-end verification is
performed using the DIVER tool. If DIVER discovers a
real counterexample, F-SOFT reports to the user a descriptive
one-line summary of the bug. For example, consider the
source code for function pointer2 in the lower half of
Figure 7. In this example, F-SOFT performed the check for
use of uninitialized variables. Here, F-SOFT reports that a
bug was found in file test.c at line 48 (block

#23): At least one variable not initialized in

a condition.

In addition to the bug summary, F-SOFT generates an error
trace on the original source code, to help the user in debugging.
This error trace is also utilized by an automatic testbench
generator, which generates an executable program for the user
to analyze the bug in more detail in his/her favorite debugger.
Figure 7 shows this capability using the emacs front-end to
the commonly used gdb debugger. In effect, the F-SOFT test-
bench executable initializes the memory state according to the
discovered counterexample, and automatically sets breakpoints
in the source code at places that are deemed interesting for
demonstrating the bug. Furthermore, F-SOFT adds descriptive
messages into the output of gdb, thus improving the users’
understanding of the bug. More importantly, the testbench
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Fig. 7. F-SOFT testbench generator for gdb in emacs

allows the user to debug in a familiar environment, utilizing all
features provided by standard debuggers, such as inspection
of data, setting of breakpoints etc. The output in the upper
half of Figure 7 shows a sample execution of our generated
testbench. Note that external variables and parameters (here:
parameter x) are initialized according to the discovered bug,
and breakpoints are automatically set at the entry to the main
function pointer2 and near the line where the bug occurs.
Note also the use of data inspections using gdb’s p(display)
command, and tracing using the n(next) command.

C. Verification Case Studies

In this section, we describe two verification case studies for
F-SOFT. The first is a network protocol called the Point-to-
Point Protocol (PPP), which we used to evaluate our software
modeling techniques and various heuristics for SAT-based
BMC. The second is a TCAS (Traffic Alert and Collision
Avoidance System) case study, for which we used the predicate
abstraction framework in F-SOFT(̇More details on these case
studies can be found in related publications [52], [42].)

PPP Case Study: We followed a previous attempt [53] to
verify a part of the PPP protocol with respect to its specifica-
tion defined in a Request for Comment (RFC) document. RFC
1661 [54] specifies the state transition table of an automaton
with 10 states, which reacts to 15 events. The automaton
can switch states when receiving an event, and also perform
other actions, such as sending replies. Any implementation of

Stopped Req-Sent Opened

Close Term-Req Term-Req
goto Closed goto Closing goto Closing

RCA Term-Ack
goto Ack-Rcvd goto Req-Sent

RTR Term-Ack Term-Ack Term-Ack
goto Stopping

RTA Conf-Req
goto Req-Sent

TABLE I

A PART OF THE PPP SPECIFICATION

the PPP has to follow this behavior described in the RFC,
which is partly shown in Table I for the states Stopped,
Req-Sent and Opened. We only present the information
about which messages should be sent back, if any, and what
the next state should be if there is a change of states. An empty
field describes the fact that the automaton will simply ignore
a received packet.

We considered an open-source implementation of the pro-
tocol (ppp-2.4.0) distributed in various Linux systems. In
this paper we assume that events and actions are handled
correctly by the implementation. The following represents a
code fragment of the public implementation:

static void fsm_rtermack(f)
fsm *f;

{
switch (f->state) {
/*NOTE: other cases removed for brevity*/
case OPENED:

if (f->callbacks->down)
/*Inform upper layers*/

(*f->callbacks->down)(f);
fsm_sconfreq(f, 0);
break;

}
}

We wanted to verify that the public implementation adheres
to the specification as given in RFC 1661. In [53], the C-
program as described here, was manually translated to the
input language of the model checker MOCHA [55]. Their
analysis showed that the public implementation does not fully
adhere to the specification given by RFC 1661. In particular,
when a peer receives a packet RTA, it is supposed to send
back a configuration request, which is implemented correctly.
However, it is also supposed to update its internal state to
Req-Sent, which is missing in the implementation. In con-
trast to the MOCHA approach, we performed model checking
directly on the source code (after slight modifications).

We first employed F-SOFT’s range analysis framework
(described in Section VI-A) to reduce the number of bits
required to model the source code. After range analysis, the
model contains 258 state bits, in contrast to 1435 state bits
without use of range analysis. Even on this reduced model,
the BDD-based model checker was not able to complete
verification within a 3-hour time limit. On the other hand,
SAT-based BMC was able to find the bug at an unrolling
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Fig. 9. Time per depth comparison of BMC heuristics for the PPP example

depth of 119, in about 95 minutes. The addition of one-hot
encoding for the program counter added about 900 bits into
the model. However, this heuristic allowed the SAT-solver to
discover the bug in about 37 minutes. Additional introduction
of the explicit CFG predecessor constraints did not improve
the verification performance much (36 minutes). On the other
hand, adding only these predecessor constraints, without the
use of one-hot encoding of the program counter, overburdened
the SAT solver, causing it to time-out in 3 hours.

Figures 8 and 9 show a more detailed comparison of the
individual heuristics and their performance for the PPP case
study. Fig. 8 shows the cumulative time in seconds taken for all
depths up to a given number, while Fig. 9 shows the respective
time needed for a particular depth. The graphs labeled stan-
dard represent the standard decision heuristics implemented
in the DIVER tool. The graph shows the advantage of using
SAT-based BMC for the analysis, since the standard includes
various peaks in the computation time, in particular for depths
20-35, but better performance afterwards. This indicates that
the SAT-solver is able to learn important invariants of the
design early on, that enable a deeper analysis later. The figures
also include three more graphs each, describing the respective
performance of SAT-based BMC using the heuristics of higher

decision scores for pc variables (score), one-hot encoding
(one-hot) and addition of CFG predecessor constraints (trans).
It is noteworthy that the inherent learning in the SAT-solver
is preserved, which is visible by the various peaks in the
respective graphs. Fig. 8, in particular, shows the advantage of
the one-hot encoding heuristic for the PPP case study which
consistently outperforms the other heuristics.

TCAS Case Study: We used an ANSI-C version of a TCAS
component available from Georgia Tech. Even though the pre-
processed program has only 1652 lines of code, the number
of predicates needed to verify the properties is non-trivial for
both F-SOFT and BLAST [32]. We checked 10 different safety
properties of the TCAS system, and the results are shown in
Table II. Each property was encoded as a certain error label in
the code. If the label is not reachable, then the property is said
to hold. Otherwise, we report the length of the counterexample
in the ”Bug” column. CPU times are given in seconds, and
we set a time limit of one hour for each analysis.

We first experimented with no localization of predicates.
However, this approach did not scale, as the abstraction
computation becomes a bottleneck. We next experimented with
localization of predicates using weakest pre-conditions. The
results of applying only localization and abstraction without
register sharing is shown under the ”Localize” heading in
the table. The ”Time Abs MC” column gives the total time,
followed by the breakup of total time into the time taken
by abstraction (Abs), model checking (MC), respectively. We
omit the time taken by refinement, which is equal to Time
- (Abs + MC) for each row. The ”P” and the ”I” columns
give the total number of predicates, and the total number of
iterations, respectively.

Two observations can be made from the ”Localize” results:
1) Due to the localization of predicates, the abstraction compu-
tation is no longer a bottleneck. 2) Model checking takes most
of the time, since for each predicate a state variable is created
in the abstract model. The model checking step is the cause
of the timeouts in three rows under the ”Localize” results.

Next, we experimented with register sharing. The number
of state variables in the abstraction was reduced, and the
individual model checking steps became faster. However,
this approach resulted in too many abstraction refinement
iterations. This problem was solved by discovering on-the-
fly whether a predicate should be assigned a dedicated state
variable, that is, a state variable which will not be reused. In
these experiments, a dedicated state variable is allocated for
a predicate whose usage exceeds a progressively increasing
threshold, starting at 5% of the total number of program
locations.

The results of combining these multiple techniques is given
under the ”Combined” heading in Table II. The ”P Max Ded”
column gives the total number of predicates (P), followed
by the maximum number of predicates active at any pro-
gram location (Max), and the total number of state variables
which represent exactly one predicate, that is, dedicated state
variables (Ded). Observe that the time spent during model
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Bench Localize Combined Bug
-mark Time Abs MC P I Time Abs MC P Max Ded I
TCAS0 245 7 196 71 32 36 5 15 65 26 18 31 -
TCAS1 1187 15 1069 108 44 161 9 118 96 35 25 38 -
TCAS2 952 10 882 74 38 104 25 51 95 31 24 36 -
TCAS3 940 15 864 91 36 46 17 17 73 22 15 33 152
TCAS4 1231 13 1111 97 39 88 9 48 90 34 25 32 166
TCAS5 1222 11 1128 79 41 141 8 98 98 37 29 31 -
TCAS6 TO 20 2270 117 49 330 16 266 109 40 33 40 179
TCAS7 1758 16 1627 79 47 64 10 29 94 28 21 33 160
TCAS8 TO 21 1988 84 51 119 13 68 106 34 27 41 -
TCAS9 TO 26 3349 113 58 250 14 186 106 34 27 44 179

TABLE II

RESULTS FOR: 1) LOCALIZATION, ABSTRACTION WITHOUT REGISTER SHARING (”LOCALIZE”) . 2) LOCALIZATION, ABSTRACTION WITH REGISTER

SHARING, DEDICATED STATE VARIABLES (”COMBINED”). A ”-” INDICATES THAT THE PROPERTY HOLDS. A ”TO” INDICATES A TIMEOUT OF 1HR.

checking (MC) has reduced significantly as compared to the
”Localize” column.

D. Comparison with Related Tools

In terms of the use of SAT-based BMC for software
verification, the most closely related work to F-SOFT is the
CBMC tool [25]. CBMC translates a C program into a Boolean
formula, by considering bounded unrollings of loops, and
uses a back-end SAT solver to find reachable error states.
However, there are many differences. One major difference is
that F-SOFT generates a finite state model (not just a formula)
from the C program. This model can be analyzed by both
SAT-based (bounded and unbounded) and BDD-based model
checking techniques. Another major difference in the software
modeling is the block-based approach used in F-SOFT rather
than a statement-based approach in CBMC. (In our controlled
experiments, the block-based approach provides a typical 25%
performance improvement over a statement-based approach.)
Additionally, the translation to a Boolean formula in CBMC
requires unwinding of loops up to some bound, a full inlining
of functions, and it cannot handle recursive functions. In
contrast, the translation method in F-SOFT does not require
unwinding of loops, avoids multiple inlinings, and can also
handle bounded recursion. This allows F-SOFT to scale better
than CBMC on larger programs, especially those with loops.

We also differentiate the F-SOFT approach by use of light-
weight pre-processing analyses such as program slicing and
range analysis. Program slicing is used to statically remove
parts of the given program that do not affect the property
of interest. It has been successfully used in many software
model checkers [2], [13], although most of these are explicit
state model checkers. We believe F-SOFT is the first to
use static range analysis to reduce the size of the extracted
model for the purpose of model checking. This provides
considerable savings in comparison to a full bitwidth encoding,
as in CBMC. Finally, F-SOFT also allows abstraction of the
software program using predicate abstraction and localization
techniques. Indeed, the use of this framework in F-SOFT

has been inspired by other efforts, including SLAM [40] and
BLAST [32].

VII. CONCLUSIONS

This paper provided a brief tutorial on model checking of C
programs. The essential approach is to model the semantics of
C programs in the form of finite state systems by using suitable
abstractions. The use of abstractions is key, both for modeling
programs as finite state systems and for reducing the model
sizes in order to manage verification complexity. This paper
provided illustrative details of a verification platform called
F-SOFT, which entails a range of abstractions for modeling
software, and uses customized SAT-based and BDD-based
model checking techniques targeted for software.
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