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Abstract

Designing temperature-aware microarchitectures for mi-
croprocessors at new technologies is becoming a critical re-
quirement due to the exponentially increasing on-chip power
density. Extremely high power density, thus the very high on-
chip temperature, not only significantly increases the packag-
ing and cooling costs, but also creates tremendous difficulties
in chip leakage control and reliability.

Being a major contributor to chip transistor budget and
die area, caches account for a significant share of the overall
processor power consumption, including both dynamic and
leakage power. This work analyzes the thermal behavior of
subarrays within a conventional data cache when running
a set of applications from the SPEC2000 benchmark suite,
and proposes two new subarraying schemes, namely, the sep-
arated scheme and the interleaved scheme, to improve the
thermal behavior of subarrays in terms of more predictable
behavior and reduced subarray temperatures. These opti-
mizations can be also combined with dynamic thermal man-
agement (DTM) techniques to further improve the efficiency
of thermal management. The impact of leakage control on
the subarray thermal behavior is also evaluated.

1 Introduction

Continuous technology scaling down leads to an exponen-
tial increase in on-chip transistor integration density and an
even faster operating frequency. While enjoying the poten-
tially higher performance delivered from new technologies,
we are facing new challenges such as increasing design com-
plexity and chip thermal management. With a relative slow
supply voltage scaling, the on-chip power density exhibits an
exponential increase as technology advances [3]. This high
on-chip power density in turn leads to very high chip temper-
ature demanding much larger cooling capacity for the micro-
processor designs, thus significantly increasing the costs of
cooling systems and chip packaging [19].

Dynamic thermal management (DTM) [4][18] monitors
chip-wide temperature at runtime and dynamically invokes
power reduction schemes (e.g., dynamic voltage/frequency
scaling, clock gating, speculation control [15]) to avoid ther-
mal emergency when the temperature exceeds a pre-defined
warning threshold (DTM trigger temperature). Therefore, the
temperature is controlled before reaching the one designed
for maximum cooling capacity. This also implies that lower-
ing the maximum cooling capacity, thus significantly reduc-
ing the cooling cost, can be achieved by appropriately setting

the DTM trigger temperatures. Skadron et. al. [18] also
showed the strong connection between the effectiveness of
DTM techniques and the accuracy of the on-chip tempera-
ture sensors.

It is our belief that a thermal-aware microarchitectural de-
sign for major components such as caches, register file, in-
struction issue queues, and functional units can further im-
prove the effectiveness of DTM techniques in controlling
thermal emergencies. Understanding the thermal behavior of
these major components is essential towards such a thermal-
aware microarchitecture design. In modern wide-issue super-
scalar microprocessors, multiported data cache is required to
support multiple cache accesses per cycle since most load
instructions are on the critical path, leading to high temper-
ature in the data cache [18]. Due to the exponential effect
of the temperature on subthreshold leakage, controlling the
temperature in the data cache is of paramount importance in
reducing data cache leakage.

In this paper, we study the thermal behavior of subar-
rays within the data cache, the technology impact of differ-
ent subarray schemes, and the implications for more efficient
power/thermal management in the data cache. Our experi-
mental results using a set of SPEC2000 benchmarks show
that 1) different subarrays in a conventional simple subar-
rayed data cache have very different thermal behavior during
the course of simulation, 2) subarray temperature increases
dramatically with this simple subarray scheme, at deep sub-
micron technologies, which might lead to possible thermal
emergency in these subarrays. By separating data subar-
rays that will be accessed simultaneously during a cache
read/write, we propose an separated subarray scheme (-sp)
that achieves more evenly distributed temperature among
data subarrays and closer correlation with the initial temper-
ature of each subarray, and also produces a more predictable
thermal behavior. We further propose an interleaved scheme
(-il) that employs cache way distribution among subarrays
and the subblock predecoding to limit the cache access only
to a particular subarray, thus reducing the dynamic power
consumption and subarray temperatures. Our experimental
results at different technologies (130nm and 70nm) indicate
an even more severe thermal problem at future technologies,
which requires a joint effort from both microarchitectural
optimizations for major processor components and dynamic
schemes for power (dynamic and leakage) optimizations to
improve the efficiency of thermal management.

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss related work in microprocessor power and
thermal optimizations. Section 3 introduces three subarray



schemes and their detailed design for the data cache. We
present our experimental setup in Section 4. In Section 5, we
evaluate the thermal behavior of the subarray schemes and
the technology impact. Section 6 concludes this work.

2 Related Work

Thermal aware microarchitectures and dynamic thermal
management techniques are closely related to power man-
agement techniques. Once thermal management is triggered,
some typical power control mechanisms are invoked to re-
duce the power consumption thus to lower the temperature
in processor components. PowerPC G3/G4 microprocessors
dynamically monitor the junction temperature of the proces-
sor through an on-chip thermal sensor and dynamically in-
voke power management, such as instruction cache throt-
tling, when temperature reaches a threshold value [17]. Pen-
tium 4 employs global clock gating for its thermal manage-
ment [8]. Brooks and Martonosi [4] investigated the effec-
tiveness of several typical power control techniques, such
as clock frequency scaling, voltage and frequency scaling,
decode throttling, speculation control, and instruction cache
throttling, as dynamic response mechanisms in thermal man-
agement. Many previous works use power numbers to pre-
dict the temperature. In [18], Skadron et. al. developed a
microarchitecture level thermal model, HotSpot, for archi-
tectural studies of thermal management techniques.

Due to the caches’ large share in processor power con-
sumption, optimizing cache power is critical for processor
power management and thus has been the focus of many re-
search efforts. Stage-skip pipeline [10] introduces a small de-
coded instruction buffer (DIB) to temporarily store decoded
loop instructions that are reused to skip instruction fetching
and decoding for power reduction. Loop caches [13][1] dy-
namically detect loop structures and buffer loop instructions
or decoded loop instructions in an additional loop cache for
later reuse. More generally, filter caches [12] use smaller
level zero caches (between the level one cache and datapath)
to capture tight spatial/temporal locality in cache access thus
reducing the power consumption in larger level one caches.

As leakage is becoming a dominant part in cache power
consumption at deep sub-micron technologies[7], control-
ling leakage is essential for cache power/thermal optimiza-
tion. DRI i-cache [20] and cache decay [11] utilize gated-
Vdd techniques to dynamically turn off a portion of the cache
or a cache line for leakage reduction. Drowsy cache [7] uti-
lizes a multiplexed supply voltage for the cache lines and pe-
riodically transitions all cache lines into a drowsy mode. A
compiler-directed leakage management scheme [21] inserts
special leakage control instructions based on compiler code
analysis. At the circuit level, the asymmetric SRAM cell [2]
achieves much lower leakage while storing a value of zero.
Bitline leakage reduction by leaving bitlines open was pro-
posed in [9].

Different from the above work, our focus here is to an-
alyze and gain understandings of the thermal behavior in
the data cache and to design cache subarray schemes in a
thermal-aware way. Such a thermal-aware subarray scheme
is not only thermal efficient by design, but is also able to
support other dynamic thermal/power optimization schemes.
Further, we study the leakage impact on subarray tempera-
tures and the critical importance of leakage control for cache
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Figure 1. A general view of cache organization.

thermal management at deep sub-micron technologies.

3 Thermal-Aware Cache Subarraying

3.1 Basics of Cache Organizations

A general view of the cache organization is shown in Fig-
ure 1. The data array (on the right) and the tag array (on the
left) form the two major parts in the cache. To achieve bet-
ter cache access and cycle time, both the data and tag arrays
may further be divided into subarrays to reduce the wordline
or bitline delay. In the Cacti model [16], parameters Ndwl
and Ndbl define how the data array is horizontally and ver-
tically divided into subarrays. Parameter Nspd defines how
many sets are mapped to a single wordline. Thus, these three
parameters define the organization of the data array. The opti-
mal values of Ndwl, Ndbl, and Nspd are determined by the
cache size, cache block size, and the set associativity. Simi-
larly, the tag array is also configured by similar parameters,
Ntwl, Ntbl, and Ntspd.

3.2 A Simple Subarrayed Cache

Given a cache configuration and a particular process tech-
nology, the optimal values of parameters Ndwl, Ndbl, and
Nspd can be determined with respect to an optimizing func-
tion (e.g., for best access and cycle time) [16]. With these
three parameters determined, a simple and fast subarraying
scheme is to enable the decoders of all subarrays on the same
horizontal row with a predecoding signal. Then, the column
multiplexer will select the bitlines from one among the Ndbl
logical subarrays.

Figure 2 shows the data array implementing such a sim-
ple subarraying scheme. The bitlines of the data array are
vertically divided into Ndbl segments and the wordlines are
horizontally divided into Ndwl segments. Each subarray has
Nspd sets mapped to each wordline. Thus, the number of
vertical segments is Ndbl/Nspd. During a cache access, the
predecoding lines select/enable one row of subarrays among
the Ndbl/Nspd rows, followed by the selected subarray de-
coders decoding the remaining index bits in the address and
accessing all the subarrays on this row. The performance
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Figure 2. A simple cache subarraying scheme (-org).
Each subarray has Nspd sets mapped to a single
wordline.

overhead of predecoding in this scheme should be minimum.
However, from the thermal perspective, such a subarraying
scheme is not efficient since the subarrays on a row are al-
ways accessed simultaneously and consume dynamic power.
These subarrays have at most two idle subarrays (above and
below them, see Figure 2) to spread heat to, which may lead
to heat buildup on the accessed row due to hot neighboring
subarrays. High temperature in these subarrays will cause
significantly larger leakage than other low temperature sub-
arrays and increase the overall cache leakage consumption.
The increased leakage power may further cause temperature
rise and possibly lead to thermal runaway. One possible
solution to alleviate this thermal problem is to increase the
number of idle subarrays with low temperature around an ac-
cessed subarray for fast heat diffusion.

3.3 Separating Subarrays

An alternative subarraying scheme, as a solution to the
thermal problem for the simple scheme in the previous sub-
section, is to deneighbor or separate subarrays (on the same
row) that will be accessed in parallel. How far a neighbor-
ing subarray can be put away depends on the two param-
eters Ndbl and Nspd. To simplify the data output rout-
ing, we limit the subarray placement only within its column.
Therefore, Ndbl/Nspd defines the number of locations that
a subarray can be placed into. The farther the two accessed
subarrays are separated, the more efficient the heat dissipa-
tion should be. Figure 3 presents such a separate-subarrayed
cache.

The separated subarraying scheme in Figure 3 puts the
subarrays on the logical row into two neighboring physical
rows in such a way that any two subarrays are not direct (hor-
izontally or vertically) neighbors. This scheme also makes
the accessed subarray have up to four possibly idle subarrays
(up, bottom, left, and right) surrounding it, which helps quick
temperature reduction for the hot subarray. However, the ef-
fectiveness of this separated subarraying scheme is limited in
the presence of multiple cache accesses, where multiple rows
of subarrays may be accessed in parallel.
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Figure 3. A separated cache subarraying scheme
(-sp).
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Figure 4. A way-interleaved cache subarraying
scheme (-il).

3.4 Distributing Cache Ways among Subarrays

In both the simple and separated subarraying schemes, a
cache read/write accesses all the subarrays on a selected log-
ical row in the array. Notice that the data width between the
CPU and data cache is usually a word (four or eight bytes)
and is much smaller than the cache block size (e.g., 32 or 64
bytes). In the last stage of cache access (assuming a cache
hit), the cache way selection from the tag comparison and
block offset bits in the address together control the output
multiplexers to route out the right data to the CPU [16]. We
propose limiting a cache access only to activate one subarray
rather than all subarrays on the same logical row by employ-
ing subblock predecoding (i.e., moving partially the word se-
lection from the output multiplexer to an early predecoding
stage) and cache way interleaving among subarrays (i.e, dis-
tributing a cache way among all subarrays on the row). Due
to significantly reduced power consumption for each cache
access, the new proposal has the potential to further improve
the thermal efficiency of subarrayed caches.

Figure 4 shows such an interleaved subarraying scheme.



Processor Core
Int/FP Issue Queue 20/20 entries
Load/Store Queue 64 entries
Active List 80 entries
Int/FP Physical Reg. File 80/72 registers
Fetch/Decode/Commit Width 4 instructions per cycle
Int/FP Issue Width 4/2 instructions per cycle
Function Units 4 IALU, 2 IMULT/IDIV,

2 FALU, 1 FMULT/FDIV/FSQRT,
2 Mem Read/Write ports

Branch Predictor
Branch Predictor tournament predictor

PAg/GAg with GAg chooser
BTB 2048 entries, 2-way
RAS 32-entry

Memory Hierarchy
L1 ICache 64KB, 2 ways, 64B blocks, 2 cycles
L1 DCache 64KB, 2 ways, 64B blocks, 2 cycles
L2 UCache 4MB, 8 ways, 128B blocks, 12 cycles
Memory 225 cycles first chunk, 12 cycles rest
I/DTLB 128 entrie, full assoc., 30 cycle miss penalty

Table 1. Parameters for the simulated Alpha 21364
microprocessor.

Each subarray might have Nspd sets mapped to the same
wordline. Each set within the subarray holds a subblock
from each cache line (cache block) of A ways, where A is
the set associativity. Assuming B is the cache line size in
bytes, the subblock size (each way distributed among subar-
rays) is B/Ndwl. The row predecoder is kept unchanged as
in the previous schemes. Row predecoding takes the higher
log2(Ndbl/Nspd) index bits in the address to select a par-
ticular row of subarrays and their decoder for accepting the
remaining index bits. In the mean time, the subblock pre-
decoder uses the higher log2(Ndwl) block offset bits in the
address to enable the subarray decoders on a particular col-
umn. These two predecoders together locate a single sub-
array and enable its subarray decoder for the current cache
access. However, a cacheline replacement at cache misses
needs to access all the subarrays on that row.

4 Experimental Setup

In this section, we discuss the experimental setup and
benchmark selection for our work. We extended the original
SimpleScalar simulator [6] with some radical modifications
to model the Alpha 21364 microprocessor as close as possi-
ble. The detailed configuration of the simulated Alpha 21364
microprocessor is given in Table 1.

The power model for this Alpha 21364 microprocessor
simulator is derived from Wattch [5]. HotSpot [18] and
HotLeakage [22] are also incorporated into the processor
simulator to profile the transient temperatures and the leak-
age power of the data cache. The Alpha EV7 floorplan (with
its EV6 core) from [18] is used as the reference floorplan
for this study. For the two technologies, 130nm and 70nm,
we are evaluating here, the floorplan and the dimensions of
the processor components are scaled accordingly from the
180nm technology. Other HotSpot related operating param-
eters are similar to those used in [18] and some are listed in
Table 2.

We used a set of 10 integer benchmarks and 8 floating-
point benchmarks from the SPEC2000 benchmark suite in
this study. All benchmarks were compiled for the Alpha in-

HotSpot Parameters
Technology 130nm 70nm
Clock Frequency 3GHz 5.6GHz
Supply Voltage 1.5V 1.0V
Ambient Air Temperature 45◦C
Package Thermal Resistance 0.8K/W
Die 0.5mm thick, 15.9mm x 15.9mm
Heat Spreader Copper, 1mm thick, 3cm x 3cm
Heat Sink Copper, 7mm thick, 6cm x 6cm

Table 2. HotSpot related parameters.

struction set architecture with “peak” tuning. Each bench-
mark is first fastforwarded 1 billion instructions, then simu-
lates the next 0.5 billion instructions in details.

5 Experimental Results

In this section, we evaluate the effectiveness of proposed
subarray schemes in optimizing the thermal behavior of
cache subarrays at two different technologies, 130nm and
70nm. The simulated data cache has the same configuration
as the one in Alpha 21364 microprocessors, which is given
in Table 1. The optimal subarray parameters derived from
Cacti 3.2 [16] are as follows, Ndwl = 4, Ndbl = 2, Nspd =
1, Ntwl = 1, Ntbl = 4, and Ntspd = 2. Since the tag array
only accounts for around 3% of the total area, our evaluation
of the subarray schemes focuses on the data array portion.
Figure 5 shows the subarray layouts of the data cache for the
three different schemes discussed in Section 3.

(c) Interleaved scheme
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sb03sb00 sb02sb01

Way 0

sb01

(b) Separate scheme

Way 1

sb13sb02sb00 sb11

Way 0

sb10 sb03sb12

Figure 5. Subarray layouts of the data cache for
three subarraying schemes.

We use HotSpot to update transient temperatures every
100K cycles. The initial temperatures of major processor
components and subarrays in the data cache for this limited
study are derived from the steady temperatures after one sam-
ple simulation.

We first analyze the thermal behavior of the data cache
with three different subarraying schemes: simple (-org)
scheme, separated (-sp) scheme, and interleaved (-il) scheme,
at the 130nm technology. Figure 6 shows the comparisons
for a typical integer benchmark (gcc). The transient temper-
atures of each of the eight subarrays during the simulation
are given for all three schemes. It is noticeable from Fig-
ure 6 (a) that the integer benchmark gcc has very intensive
variations in subarray temperatures during the simulation. In
some benchmarks, such as vpr and lucas (results not shown),
the subarray temperatures drop due to the lower average data
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Figure 6. Thermal behavior of subarrays with different schemes for Integer benchmarks (at 130nm technology).
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Figure 7. Thermal behavior of data cache subarrays at 70nm technology.

cache accesses per cycle. By separating subarrays that will be
accessed simultaneously into two different rows (as shown in
Figure 5 (b)), the separated scheme (-sp) (Figure 6 (b)) sees
more evenly distributed subarray temperatures and decreased
subarray temperature variations. This is due to the evenly dis-
tributed spatial accesses to these cache subarrays. However,
the separated scheme is not effective in lowering the subar-
ray temperatures. This could be explained by the overall still
high dynamic power consumption in the data cache. With
interleaved subarrays, as shown in Figure 6 (c), we achieve
very nice thermal behavior in the data cache with all the
subarray temperatures dropping continuously. As the inter-
leaved scheme employs both subarray row predecoding and
subblock predecoding, each cache access only activates one
subarray which dramatically reduces the dynamic power con-
sumption and improves heat diffusion to the surrounding idle
subarrays. Steady temperature results (not presented here)
show that the interleaved scheme achieves substantially re-
duced subarray temperatures. On the average, the interleaved
scheme reduces the subarray temperatures by 6.5 degrees for
integer benchmarks and 5.1 degrees for floating-point bench-
marks, compared to the simple scheme. Since the separated
scheme has less impact on subarray temperature reduction, it
is not considered in our analysis at the 70nm technology.

For the the 70nm technology, the increasing power den-
sity creates much higher temperature in subarrays, as shown
in Figure 7. With the simple subarraying scheme (-org), all
subarray temperatures are sharply increasing (Figure 7 (a)).
Although the interleaved subarray scheme does not deliver
the same thermal behavior as at the 130nm technology, it ef-
fectively slows down temperature rising in subarrays (Figure
7 (b)). One major reason of this thermal behavior is the sig-
nificantly increased cache leakage power at sub-micron tech-
nologies. From our results, the leakage power (including
both subthreshold and gate leakage calculated by HotLeak-

age [22] with a temperature feedback from HotSpot [18] ev-
ery 100K cycles) in the cache with the interleaved subarray-
ing scheme is around 70% of the overall cache power at 70nm
technology, as shown in Figure 9. The large gate leakage is
partially due to the 1.0V supply voltage used in this evalu-
ation. Since cache decay is more sensitive to temperature
variations than the drowsy cache scheme [14], we exploit the
cache decay scheme for leakage control in the context of the
data cache thermal optimization. The decay interval is 8K
cycles as suggested in [11]. Figure 7 (c) shows the impact
of leakage optimizations on the dynamic thermal behavior
of cache subarrays. At 70nm technology, the interleaved
scheme reduces the subarray temperatures by 8.2 degrees
and 6.6 degrees on the average for the integer and floating-
point benchmarks, respectively. With cache decay applied,
the temperature reduction is increased to 11.4 degrees and
9.7 degrees for the integer and floating-point benchmarks, re-
spectively, as shown in Figure 8.

To show how the subarraying schemes optimize the cache
power and consequently the thermal behavior, we break
down data cache power consumption (at the 70nm technol-
ogy) into three part: dynamic power, subthreshold leakage,
and gate leakage, for both integer and floating-point bench-
marks, as shown in Figure 9. The interleaved subarray
scheme achieves a significant dynamic power reduction, 75%
on the average, which leads to substantially reduced subarray
temperature and optimized cache thermal behavior. Apply-
ing cache decay, the subthreshold leakage (gate leakage) is
dramatically reduced, by 75% (53%) on the average for all
benchmarks, which further improves the subarray tempera-
ture reduction. Notice that this subthreshold leakage reduc-
tion is due to the joint effects of the cache decay scheme and
the reduced subarray temperature.
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6 Conclusions

In this work, we focus on designing thermal-efficient data
caches, a major processor component in terms of power con-
sumption and transistor/die area budget. First, we analyzed
the thermal behavior of subarrays within a conventional data
cache. The simple subarray organization implies possible
thermal emergency due to heat buildup involving neighbor-
ing subarrays. Then, an optimized subarraying scheme was
proposed to avoid this heat accumulation by separating sub-
arrays (to be accessed simultaneously) into different phys-
ical rows. However, its effectiveness is limited due to the
large power consumption when accessing multiple subarrays
in parallel. Finally, we proposed a way-interleaved subarray-
ing scheme utilizing additional subblock predecoding to acti-
vate only one subarray during a cache access. Our evaluation
results show that the interleaved scheme achieves superior
cache thermal behavior and significantly reduces cache tem-
perature. As leakage is becoming a dominant part of cache
power consumption at deep sub-micron technologies, leak-
age control mechanisms must be also employed in order to
exploit the thermal efficiency of the interleaved subarraying
scheme.
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