

Abstract—Reducing energy consumption is an important issue
for battery powered embedded computing systems. Content
Addressable Memory (CAM)-based Highly-Associative Caches
(HAC) are widely used in low power embedded microprocessors.
The CAM tag is costly in power, access time, and area. We have
designed a Low Power Highly Associative Cache (LPHAC) whose
tag is partially implemented by using CAM, while the remaining
tag is implemented by using SRAM. The experimental results
from 10 MediaBench and all 26 SPEC2K benchmarks show the
proposed LPHAC exhibits almost the identical miss rate as a
traditional HAC. At the same time, it consumes 27% less per
cache access power and 1.6% less area with faster access time.

1. Introduction
Energy consumption is a major concern in many embedded

computing systems. The microprocessor and memory consume
a significant portion of the total energy of an embedded system.
Several studies have shown that cache memories account for
about 40% [3][12] of the total energy consumed in a
microprocessor, thus an energy efficient cache architecture is a
critical issue in the design of microprocessors for embedded
systems.

Microprocessors designed for embedded systems are
typically not equipped with a level two cache, which is widely
available for high performance processors. Accessing off-chip
memory is both time consuming and energy costly due to the
high capacitance of the off-chip buses and the large storage of
the off-chip memory. Therefore, reducing the miss rate of a
level-one cache for embedded system microprocessors can
greatly reduce the total power consumption.
 The CAM-based HAC [3][9] is specifically designed for
low power embedded systems where performance (cache
access time) may be traded for low energy consumption. The
CAM HAC reduces energy consumption of an embedded
system through two main organizational techniques. One is to
aggressively partition the cache memory into small subbanks,
typically 1kB per bank. The small size of the subbank reduces
the energy per cache access. The other is the high associativity.
Typically, a 32-way cache is implemented in one subbank.
High associativity greatly reduces the miss rate and the
accesses to the off-chip buses and memory, which are both
power and performance costly.

The problem of a traditional HAC design is the CAM tag
consumes a significant portion of the total per-cache access
power. CAM consumes 5-10 times more power than a same-
sized SRAM [2]. Reducing the power consumption of the
CAM-based tag is an important issue in low power HAC
design.

The contribution of our technique is that we propose a low
power CAM HAC (LPHAC) design that uses eight bits instead
of 24 bits of CAM-based tag. The remaining 16 bits of the tag
are implemented using SRAM, which is more efficient in area
and power than CAM. We also show the tradeoff of the number
of CAM tag bits used with the performance overhead in terms
of hit rate. Using execution driven simulations from 10
Mediabench [4] and all 26 SPEC2K [10] benchmarks, we
demonstrate that the miss rate of the proposed LPHAC remains
almost the same with the original HAC while consuming 27%
less per cache access power and 1.6% less area with faster
access time.

This paper is organized as follows. Section 2 is a brief
review of the related work. Section 3 describes traditional HAC
architecture. Section 4 is the design of the proposed low power
HAC. Section 5 presents experimental results. We analyze the
LPHAC in Section 6 and conclude in Section 7.

2. Related Work
Substantial research has been conducted to reduce the energy

consumption of HAC for embedded computing systems using
organization and circuit’s techniques.

Organization techniques include way prediction [11] and
way memorization [5], which reduces access to the power
costly CAM-based tags. Way-prediction HAC can skip the
accesses of the CAM-based tag when the prediction of the next
accessed cache way is correct. A simple last-used prediction
technique can achieve an 86% correct prediction.

Way memorization cache records the last accessed way in a
counter. When the identical way is next accessed, the tag can
be skipped to save energy. Since the well-known locality exists
in both data and instructions, way memorization can save 21%
of the power. Compared to the proposed LPHAC, both way
prediction and way memorization require extra hardware, while
LPHAC reduces hardware from the traditional HAC design.
Both way prediction and way memorization can be combined
with the proposed LPHAC design to further reduce power
consumption.

 Circuit techniques can also be used to reduce the power
consumption of CAM. Pipelined CAM [7] breaks the match
lines into pipelined stages. Since mismatches typically happen
in the early stages, the pipelined CAM reduces power through
halting additional searching operations in other pipeline stages.
The power savings for a 1024×144-bit pipelined CAM is 60%
compared to a traditional CAM, which is still higher than a
same-sized SRAM. The CAM size for HAC caches, however,

A Low Power Highly Associative Cache for
Embedded Systems

Chuanjun Zhang
Department of Computer Science and Electrical Engineering

University of Missouri-Kansas City
zhangchu@umkc.edu

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

is typically 32×24-bit. To fill the CAM pipeline, the CAM
should be accessed in each cycle. However, for typical
embedded processors, which use single-issue in-order core, one
cache block (which may contain eight instructions) is enough
for eight processor cycles. In this case, the processor may
access the instruction cache every eight cycles when instruction
locality is good, which diminishes the benefits of using
pipelined CAM. Our technique uses a different method that is
orthogonal with the pipelined CAM.

Techniques that use both circuit and organization techniques
include serially accessed [2] and way-halting [13] cache.
Serially accessed CAM may prolong the cache access time.
Way-halting cache needs a specially designed CAM, which
may not be easily available for embedded system designs. The
proposed LPHAC reduces power consumption by using less
CAM without any hardware overhead, special circuit design
techniques, or special libraries.

3. Traditional HAC Design

3.1 Organization
Figure 1 shows the organization of a traditional 32-way

HAC at a size of 8kB with a line size of 32 bytes. Two
organizational techniques are employed to reduce power
consumption. One is cache memory partition, the other is high
associativity.

 The cache memory is aggressively partitioned into eight
subbanks with a size of 1kB for each subbank. Only one
subbank is activated during one cache access to reduce the per
cache access energy. This low power organization comes in
exchange for performance (cache access time) overhead, since
the wordline activation and bit-line pre-charging of both CAM-
based tag and SRAM data of subbanks cannot start (to save
power) until the subbank decoding finishes. This performance
overhead is intolerable in high performance level-one cache
designs where the subbank decoding of a high performance
cache is conducted in parallel with the index decoding. The
index decoding takes longer time than the subbank decoding
and so hides the latency of subbank decoding. It should be
noted that cache memory for high performance level-one
caches is also partitioned into several subbanks to balance the
power dissipation, access time, and area. The number of

subbanks, however, is much lower than that of HAC, e.g., a
same-sized high performance level cache has only four
subbanks [8] instead of eight for HAC.

The HAC uses a fully associative cache, which is efficient in
reducing misses. However, continuing to increase associativity
higher than four or eight is not important, since for most
applications, the miss rate reduction for associativity higher
than eight or even four is diminishing. Implementing a 4-way
cache on a 1kB cache block, however, is cumbersome and may
not be as efficient as a fully associative cache using CAM to do
the parallel searching. A size of 32 rows of CAM can be
implemented efficiently in terms of access time and power [6].
Therefore, a fully associative cache is adopted for the low
energy embedded system design.

3.2 The Problem
 Figure 2 shows the organization of the one subbank of the

traditional HAC (a) and the proposed LPHAC (b). The problem
with the CAM-based HAC is the tag consumes a significant
portion of the total energy per cache access. Since all bit-lines
of a CAM subbank are precharged. During a cache access, at
most, one cache line matches the desired address; therefore, all
other bit-lines and match lines have to be discharged, which
makes CAM energy costly.

4. The LPHAC Design

4.1 Observation
We have observed that the function of the CAM tag in a

traditional HAC is threefold. First, the tag serves as a full tag
comparison and verifies a cache hit. Second, the CAM tag
serves as a decoder whose output drives one cache line when
there is a cache hit. Lastly, the CAM tag provides the cache an
opportunity to choose a victim from the 32 cache lines. This
happens during a cache miss when none of the 32 tags stored in
the CAM tag matches the desired address.

For the first function, the entire tag is required to make a full
comparison. For the second function, however, decoding 32
cache lines does not need all the 24 tag bits. In fact, 5-bit CAM
is enough to distinguish the 32 lines. For the third function, a
victim can be selected from the 32 cache lines for a cache miss,
since none of the 32 tags matches the desired address. It is well
known that cache misses occur mostly on the low order bits of

Figure 1: Traditional highly associative cache with eight subbanks. Each
subbank is a fully associative cache. BK_EN0 ~ BK_EN7 are used to control
the activation of the subbanks.

Figure 2: Organization of one subbank of original HAC (upper) and the
proposed LPHAC (lower).

ST
A

T
U

S

SRAM
DATA

CAM
TAG

CAM
TAG

SRAM
TAG

24 bits

16bits 8bits

ST
A

T
U

S

SRAM
DATA

=

+

+
hit

hit

SRAM tag hit

CAM tag hit
Sense Amp.

(a)

(b)

 tag
sram
data

cam
tag st

at
us

BK_EN7 tag_addr

sram
data

cam
tag st

at
us

BK_EN4 tag_addr

sram
data

cam
tag st

at
us

sram
data

cam
tag st
at

us

BK_EN0 tag-addr. BK_EN3 tag-addr.

bank
decoder

address

3

the tags [13]. Therefore, we may not need all the tag bits to
fulfill the third function. We may achieve the similar miss rate
reductions by using just part of the tag to find the optimal
victim for a cache miss.

4.2 Organization
 Based on the above observation, we propose a new

organization as shown in Figure 2 (b). We divide the original
32×24 CAM-based tag into two sub-tags. One is a 32×16
SRAM-based sub-tag. The other is a 32×8 CAM-based sub-tag.
The high order tag bits are stored in the SRAM sub-tag, which
is used to fulfill the first function together with the CAM-based
sub-tag. The low order tag bits are stored in CAM-based sub-
tag to fulfill the function as a decoder and exploit the
replacement policy. During a cache miss, for the most part, the
CAM-based sub-tag does not match the desired address;
therefore, we can still take full advantage of the replacement
policy to find an optimal victim. When the misses occur in the
SRAM sub-tag, then we cannot choose an optimum victim
from the 32 cache lines. The detailed operation of the proposed
LPHAC is shown in the following section. It is apparent that a
wider CAM-based sub-tag catches more misses but consumes
more power. We determined the optimal CAM-based sub-tag
width through experiments.

4.3 Operation of the LPHAC
We use a simple example to show how the proposed LPHAC

works. For an address sequence of 0, 1, 3, 7… 0, 1, 3, 7, the
operation of the proposed LPHAC is as follows:

 First, during the cache’s cold start, the contents of both the
SRAM sub-tag and the CAM sub-tag are invalid and updated
using the desired address. For addresses whose tag bits
corresponding to the CAM-based sub-tag are different, such as
addresses 0, 1, 3, and 7, the victim is chosen using the
replacement policy (least recently used replacement is
assumed).

Second, the LPHAC exhibits a miss, but the CAM-based
sub-tag exhibits a hit. For example, this happens when address
9 is accessed after the aforementioned address sequence. The
CAM-based sub-tag is “001” for address 9 (1001). From Figure
3 (b), the corresponding CAM-based sub-tags are “000”,
“001”, “011”, and “111”. Since the CAM-based sub-tag of
address 9 (1001) is “001”, the LPHAC has a CAM sub-tag hit.

Since only one cache block is activated during an access, the
address 9 must replace the address 1. In this situation, the
LPHAC cannot choose a better victim based on the access
history. If the LPHAC replaces other addresses with address 9,
then the address 1 must be evicted as well, to maintain unique
address decoding. This definitely impacts the hit rate
inadvertently and should be avoided.

Finally, the CAM-based sub-tag exhibits a miss. This
happens when address 13 is accessed, since the CAM sub-tag
of address 13 (1101) is “101”, which is different from the
contents stored in the CAM sub-tags, which are “000”, ”001”,
”011”, and ”111”. None of the CAM tags match, and no cache
line is activated. The victim for address 13 can be chosen from
any of the cache lines based on the replacement policy.

5. Experiments

5.1 Experimental Methodology
We use miss rate as the primary metric to measure the

effectiveness of the LPHAC. We configure the SimpleScalar
[1] as a single-issue in-order processor to collect the miss rate.
We determine the CAM sub-tag width through
experimentation. The baseline processor is configured with
level-one caches of 32-way at size of 8kB with a line size of 32
bytes for both the instruction and data caches. We ran 10
MediaBench and all 26 SPEC2K benchmarks using the
SimpleScalar tool set. The SPEC2K benchmarks were fast-
forwarded for two billion instructions and executed for 500
million instructions afterwards using reference inputs. For the
data cache, all results are reported. For the instruction cache,
the results of benchmarks whose miss rates are less than 0.01%
are not reported (to save space in the plot), since further
reducing the miss rate may not be important for these
benchmarks. These benchmarks include art, bzip, facerec,
galgel, lucas, mcf, mgrid, swim, and vpr.

Figure 3: (a) A traditional HAC. (b) The proposed LPHAC

0%

3%

6%

9%

12%

ad
pc
m
en
c

ep
ic

g7
21
de
c

g7
21
en
c

jp
eg
de
c

jp
eg
en
c

m
pe
g2
de
c

pe
gw
itd
ec

pe
gw
ite
nc

un
ep
ic

Av
e

ad
pc
m
en
c

ep
ic

g7
21
de
c

g7
21
en
c

jp
eg
de
c

jp
eg
en
c

m
pe
g2
de
c

pe
gw
itd
ec

pe
gw
ite
nc

un
ep
ic

Av
e

5 6 7 8 9 10 11 base

Figure 4: Data (left) and instruction (right) cache miss rates of MediaBench benchmarks. The number from 5 to 10 represents the width of the CAM sub-tag.

(a) (b)

CAM

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 1
0 0 0 1 1 1

13
1 1 0 1

9
1 0 0 1

13
1 1 0 1

9
1 0 0 1

CAM SRAM SRAMSRAM

Tag Tag CAM TagDat Data
7
3

0
1

0 0 0 0 0
 0 0 1
 0 1 1
 1 1 1

0 0 0 0 0
 0 0 0
 0 0 0
 0 0 0 7

3

0
1

5.2 Experimental Results
Figure 4 shows the miss rates of both data and instruction

caches for MediaBench benchmarks. Figure 6 and Figure 7
show the miss rates of instruction and data caches of SPEC2K
benchmarks, respectively. The bar with “base” represents the
miss rate of a traditional 8kB HAC, while the other bars with
numbers from 5 to 11 represent the miss rates of the proposed
LPHAC with a CAM-based sub-tag width from five to 11 bits.
The first observation we made is the miss rate reduction is
diminishing when the CAM-based sub-tag width increases
higher than eight bits for both instruction and data caches. This
means the traditional HAC design overuses the costly CAM.
Therefore, we chose eight bits for the CAM-based sub-tag. The
corresponding IPC is 0.1% less than the baseline, since some
benchmarks, e.g. vortex, has a higher miss rate than the
baseline.

The second observation we made is that for some
applications, such as perlbmk, fma3d, and applu, the lowest
miss rate does not occur at the base situation. This is because
the least recent used (LRU) replacement policy is not the
optimal policy. Recall that the LPHAC has a lower number of
CAM cells in the sub-tag, which makes the real policy
implemented for the proposed LPHAC different from the
traditional LRU. For these benchmarks, the modified LRU

policy at certain CAM sub-tag widths is superior to the
traditional LRU with full tags implemented using CAM. On the
other hand, benchmark lucas exhibits the worst miss rate at a
CAM-based sub-tag width of 11 bits among all the subtag
widths simulated for data cache.

6. Analysis

6.1 Timing Analysis
Figure 5 (a) shows the timings of a traditional HAC. The

access to a traditional HAC consists of two phases. In the first
half-clock cycle, the subbank decoder activates one subbank
based on the desired address, and then the tag addresses are fed
to the CAM tag store. Tag comparison is finished before the
end of the first half-clock cycle. Desired data is read out from
the SRAM data stored in the second half of the clock cycle.
The hit signal is generated through ORing the 32 match signals
from the CAM tag.

For the proposed LPHAC, the CAM sub-tag comparison
proceeds faster than the original design, since a 32×8 CAM is
28% faster than a 32×24 CAM based on our HSPICE
simulation.

6.2 Area Savings
The area saving comes from the fact that less CAM cells are

used in the LPHAC. The area of the CAM cell is 25% larger
than the SRAM cell used by data and tag memory. The total
storage reduction is calculated as 1.6% of the total cache
storage area.

6.3 Power Reduction
The power consumption per cache access is reduced since

there are less CAM cells for tag store. We measure the
corresponding power reductions using HSPICE simulation of

Figure 5: Timing analysis, (a) Traditional HAC; (b) The proposed LPHAC.

0%

1%

2%

3%

4%

amm app aps cra eon equ fma gap gcc gzi mes par per six tw o vot w up Ave

5 6 7 8
9 10 11 base

Figure 6: Instruction miss rate of selected Spec2K Benchmarks. base stands for the miss rate of a traditional 32-way cache at size of 8kB. The number from five to 11
represents the width of CAM sub-tag.

0%
5%
10%
15%
20%

am
m

ap
p

ap
s ar
t

bz
i

cr
a

eo
n

eq
u

fa
c

fm
a

ga
l

ga
p

gc
c

gz
i

lu
c

m
cf

m
es m
gr pa
r

pe
r

si
x

sw
i

tw
o vo
t

vp
r

w
up Av
e

5 6 7 8
9 10 11 base

Figure 7: Data cache miss rate of the whole 26 SPEC2K benchmarks. base stands for the miss rate of a traditional 32-way cache at size of 8kB. The number from 5 to
11 represents the width of CAM sub-tag.

 CAM tag matching

hit signal

 SRAM data reading

 CAM tag
matching

SRAM data
SRAM tag

hit signal available

(a)

(b)

clk

clk

both the traditional HAC and the proposed LPHAC using
0.18um technology. Figure 8 shows the power consumptions of
the proposed LPHAC and traditional HAC during cache hits
and misses. During a cache hit, the power per cache access
consumption of the proposed LPHAC is reduced by 27% due to
the reduction of the CAM tag from 24 bits to 8 bits.

We must point out two subtle situations during a cache miss.
In a traditional HAC, no SRAM data will be accessed during a
cache miss. However, the situations are different in the
proposed LPHAC during a cache miss as shown in Figure 8.
One situation is that the cache miss happens in the SRAM sub-
tag instead of the CAM sub-tag. Both the SRAM sub-tag and
the SRAM data are accessed, since the cache miss can only be
determined after looking up the SRAM sub-tag. Under this
situation, the proposed LPHAC consumes around 46% more
power than a traditional HAC on a cache miss.

Fortunately, this situation happens very infrequently, since
most misses occur in the CAM sub-tag. The percentage of the
CAM sub-tag hits during cache misses is shown in Figure 9,
Figure 10, and Figure 11 for Mediabench and SPEC2k. For
Mediabench, the CAM sub-tag hit accounts for 6.5% and 1% of
the total cache misses for data and instruction cache,

respectively. For SPEC2K benchmarks, the CAM sub-tag hit
accounts for 13.8% and 17% of the total cache misses for data
and instruction cache, respectively. The cache miss rates on
average, as shown in Figure 4, Figure 6, and Figure 7, are less
than 1% and 7% for instruction and data cache, respectively.
Therefore, the extra power consumed due to CAM sub-tag hits
during a cache miss is very limited.

The other situation occurs when the cache miss happens on
the CAM sub-tag, and neither SRAM data nor SRAM sub-tag
will be read, thus reducing power by 60% compared to the
traditional HAC on a cache miss. For Mediabench, the CAM
sub-tag misses account for 93.5% and 99% of the total cache
misses for data and instruction cache, respectively. For
SPEC2K benchmarks, CAM sub-tag misses accounts for
86.2% and 83% of the total cache misses for data and
instruction cache, respectively.

Some benchmarks, however, have a very high CAM sub-tag
hit rate during cache misses, such as benchmarks ammp and
gap for instruction caches and benchmarks fma3d and galgel
for data cache. The CAM sub-tag hit rates for these
benchmarks are higher than 50%. Figure 14 shows the miss
rate of benchmark ammp at associativities of 1-, 2-, 4-, 8-, and
32-way for a traditional cache and at CAM sub-tag width from
5 to 10 for the proposed LPHAC. The CAM sub-tag hit rate
remains 100% till CAM sub-tag is 9-bit and is reduced to zero
when the CAM sub-tag is 10-bit. However, the miss rate
reduction of the proposed LPHAC at eight bits is already not
important. Therefore, eight bits are enough for the CAM sub-
tag to reduce the overhead.

6.4 Energy Evaluations
In this section, we compare the energy saving of the

proposed LPHAC with a traditional HAC. There are two main
components that result in power dissipation in CMOS circuits,
namely static power dissipation due to leakage current and

Figure 8: Power dissipation of the proposed LPHAC and traditional HAC
during cache accesses.

0%
20%
40%
60%
80%
100%

am
m

ap
p

ap
s ar
t

bz
i

cr
a

eo
n

eq
u

fa
c

fm
a

ga
l

ga
p

gc
c

gz
i

lu
c

m
cf

m
es m
gr pa
r

pe
r

si
x

sw
i

tw
o vo
t

vp
r

w
up Av
e

Figure 9: CAM sub-tag hit rates during data cache misses for SPEC2K benchmarks.

0%

20%

40%

60%

80%

100%

am
m

ap
p

ap
s

cr
a

eo
n

eq
u

fm
a

ga
p

gc
c
gz
i

m
es pa
r

pe
r

si
x

tw
o vo
t

w
up Av
e

Figure 10: CAM sub-tag hit rates of the instruction cache during cache misses

for SPEC 2K benchmarks.

0%

5%

10%

15%

20%

ad
pc
m
en
c

ep
ic

g7
21
de
c

g7
21
en
c

jp
eg
de
c

jp
eg
en
c

m
pe
g2
de
c

pe
gw
itd
ec

pe
gw
ite
nc

un
ep
ic

Av
e

ad
pc
m
en
c

ep
ic

g7
21
de
c

g7
21
en
c

jp
eg
de
c

jp
eg
en
c

m
pe
g2
de
c

pe
gw
itd
ec

pe
gw
ite
nc

un
ep
ic

Av
e

Figure 11: CAM sub-tag hit rates of both the data and instruction caches during

cache misses for Mediabench benchmarks.

SRAM
TAG

CAM
 TAG

SRAM
 DATA

CAM
 TAG

SRAM
 DATA

CAM
 TAG

SRAM
 DATA

SRAM
TAG

CAM
 TAG

SRAM
 DATA

SRAM
TAG

CAM
 TAG

SRAM
 DATA

16bits 8bits 24bits

CACHE HIT
>90%

CACHE
MISS

<10%

The proposed LPHAC Traditional HAC

SRAM tag miss, CAM sub-tag hit

CAM sub-tag miss

SPEC2k Data Cache

Data Cache Instruction Cache
SPEC2k Instruction Cache

dynamic power dissipation due to logic switching current and
the charging and discharging of the load capacitance. The static
energy is proportional to the cache size and execution time of
an application. The data store of both LPHAC and the
traditional HAC is identical, and the tag store of LPHAC is
smaller than that of baseline; however, we do claim this
reduction. The execution time or IPC of all the benchmarks
remain almost unchanged, since the miss rate of the proposed
LPHAC is almost the same with the traditional HAC.
Therefore, we consider only dynamic energy in our evaluation.
We evaluate the memory related energy consumption (E_mem)
including on-chip caches and off-chip memory. Figure 13 lists
the equations for computing the total memory related energy
consumption.

The italic terms are those we obtain through measurements
or simulations. We compute cache_access, cache_miss, and
cycles by running SimpleScalar simulations for each cache
configuration. We compute E_cache_access and
E_cache_block_refill using Cacti 3.2 and the HSPICE
simulation for both LPHAC and the baseline.

The E_next_level_mem includes the energy of accessing off-
chip memory. Using a methodology similar to [12], we
evaluate the energy of accessing off-chip memory as 50 times
larger than the on-chip cache.

Figure 12 shows the energy of the LPHAC normalized to the
baseline. On average, the LPHAC consumes 13% and 16.5%
less energy than the baseline for Mediabench and SPEC2K,

respectively. The greatest energy reduction is seen in fm3d,
where the energy is reduced by 25.7%. This high energy
reduction is because the instruction miss rate of benchmark
fm3d is lower than that of the baseline as explained in Section
5.2. The miss rate reduction when using 8-bit CAM based sub-
tag is higher than the baseline where 24-bit CAM based tag is
used.

On average, the energy reduction for Mediabench and
SPEC2K are 13% and 16.5%, respectively.

7. Conclusion
We propose a low power design for high associative caches.

The proposed LPHAC employs an 8-bit instead of 24-bit CAM
so it consumes less per access power and area than a traditional
HAC while exhibiting a faster access time. The memory
accessed related energy reduction can be as high as 25.7% with
averages of 13% and 16.5% for Mediabench and SPEC2K,
respectively. Compared with other related low power highly
associative caches, the proposed LPHAC incurs no hardware or
software overhead.

References
[1] D. Burger and T.M. Austin, “The SimpleScalar Tool Set, Version 2.0,”

Univ. of Wisconsin-Madison Computer Sciences Dept. Technical Report
#1342, June 1997.

[2] A. Efthymio and J.Garside,”An Adaptive Serial-Parallel CAM
Architecture for Low-Power Cache Blocks.” In Proc. of ISLPED, 2002.

[3] Intel. Intel XScale Microarchitecture, 2001.
[4] C. Lee, M. Potkonjak and W. Mangione-Smith, “MediaBench: A Tool for

Evaluating and Synthesizing Multimedia and Communications Systems,”
Int. Symp. on Microarchitecture, 1997.

[5] A Ma, M Zhang, K Asanovic,” Way memorization to reduce fetch energy
in instruction caches,” ISCA Workshop on CED, 2001.

[6] J. Montagnaro and et al.,”A 160–MHz, 32–b, 0.5–w CMOS RISC
microprocessor. IEEE JSSC, 31(11):1703–1714, Nov. 1996.

[7] K. Pagiamtzis and A. Sheikholeslami, A Low-Power Content-
Addressable Memory (CAM) Using Pipelined Hierarchical Search
Scheme, IEEE Journal of Solid-State Circuits, Sep. 2004.

[8] G. Reinmann and N.P. Jouppi. CACTI2.0: An Integrated Cache Timing
and Power Model, 1999. COMPAQ western Research Lab.

[9] S. Santhanam, et. al. “A Low-Cost, 300-MHz, RISC CPU with Attached
Media Processor,” IEEE Journal of Solid-State Circuit, Vol. 33, 1998.

[10] http://www.specbench.org/osg/cpu2000/
[11] A Veidenbaum and D Nicolaescu, ”Low Energy, Highly-Associative

Cache Design for Embedded Processors,” IEEE ICCD, 2004.
[12] C. Zhang, F. Vahid, and W. Najjar, “A Highly-Configurable Cache

Architecture for Embedded Systems,” In proceedings of International
Symposium on Computer Architecture, 2003, San Diego.

[13] C. Zhang, F. Vahid, J. Yang and W. Najjar,”A Way-Halting Cache for
Low-Energy High-Performance Systems,” ISLPED 2004.

[14] C. Zhang, “Balanced-Cache: Reducing Conflict Misses of Direct-Mapped
Caches through Programmable Decoders,” In proceedings of
International Symposium on Computer Architecture, 2006, Boston.

0%

6%

12%

18%

24%

30%
am
m

ap
p

ap
s ar
t

bz
i

cr
a

eo
n

eq
u

fa
c

fm
a

ga
l

ga
p

gc
c

gz
i

lu
c

m
cf

m
es m
gr pa
r

pe
r

si
x

sw
i

tw
o

vo
t

vp
r

w
up A
ve

ad
pc
m
en
c

ep
ic

g7
21
de
c

g7
21
en
c

jp
eg
de
c

jp
eg
en
c

m
pe
g2
de
c

pe
gw
itd
ec

pe
gw
ite
nc

un
ep
ic

A
ve

Figure 12: Energy reductions of the proposed LPHAC compared to the tradition HAC for SPEC2K and Mediabench benchmarks.

E_mem = cache_access * E_cache_access + cache_miss * E_misses

E_misses=E_next_level_mem+E_cache_block_refill
Figure 13: Equations for energy evaluation.

0.00%

0.05%

0.10%

0.15%

0.20%

8k
1w
ay

8k
2w
ay

8k
4w
ay

8k
8w
ay

8k
32
w
ay

C
AM
-5

C
AM
-6

C
AM
-7

C
AM
-8

C
AM
-9

C
AM
10

0%
20%
40%
60%
80%
100%
120%

imiss_rate
decoder_hit

Figure 14: Instruction cache miss rates of benchmark ammp at varied

associativities for a traditional cache and the proposed LPHAC at CAM subtag
widths from 5 to 10.

