
FA-STAC: A Framework for Fast and Accurate Static Timing
Analysis with Coupling

Debasish Das, Ahmed Shebaita, Hai Zhou, Yehea Ismail and Kip Killpack*

EECS, Northwestern University, Evanston, IL 60208
*Strategic CAD Lab, Intel Corporation, Hillsboro, OR 97124

Abstract— This paper presents a framework for fast and accurate static
timing analysis considering coupling. With technology scaling to smaller
dimensions, the impact of coupling induced delay variations can no longer
be ignored. Timing analysis considering coupling is iterative, and can have
considerably larger run-times than a single pass approach. We propose a
novel and accurate coupling delay model, and present techniques to increase
the convergence rate of timing analysis when complex coupling models
are employed. Experimental results obtained for the ISCAS benchmarks
show promising accuracy improvements using our coupling model while
an efficient iteration scheme shows significant speedup (up to 62.1%) in
comparison to traditional approaches.

I. INTRODUCTION

With the progress of deep sub-micron technologies, shrinking
geometries have led to a reduction in the self-capacitance of wires.
However, the aspect-ratio of modern interconnects is over 2.0 for
intermediate wiring layers, and is expected to increase. This indicates
that interconnect coupling capacitances have grown to dominate the
total interconnect capacitance. Kumar [1] showed that in recent
DSM technologies, coupling capacitances could be five times larger
than the vertical capacitances. The total parasitic capacitance of an
interconnect is given by

Ceq = Cg +
∑

j

MCFj × Ccj (1)

where, Cg is the interconnect’s equivalent ground capacitance, Ccj is
the interconnect’s coupling capacitance with coupled neighbor j, and
Ceq denotes the interconnect’s equivalent total capacitance. MCFj

is some factor (often termed Miller coupling factor) that depends
on the switching windows on the interconnect and j. Prior work
has calculated the switching factors to be within (0, 2) for step
transitions [2], within (−1, 3) for ramp delay models [3], [4], and
within (−1.885, 3.885) for exponential transitions [5].

With an increasing significance of coupling, ignoring the impact
of coupling induced delay variations produces results far off from the
reality. The simplistic model proposed in [2] is not accurate enough
to capture the true impact of coupling on timing. It is well known
that timing and coupling (or crosstalk) are mutually dependent. For
example, consider the two coupled nets in Figure 1(a). The switching
time on net a is dependent on the switching time on net b. However,
the switching time on net b is not fixed; it is dependent on the
switching time on net a.
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Fig. 1. Timing analysis with crosstalk is a mutual dependence problem: (a)
local problem; (b) global problem

Present approaches to timing analysis considering crosstalk are
iterative. Given input arrival times and starting with an initial
assumption of crosstalk induced delays, the timing information on
all interconnects are iteratively updated until convergence. For large
designs, the run-times may be significant if the updates are not done
efficiently. It is therefore critical to develop approaches to speeding
up the analysis and improving the convergence rate.

Current approaches use either continuous coupling delay mod-
els [6] or discrete models (that employ Miller factors) [2], [4], [7].
In [6], three scheduling approaches, namely dynamic event time, static
event time, and smart global are proposed, and the convergence time
is compared. However, there is no thorough study on the convergence
rate for different iterative schemes and the work in [6] leaves space
for improvement.

Zhou [8] established a theoretical foundation for static timing
analysis with crosstalk for both continuous and discrete models.
A chaotic iterative scheme in this work provided the validity for
exploring efficient iteration schedules. The approach in [6] ini-
tially assumes a situation of crosstalk delays (often the worst case
situation). Subsequently, timing information is updated iteratively
until convergence. This approach does not exploit the circuit and
coupling structures. We propose speeding-up techniques that can
greatly improve the convergence rate of a static timing analyzer such
as [6] that consider realistic coupling delay models.

In this paper, we present a fast and accurate static timing analyzer
FA-STAC that has the following novel components.

1) Waveform based accurate coupling model
2) Efficient iteration mechanism

The proposed waveform based accurate coupling model is an exten-
sion of [3] to timing analysis. Accurate coupling delay modeling
is necessary to capture the impact of coupling on circuit delays
correctly. The efficient iteration mechanism of FA-STAC uses struc-
tural information of the coupled circuit to speed up the convergence
rate of iterations during timing analysis considering coupling. The
ideas from the iterative procedure can be easily tuned for application
to other static timing analyzers as well. The iteration mechanism
first partitions all couplings into global and local groups, and then
uses different orderings to iterate through them. We compare the
performance of our framework with the algorithm proposed in [6].

The rest of the paper is organized as follows. In Section II, we
present a waveform based accurate coupling delay model. Section III
describes the proposed efficient iteration mechanism to increase the
convergence rate of iterations. We present our experimental results in
Section IV. Conclusions and future work are presented in Section V.

II. ACCURATE COUPLING DELAY CALCULATION

Signal propagations in a circuit can be represented as a directed
acyclic graph (DAG) while crosstalk couplings form bidirectional
edges in the DAG. We have a general directed graph on the signals
containing the circuit and the coupling structure. Formally, we define
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this general directed graph as G = (V,E), where, G is partitioned
into two subgraphs GC = (V, C) and GF = (V, F ). The edges in
GC are the bidirectional coupling edges and the edges in GF are the
fanin edges. The gates of the combinational circuit are represented by
the elements of set V. Graph G basically represents a timing graph in
presence of coupling generated out of a given combinational circuit.
We present following definitions for our derivations of the coupling
model.

Definition 1: Rise delay window for a gate i : i ∈ G is defined
as an ordered pair (rdl

i, rd
h
i ), where rdl

i represents the minimum
possible rise delay, and rdh

i represents the maximum possible rise
delay at the output of gate i.

Definition 2: Fall delay window for a gate i is defined as an
ordered pair (fdl

i, fdh
i ), where fdl

i represents the minimum possible
fall delay, and fdh

i represents the maximum possible fall delay at the
output of gate i.
Clearly Definition 1-2 can be interpreted as all the possible points in
time where the output at gate i can switch from one logic level to the
other logic level. It also gives an intuition behind the importance of
using rise and fall windows in coupling analysis since it determines
the MCFs as shown in Equation 1.

Definition 3: Rise slew window for a gate i : i ∈ G is defined as an
ordered pair (rsl

i, rs
h
i ), where rsl

i represents the minimum possible
rise slew, and rsh

i represents the maximum possible rise slew at the
output of gate i.

Definition 4: Fall slew window for a gate i is defined as an ordered
pair (fsl

i, fsh
i ), where fsl

i represents the minimum possible fall slew,
and fsh

i represents the maximum possible rise slew at the output of
gate i.
Based on Definitions 1-4 of interacting gates, the coupling factors
can vary significantly. We next present an example for illustration.

A. Motivational example

We use an example as shown in Figure 2 to motivate the need for
accurate crosstalk delay variation estimation during timing analysis.
Nets I1 and I2 fanin to pin 1 and pin 2 of gates G1 and G2. Rise
and fall delay windows on net I1 are [2,4] and [2.5,3.5]. Similarly
on net I2 the windows are [3,5] and [3.5,4.5]. Assuming G1 and G2
are identical NAND gates, timing arcs arc1 and arc2 are identical.
Each arc contains a 4-tuple timing information, which corresponds to
rise delay, rise transition, fall delay and fall transition, respectively.
Also let’s assume that net I1 and I2 have similar rise and fall slew
windows given by [0.2,0.6] and [0.4,0.8]. In Figure 2, we have not
shown the ground capacitance. We denote the ground capacitances
corresponding to a gate i as Ci

g (It is the lumped capacitance
corresponding to net Oi). For the sake of simplicity, assume that we
have a single rise slew 0.2+0.6

2
and fall slew 0.4+0.8

2
. Consider arc1

Fig. 2. Accurate analysis of coupling capacitance

as positive unate and arc2 as negative unate. Let the rise delay on
arc1 due to input rise slew as 0.4 and loading cap of CG1+Cc be 0.6.
Input window [2,4] transforms to [2.6,4.6]. Let the fall delay on arc2
due to input fall slew as 0.6 and loading cap of C1

g +Cc be 0.8. Input
window [3.5,4.5] transforms to [4.3,5.3]. The final output rise window
on gate G1 is given by [2.6,5.3]. Also the window of rise slew created
on output of G1 due to input rise slew of 0.4 and input fall slew of
0.6 be [0.5,0.7]. Similarly the final output fall window on gate G1
comes from the windows [2.5+0.8,3.5+0.8] and [3+0.6,5+0.6] which
is [2.5,5.6]. The fall slew window will be same as [0.5,0.7] due to
symmetry. Note that G1 and G2 are similar gates. The difference lies
in the fact that G2 has a loading capacitance of C2

g +Cc. Suppose the
difference in capacitances add 0.4 to all delay and 0.1 to all slew
calculations on arc1 and arc2. Thus at G2 we get the output rise
delay window as [3.0,5.8] and fall delay window as [2.9,6.0]. Also
the output rise and fall slew windows are given by [0.6,0.8]. Note
that we have already simplified our calculations by considering a
single slew. If I1 and I2 are nets connected to primary inputs, this
assumption is valid. But for a general circuit, both the minimum
and maximum slew values must be considered to get accurate output
switching windows.

For ramp based model, as shown in [3], a switching from rise/fall
delay window at output of G1 and a switching from fall/rise delay
window at output of G2 can give rise to coupling capacitance as
large as 3×Cc. We show in this paper that on the basis of overlap
ratio (Definition 5), the worst capacitance can be (1+2*(overlap
ratio))×Cc.

B. Coupling factor computation

Since static timing analysis is corner case analysis, we can always
take the maximum and minimum coupling factors to calculate the
effect of coupling capacitances on fall and rise delay window.

Rise-Delay-Windowu = (rdl
u, rdh

u) (2)

Fall-Delay-Windowu = (fdl
u, fdh

u) (3)

Rise-Delay-Windowv = (rdl
v, rdh

v ) (4)

Fall-Delay-Windowv = (fdl
v, fdh

v ) (5)

Rise-Slew-Windowu = (sdl
u, sdh

u) (6)

Fall-Slew-Windowu = (sdl
u, sdh

u) (7)

Rise-Slew-Windowv = (sdl
v, sdh

u) (8)

Fall-Slew-Windowv = (sdl
v, sdh

u) (9)

Given a coupling edge e = (u, v) with intrinsic coupling capacitance
as Ce

c where u and v has rise and fall delay windows as shown
in Equation 2-5 along with the rise and fall slew windows shown
in Equation 6-9 respectively, we are seeking to find best and
worst case coupling factors that might come from this configuration
and thus determine the effective coupling capacitance between the
nodes u and v. Note that rise and fall delay windows basically
represent the maximum and minimum arrival times after which the
gate output starts to change from its steady state. Therefore both the
arrival times and the slews are extremely important to determine the
coupling factors as it captures the shape of the waveforms accurately.
According to the convention of [3] we assume one of the nodes u
as victim while the other one v is considered as aggressor, though
considering one particular node as the victim, while the other as an
aggressor is artificial for timing analysis. The idea is that we consider
one node as an victim and the rest of the nodes connected to it by
coupling edges as aggressor, and the timing analysis procedure takes
care of the fact that the victim node will also be considered as an



aggressor later. The worst and best coupling factors for the victim

Fig. 3. Window overlap cases

u are obtained by (1 + 2k) and (1 − 2k) as shown in [3], and
we multiply the intrinsic coupling capacitance Ce

c with it to get the
effective coupling capacitance.

Definition 5: Overlap ratio k is defined as the ratio of the ag-
gressor’s output waveform that overlap with that of victim threshold
voltage.

Fig. 4. Coupling factor computation

Based on the definition we have five possible Equations for k. The
first four conditions are as shown in Figure 4(a-d). The last equation
takes care of the case when there is no overlap between the victim
and aggressor waveforms.

k =


1 Figure 4(a)
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o +ts
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o
ts
a

Figure 4(b)
Dv

o+0.5ts
v−Da

o
ts
a

Figure 4(c)
0.5ts

v
ts
a

Figure 4(d)
0 No overlap condition

(10)

Now we need to choose the points D, ts from the delay and slew
windows that gives the worst and best possible coupling factors for
rise and fall delay computation. Note that worst case coupling factors
come from rise and fall or fall and rise delay windows on victim and
aggressor while best case coupling factors come from rise and rise or
fall and fall delay windows respectively. After we choose the points
Da

o , Dv
o , ts

a and ts
v according to Figure 5, we consult Figure 4

for the corresponding waveforms that the chosen points from the
windows will generate. Accordingly we obtain k from the equations
given above. Coupling parameter computation as shown in Figure 5
uses different conditions of switching window overlap as shown in
Figure 3.

Theorem 1: D and ts points chosen for coupling factor computa-
tion as shown in Figure 4 gives the worst and best possible coupling
factors for two coupled nodes at a certain time t.
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Fig. 5. Parameter selection for coupling factor computation

III. EFFICIENT ITERATION MECHANISM

Static timing analysis considering coupling is an iterative approach.
The efficiency of the current iterative approaches can increase greatly
if the number of iterations are reduced. Commonly, timing analysis is
performed in a topological order of the circuit. As shown in Figure 6,
this approach updates the timing information in a way such that any
update at d will be propagated to e, f, g and h. If the update at d
is not permanent, those propagations will be overwritten later, and
previous calculations are thus wasted.
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Fig. 6. Exploit circuit structure by clustering

Zhou [8] revealed that as long as we are using the same coupling
delay model, the process will always converge to the same fixpoint no



matter what iterative order is adopted (termed chaotic iteration [9]).
This result forms the basis for finding an efficient ordering scheme
to do the iteration for fast convergence.

A. Clustering

Treating coupling edges as bidirectional edges we can identify
strongly connected components in the graph with both circuit fanout
edges and coupling edges as clusters. Processing each cluster till
convergence in the topological order among clusters will trim off the
wasted calculations. As shown in Figure 6 clusters A and B have
different structures. B is simpler as any change in the window at
e will only affect the windows at f through the coupling. We call
it a local cluster. However cluster A has a different structure. Any
change in window at a will affect the window at b due to coupling
and window at d through fanout. Now since the change in window
at d can affect window at c which in turn can affect a gives rise to
a feedback mechanism in A. In essence cluster A includes two local
clusters interacting with each other. We call such a cluster as global
cluster. Solving the timing analysis with crosstalk is then reduced to
finding a convergent solution on a set of local and global clusters.

B. Coupling edge as feedback

If we always compute local clusters together [7], [10], [11], then we
need to select a set of gate inputs as feedback edges, whose removal
makes the structure acyclic. We do timing analysis in the acyclic
part and if it changes the values on feedback edges, we start the next
iteration. Given a general graph G corresponding to a combinational
circuit which includes the coupling and fanout edges, finding the
feedback edges helps in reducing the number of iterations to reach
the stable values of switching windows. Although there is no direct
relation between the number of iterations and number of feedback
edges, fewer feedback edges will give fewer possible value changes.
However finding the smallest number of feedbacks is NP-hard on a
general graph [12].

A good heuristic which we used to identify the feedback edges
is to use the coupling edges as the feedback. This is based on the
fact that if all the feedbacks are gate inputs, any changed values on
them always need to be propagated. Studying the interactions in our
system, we find that our system is a heterogeneous system. That is,
there are two kinds of interaction relations: fanin relation is simple
but strong; coupling relation is complex but weak. Fanin relation
is simple because it is unidirectional,and it is strong because timing
value on an input always influences timing value on an output. On the
other hand, coupling relation is complex because it is bidirectional,
and it is weak because timing value on one net may not always
influence the value on the other (if they will not switch at the same
time).

We can identify all feedback edges as the Global coupling edges.
That is because the change of window on feedback edges will result
in beginning the iteration again. Once we can identify all feedback
edges, i.e the edges whose nodes have a fanin relation between them,
we can delete all such edges. Global coupling edge Identification
begins with considering all the coupling edges C potential candidates
for global couplings. The algorithm selects each edge (u, v) out of
the set C and see whether there is a path from vertex u to vertex v.
A breadth-first-search [13] is started from the vertex u and we insert
the edge (u, v) into the global cluster if vertex v is reached through
the search. We call the coupling edges identified by the BFS based
algorithm as primary edges of CG. We call the set of primary edges
as CG

P . CG
P represents all feedback edges as discussed earlier.

C. Coupling weight assignment

We assign an weight to each edge e ∈ C − CG
P where weight

represents how closely the nodes forming coupling edge e are coupled
with each other. To determine the weight, we calculate the initial rise
and fall delay switching windows on each node of the graph G.
Rise and Fall switching windows are special cases of generalized
switching windows if the nature of the signals are not considered.
For the initial switching windows we consider the capacitance as the
sum of gate capacitance and the intrinsic coupling capacitance which
is equivalent to considering MCF as 1 as evident from Equation 1.
Based on the initial switching windows we calculate the overlap ratio
k as described in Definition 5 for each coupling edge e ∈ C − CG

P

and k is assigned as the weight to each edge e.
Definition 5 is an indicator of proximity between two switching

windows. A high overlap ratio between nodes u, v predicts that the
nodes are closely coupled with each other and change in the switching
window of one node will surely lead to the change in switching
window of other node. The intuition governing this observation is
that if two switching windows are closely coupled with each other
with MCF as 1 (considering intrinsic coupling capacitance without
switching effects), they are most likely to remain closely coupled
when MCF is varied due to switching effects. Overlap-ratio by
definition is a probabilistic quantity which can vary between 0 and
1 and it captures the probability of two nodes to be closely coupled.
Also if the overlap ratio between the nodes u, v of some coupling
edge is high, it becomes a potential candidate for local coupling edges
over some other coupling edge whose nodes w, x do not have a high
overlap ratio.

D. Coupling partitioning

The set C −CG
P are now left with edges as shown in Section III-

B. The coupling edge (e, f) has an important property. Timing
information on e can be affected only because of the coupling with f .
We characterize such coupling edges as Local. Local Coupling Edges
CL is a subset of edges C such that ∀(u, v) ∈ CL any change in rise
and fall delay window at node u does not propagate to node v through
the fanouts of node u. In other words, only coupling edge between
u, v can change the windows on the respective gates. If we take a
look at edges (a, b) and (c, d) from Figure 6, both the edges can be
potential candidate for Local Coupling Edges. If we arbitrarily select
any one of them as Local, it will force the participating nodes of other
coupling edge related by the fanout relation. This is because once we
choose one edge as Local we must update them simultaneously. It
in-turn forces the two nodes to be considered as one super node in
the graph G.

Formation of such a super node change the fanout relation of the
original graph. If we choose (a, b) as local coupling edge, we need
to look at them as a single node a − b, and therefore it will force
nodes c and d to be related by fanout relation. We call (c, d) global
coupling only if (a, b) is considered as local. Global Coupling Edges
CG is a subset of edges C such that ∀(u, v) ∈ CG vertex u is related
to vertex v by fanin relation i.e there exists a path from u to v in
GF or ĜF . ĜF is obtained by a transformation on graph GF . The
transformation forms a super node in the original graph by choosing
some couplings as local, and thus changes the fanin relation of the
whole graph.

Problem 1: Coupling Partitioning is defined as to identify feed-
back edges e ∈ C − CG

P such that the sum of coupling weights on
those edges is minimized.
Due to interdependence of edges in C − CG

P , identifying minimal
coupling weighted feedback edges is not straight-forward. In fact we



Algorithm: Identify-NonPrimary-Global-Coupling
Input:Coupling Edge (u,v), GF, GC

Output:NonPrimary Global Coupling(NPGC)
begin

NPGC = ∅
Generate GF: Complement of GF

Collect Ancestor(u) from GF

Collect Descendent(v) from GF

while(∃e ∈ C : e = (i, j), i ∈ Ancestor(u),
j ∈ Descendent(v))

NPGC←NPGC ∪ e
Collect Descendent(u) from GF

Collect Ancestor(v) from GF

while(∃e ∈ C : e = (i, j), i ∈ Descendent(u),
j ∈ Ancestor(v)

NPGC←NPGC ∪ e
end

Fig. 7. Identify nonprimary global coupling

can give the following theorem
Theorem 2: Identification of feedback edges e ∈ C − CG

P such
that the sum of coupling weights on the edges is minimized is NP-
complete.

To solve the problem for general circuits we use the following
heuristic. We sort the coupling edges C−CG

P by decreasing overlap-
ratio. We select the edge with maximum overlap-ratio and insert
the edge into CL. Now as discussed above choosing the edge as a
member of local coupling will change the structure of the circuit and
might generate edges for CG

NP , where CG
NP is the set of non primary

global edges. Non primary global edges are basically those feedback
edges on which we are minimizing the sum of coupling weights.
We identify such edges by the algorithm presented in Figure 7.
Following that we remove the selected edge and the edges generated
by the algorithm from coupling edges. We choose the next maximum
overlap-ratio from remaining coupling edges and repeat the procedure
until all the edges of C−CG

P are considered. The algorithm takes as
input the coupling edge e which denotes the coupling between nodes
u and v. We define relations Ancestor and Descendent.

Definition 6: Ancestor of a node u is the set of nodes, such that
there exist a simple path between each node of the set to the node u
traversing the fan-in edges of the graph G.

Definition 7: Descendent of a node u is the set of nodes, such
that there exist a simple path from node u to each node of the set
traversing the fan-in edges of the graph G.
As a designer’s point of view, Ancestor and Descendent set of a node
u are fanin and fanout cone of the u. The algorithm shown in Figure 7.
On each node v ∈ GF list of all the edges which fans out from node
v is kept. By Definition 7, GF is ideal to find the descendents of a
given node v by traversing the graph identifying which all nodes can
be reached through the fanout edges from node v. Representation as
GF is not ideal for getting ancestors(by Definition 6. Therefore from
GF we generate the complement GF . GF is obtained by reversing
the direction of each edge of GF and thus keeping the information on
each node v ∈ GF list of all edges which fan-in to node v. Beginning
a traversal at node v all ancestors of the node can be obtained by the
list at each node in the complement graph GF .

Using the edge list information at each nodes of GF and GF ,

Algorithm: Fast-Chaotic-Iterator
Input:General Graph G
Output:Timing Windows with Coupling

Capacitance Effect
begin
Procedure:Initialization
Node-Queue← ∅
while(∃u ∈ V : u /∈ Node-Queue)

UpdateEffectiveCapacitance(u,1)
ComputeWindows(u)
Node-Queue←Node-Queue∪u

Procedure:Modified Chaotic Iterations
while(Node-Queue 6= ∅)

u = Pop(Node-Queue)
while(∃v ∈ C : u→ v)

ku ← ComputeCouplingFactors(u,v)
UpdateEffectiveCapacitance(u,ku)

ComputeWindows(u)
if(Timing Windows on u Changes)

while(∃v ∈ F : u→ v)
Insert v to Node-Queue uniquely

while(∃v ∈ C : u→ v)
if(v /∈ CG)

Insert v to Node-Queue uniquely
end

Fig. 8. Fast chaotic iterator

generating the sets Ancestor and Descendent are straightforward. An-
cestor(u) and Descendent(u) respectively denotes the sets of Ancestor
and Descendent corresponding to the node u. The collection of nodes
is done by a BFS-based routine [13] that looks at the top of the
queue element, pops it up and stores it in another list called Ancestor
or Descendent depending upon the graph on which the routine is
called. We are basically seeking for the elements of NPGC which is
initially set as ∅. If there is an coupling edge (i, j) where i belongs
to the Ancestor set of u and j belongs to the Descendent set of v,
then merging the nodes i, j into i − j will make the coupling edge
(i, j) a member of non-primary global coupling. We identify all such
edges in the while loop of the algorithm and store them in the set
NPGC. Elements of set NPGC is added to CG

NP and following that we
remove the appropriate elements from EC as discussed before. CG is
crucial for iteraation algorithm as any change in the timing window of
one node related to the global coupling edge will eventually propagate
to the other node and we can prune iterations based on this fact.

E. Iteration algorithm

The algorithm we present in Figure 8 is based on the theoretical
foundation established in [8]. We call this algorithm Fast chaotic
iterator since the iterative process the algorithm uses is known as
chaotic iteration [9]. Our algorithm decides the timing propagation
order based on coupling edge partitioning. First of all a timing
iteration considering intrinsic coupling capacitance on all nodes is
done. Identification of global and local couplings in Section III-D, is
used to change the order in which the nodes are added to the queue.
Global couplings are all those feedback edges, whose deletion will
make the general graph G a DAG if the local couplings are considered
as a single updating unit. We can process the graph in a topological
order once the feedback edges are broken and we need to start the



timing iteration again only if the windows at the feedback edges
change.

We introduce two hypothetical nodes PO and PI . In the generated
timing graph, PI is connected to inputs of the circuit while all
outputs are connected to PO. All the nodes are sorted by topological
order. We start the iterative scheme by getting the topmost node
of the queue. Now we compute the coupling factors considering
that particular node as victim and the rest as aggressors. Detailed
description of coupling factor computation is given in Section II.
Accordingly we update the effective capacitance on the victim node
which comes from the sum of the gate , interconnect and coupling
capacitance multiplied by the factors computed before hand. If the
timing windows on the victim node are changed, then we need
to process all its local aggressors. Given vertices u, v, u → v
means that a path exists from vertex u to v in graph G. Note
that ComputeWindows function is the most costly operation of the
algorithm as it computes the new windows from the input windows
at the fanin edges to the victim node. ComputeCouplingFactor takes
a victim and aggressor node, and on the basis of their rise delay,
fall delay, rise slew and fall slew windows, generates the effective
coupling factors. To compare the performance of our algorithm, we
developed a general iterative algorithm which does not consider
coupling partitioning.

IV. EXPERIMENTAL SETUP

A. Circuit modeling

We model a given circuit as a directed acyclic graph (referred to
subsequently as the circuit’s timing graph). Nodes in the timing graph
represent gates in the circuit while the edges represent the correspond-
ing interconnects. We map all nodes to logic gates from the Faraday
90nm technology library. Delay models are available from look-up
tables that yield a gate’s delay and slew as functions of its input
slew and load (output capacitance). Extracted coupling capacitance
values are used to generate a coupling graph that denotes the timing
dependencies introduced due to coupled nets. This coupling graph is
then superimposed on the timing graph. We consider that each net is
coupled to at most four other nets. However, this is not a limitation
in our approach.

B. Results

We present two set of results. Table I gives the accuracy of our
coupling model over a discrete model based on MCFs 0,1,2 on
ISCAS85 benchmarks [14]. CE denotes number of coupling edges,
RT shows runtime in seconds and TA is the number of gate-delay
look-up table accesses. (rdl, rdh) shows the rise delay window at
PO. Since in our coupling model the best coupling factor can vary
between -1 and 1 while the worst can vary between 1 and 3, the final
windows obtained by MCFs 0,1,2 are conservative in some cases
whereas non-conservative in other cases. Therefore as physically
coupling capacitance can indeed be as large as 3×Cc and as small as
-1×Cc, designing with coupling factors 0,1,2 can lead to large erros.
We used an iterative algorithm [6] and used the two coupling models
to obtain the results.

Performance enhancement results of our efficient iteration scheme
is shown in Table II. For these experiments, we used the proposed
coupling model but changed the solver algorithm. CI denotes the
chaotic iterator ( iterative algorithm based on [6]) and we represent
our algorithm by Fast-CI. Number of global edges obtained by our
algorithm is shown an Global. P − RT shows the run-time of
coupling edge partitioning. To demonstrate the speed-up obtained

from our approach, we define the following.

%Speedup =
TAFastCI − TACI

TACI
× 100.0

%Speedup denotes the percentage of gate-delay table-looks saved
using our approach in comparison to CI . We choose this metric
since the table-lookup operations are run-time expensive operations
in timing analysis. From the table, we observe that our approach
reduces table accesses on an average by 26.8%, and by 62.1% in
the best case. The error in timing windows are negligible. We also
made an interesting observation for circuit c5315. We didn’t get
any speed-up over the iterative approach. The reason for the same
is attributed to the number of global coupling edges being much
less than the number of local coupling edges. A run of coupling
partitioning beforehand is necessary to realize whether is circuit is
dominated by local couplings. In such a case (as in c5315) the circuit
can be best solved by using the iterative approach rather than our
proposed approach. But in other cases we had significant speed-up
over the iterative approach. This demonstrates the significance of
coupling edge partitioning in decreasing cell table accesses. Results
shown are for experiments performed on a Pentium 2.4GHz processor
server having 1Gb RAM and running RedHat Linux 9.0

V. CONCLUSIONS AND FUTURE WORK

We present a framework for fast and accurate static timing analysis
considering coupling. A novel coupling delay model is developed and
a technique to speed up required iterations in timing analysis is pro-
posed. Experimental results on the ISCAS benchmarks demonstrate
the accuracy of our model over discrete coupling factor based model.
We also demonstrate speed-ups of up to 62.1%, and average speed-
ups by 26.8% using our efficient iteration scheme with negligible
error in timing windows. It is thus evident that our framework
improves both the accuracy and the efficiency of a timer significantly.
In the future, we will study more accurate and efficient approaches
for faster timing analysis considering coupling.
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