

Abstract—The technique of module-threading utilizes standard

DDR DRAM components to build modified memory modules.
These modified modules incorporate one or more additional
control signals. The modification permits the module to operate
at higher performance levels and at lower power levels than
standard modules. The modified modules are also capable of
finer granularity transactions while still operating at full
bandwidth.

Index Terms— CMOS memory integrated circuits, Distributed
memory systems, Memory management, Memory architecture,
MOS memory integrated circuits, MOSFET memory integrated
circuits, Shared memory systems,

I. INTRODUCTION

The interface speeds of DRAM (dynamic random-
access memory) components have improved dramatically in
the last decade. However, DRAM core speeds have seen much
smaller improvements. This is because DRAM components
are optimized for low cost per storage bit and not for core
performance.
DRAM storage arrays are designed to be as large as possible,
so that the row and column support circuitry occupies a
relatively small fraction of the chip area. A consequence of
this is that the row and column access times are relatively
large because of the heavily loaded word lines, bit lines, and
column IO lines.

II. BURST LENGTH AND ROW GRANULARITY

One of the timing parameters used by the DRAM is the

column cycle time (tCC). This is the interval required by a
column access to transfer a block of information between a
sense amplifier in the DRAM core and a pipeline register in
the DRAM interface.

Another timing parameter used by the DRAM is the DQ
bit time (tBIT). This is the interval of time occupied by a bit of
information on a data signal.

The ratio tCC/tBIT is called the burst length (BL). It
represents the number of parallel bits that are accessed during
a tCC interval, and which are transferred serially though a DQ

signal in sequential tBIT intervals. The burst length is also
called the prefetch length.

The DDR3 DRAM used in the timing examples of this
paper has a tCC value of 5.0ns, and a tBIT value of 0.625ns. The
burst length is thus [5.0/0.625] or 8, as may be seen in the last
row of Table 1. Historically, the tBIT parameter has changed
much more rapidly than the tCC parameter. The doubling of
burst length every three years is due mostly to corresponding
reductions in the tBIT parameter.

The row-to-row access time (tRRD) is the time interval
between commands to access rows in different banks.
Traditionally the minimum tRRD value is twice the tCC value,
meaning that two column accesses may be performed during
each row access. This leads to the following module row
granularity relationship (i.e. data transferred during a row
access):

RowGranularity = BL * (tRRD/tCC) * (DQ/module) (1)

Or

RowGranularity = (tRRD/tBIT) * (DQ/module) (2)

The row granularity has increased steadily, and this has
created a performance issue for many applications. Some
applications simply can’t utilize this much data from each
random access. One solution to this problem is the use of two
or more independent access threads on standard memory
modules, a technique referred to here as module-threading.

TABLE 1. TREND OF MODULE ROW GRANULARITY

Module Component Year Row Granularity1 (bytes)

SDRAM (BL2=1) 1998 16

DDR (BL=2) 2001 32

DDR 2 (BL=4) 2004 64

DDR 3 (BL=8) 2007 128

1 Two column accesses (with the indicated burst length) per row

access is assumed.
2 BL (burst length) refers to the number of bits transferred on each

data wire in response to each column access.

Improving Power and Data Efficiency with
Threaded Memory Modules

Frederick A. Ware and Craig Hampel, Member, IEEE
Rambus Inc.

Los Altos CA, 94022
{ware, champel}@Rambus.com

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

III. SINGLE-THREAD MODULE

Figure 2 shows a block diagram for a standard (single-
thread) memory controller and memory module. The memory
controller consists of a logic block and an interface that
occupy part of an integrated circuit. The memory controller
creates internal read and write interfaces (labeled “R” and
“W”) that allow other logic blocks on the integrated circuit to
access the external memory.

The memory module consists of eight DDR3-1600
components. The -1600 designation means that data is
transferred at the rate of 1600 Mb/s. Each DRAM connects to
just eight of the 64 DQ data signals – each DQ signal is routed
from a controller pin to a DRAM pin in a single rank
topology.

Each DRAM also connects to all of the control and
address signals (CA) on the module. These signals carry the
command code and the bank, row, and column addresses used
by each memory transaction. Each CA signal is routed from a
controller pin to a pin on each DRAM in a “flyby” connection
topology (also know as “multi-drop” topology). Each CA
signal communicates at the rate of 800 Mb/s.

A chip select signal (CS) is routed with the same flyby
connection topology as the CS signals. This CS signal is
shown separately because it will be modified slightly in the
next section.

Write transactions are received from the transaction
interface and are accumulated in a queue that consists of an
address block (WA) and eight data blocks (WD). Read
transactions accumulate in a queue that consists of an address
block (RA). The returning read data is de-multiplexed by eight
register block (RD).

The controller accepts write transactions and accumulates
them in the write queue. Read transactions are accepted into
the read queue and are executed in order. When the write
buffer is filled to a predetermined threshold, the controller will
stop issuing transactions from the read queue, and will instead
wait for an appropriate read-write turnaround interval, and
then issue a burst of write transactions. After an appropriate
write-read turnaround interval, the controller will again issue
transactions from the read queue.

This controller policy is a relatively simple one to
implement, but can achieve good performance results. An
improved policy will be described in a later section.

 Figure 3 shows the transaction timing for the memory
subsystem of Figure 2. The top diagram shows a single read
transaction. It begins with an ACTIVE command, which
causes one row of one bank to be sensed and held (there are
eight banks altogether).

After a tRCD interval a READ command is issued, and
after a BL (tCC) interval a second READ command with auto-
pre-charge option is issued. After a CL interval, two bursts of
read data are returned. Each burst is a time interval of BL
containing 64 bytes. The two bursts occupy a time interval of
tRRD and contain a total of 128 bytes.

The CS signal is asserted for the ACTIVE command as
well as the READ commands. Also, this timing example uses
DDR3-1600 components from the 9-9-9 timing bin (see
reference [3]).

The bottom diagram shows interleaved read transactions.
Each transaction is like the one in the top diagram, but is
directed to a different bank. The controller issues a transaction
during each tRRD interval to five different banks (A,B,C,D,E).
A block of 128 bytes is returned during each tRRD interval.

The bank used in transaction A may be re-used in
transaction F. This is determined by the row cycle time
interval (tRC). If the bank in transaction F used the banks of E,
D, C, or B, then a delay (bubble) must be inserted so tRC is
met.

The bubble size will be different depending upon which
transaction uses the same bank as transaction F. Here it is
assumed that there is an average bubble size of tBUB-AVG
between each transaction. Figure 1 shows the previous three
transactions (C, D, E) with the average bubble “bub” in
between each. The bubble size that must be added between E
and F will be one of the three sizes shown:

Fig. 1. Summary of bubble delay cases when the bank in F matches E, D,
and C, and when there is an average bubble size of tBUB-AVG between the
previous transactions.

Because tRC is 5*tRRD, and because there are eight banks
in the memory device, the following closed-form expression
can be generated:

 tBUB-AVG=
 0.125*(5*tRRD-1*tRRD)
 +0.125*(5*tRRD-2*tRRD-1*tBUB-AVG)

 +0.125*(5*tRRD-3*tRRD-2*tBUB-AVG) (3)

In other words, the average bubble size is one of three sizes,
each with a probability of 0.125 (because of eight banks). The
tRC delay is equal to 5*tRRD, and is reduced by the indicated
amounts (3*tRRD+2*tBUB-AVG, 2*tRRD+2*tBUB-AVG, 1*tRRD) in
each of the cases.

Solving for tBUB-AVG yields a value of 0.82*tRRD for tBUB-AVG,

resulting in a bandwidth efficiency of 54% for random, in-
order read transactions. Here bandwidth efficiency is defined
as:

 BW Efficiency = tRRD /(tRRD + tBUB-AVG) (4)

Fig. 2. The block diagram for a single-thread memory controller and memory module. Write transactions accumulate in a queue that consists of an

address portion (WA) and eight data slices (WD). Read transactions accumulate in a queue that consists of an address portion (RA). The returning
read data is de-multiplexed by eight data slices (RD). Each transaction affects all eight DRAM components on the memory module.

CA – row
CA – col

CK

CS

DQ

DQ

A A

A A

BLtRCD CL

ACTIVE command to bank/row A

READ command with autoprecharge

tBIT ~ 1.25ns

tBIT ~ 0.625ns

CA – row
CA – col

CK

CS

DQy

DQz

A A

A A

tRRD

Single transaction (A)

Interleaved transactions (A, B, C, D, E, F, ...)

64 bytes per burst (8 bits x 64 DQ wires)

tRC

READ command
to bank/column A

32 wires

1 1 1

A
A A*

1 1 1

A
A A*

B B

B B

1 1 1

B
B B*

1 1 1

C
C C*

1 1 1

D
D D*

E

1

F

1

E

C

C

C

C

D

D

E*

1 1

Fig. 3. Transaction timing for a single-thread memory controller and memory module. The top diagram shows a single read transaction. It begins
with an ACTIVE command, followed by two READ commands (the second with an auto-pre-charge option). Two bursts of read data are returned, each
with 64 bytes, for a total of 128 bytes. The bottom diagram shows interleaved read transactions. Each transaction is like the one in the top diagram, but
is directed to a different bank. A block of 128 bytes is returned during each tRRD interval. The bank used in transaction A may be re-used in transaction
F (this is the tRC interval). This timing example uses DDR3-1600 components from the 9-9-9 timing bin.

IV. DUAL THREAD MODULE

Figure 5 shows a block diagram for a dual-thread memory
controller and memory module. It is similar to the single
thread subsystem of Figure 2; this section will focus on the
modifications that were made to support dual-thread
operation.

The memory controller now has four internal interfaces
(labeled “Ry”, “Wy”, “Rz” and “Wz”) that provide parallel
access to two independent memory spaces.

The memory module consists of two sets of four DDR3-
1600 components. Again, the -1600 designation means that
data is transferred at the rate of 1600 Mb/s. Each DQ signal is
still routed from a controller pin to a DRAM pin in a “point-
to-point” connection topology. Each CA signal is still routed
from a controller pin to a pin on each of the eight DRAMs in a
“flyby” connection topology. Each CA signal communicates
at the rate of 800 Mb/s.

There are now two chip select signals (CSy and CSz) that
are routed with the same flyby connection topology as the CS
signals. However, each of the chip select signals connects to
only four of the eight DRAMs, allowing them to be separately
controlled.

Write transactions are accumulated in one of two write
queues (WAy/WDy and WAz/WDz). An address bit is used to
determine which queue to use. This address bit will be chosen
to ensure that there is an approximately equal number of
transactions directed to the “y” and “z” memory spaces.

Read transactions also accumulate in one of two read
queues (RAy and RAz). The returning read data is de-
multiplexed by one of two sets of four register slices (RDy
and RDz).

The controller policy is the same as that described for
Figure 2. The one difference is that read transactions are
paired for the two memory spaces, and write transactions are
paired. In other words, the controller does not attempt to
perform a read transaction in one space and write transaction
in the other.

Figure 6 shows the transaction timing for the memory
subsystem of Figure 5. The top diagram shows a single pair of
read transactions. Transaction A begins with an ACTIVE
command to a bank in the “y” space. After a tRCD interval a
READ command is issued, and after three BL (tCC) intervals a
second, third, and fourth READ command is issued. The
fourth READ includes the auto-pre-charge option. After a CL
interval, four bursts of read data are returned. Each burst is a
time interval of BL containing 32 bytes. The four bursts
occupy a time interval of tRRD and contain a total of 128 bytes.
Note that the tRRD value is twice the value used in Figure 3.
This is because the same amount of data (128 bytes) requires
twice as much time to transfer with half the number of wires
(the 32 DQy wires).

The “z” memory space is accessed by a second
transaction B. This transaction is offset by a delay of BL/2
relative to transaction A, but otherwise is identical,
performing an ACTIVE command and four READ

commands. The commands are steered to the two sets of
DRAMs using assertions on the CSy and CSz signals.

The bottom diagram shows interleaved pairs of read
transactions. Each transaction pair is like the pair in the top
diagram, but is directed to different banks. The controller
issues a transaction during each tRRD interval to three different
bank pairs (A/B,C/D,E/F). Two blocks of 128 bytes is
returned during each tRRD interval, one on the DQy signals and
one on the DQz signals. The banks used in transaction A/B
may be re-used in transaction G/H. This is determined by the
row cycle time interval (tRC). The tRC value in Figure 6 is 48
CK cycles (3*tRRD), compared with a value in Figure 3 of 40
CK cycles (5*tRRD).

The bubble size will be different depending upon which
transaction uses the same bank as transaction F. Again, it is
assumed that there is an average bubble size of tBUB-AVG
between each transaction. Figure 4 shows the previous three
transaction pairs (A/B, C/D, E/F) with the average bubble
“bub” in between each. The bubble size that must be added
between E/F and G/H will be one of the three sizes shown. As
before:

Fig. 4. Summary of bubble delay cases when banks in G/H match E/F,
C/D, and A/B, and when there is an average bubble size of tBUB-AVG

between the previous transactions.

Since tRC is 3*tRRD, and because there are eight banks in
the memory device the following closed-form expression can
be generated:

 tBUB-AVG=
 0.125*(3*tRRD-1*tRRD)
 +0.125*(3*tRRD-2*tRRD-1*tBUB-AVG) (5)

In other words, the average bubble size is one of two sizes,

each with a probability of 0.125 (eight banks). The tRC delay is
equal to 3*tRRD, and is reduced by the indicated amounts
(2*tRRD+2*tBUB-AVG, 1*tRRD) in each of the cases.

Solving for tBUB-AVG yields a value 0.33*tRRD for tBUB-AVG,

resulting in a bandwidth efficiency of 75% for random, in-
order read transactions. Again bandwidth efficiency is defined
as:

 BW Efficiency = tRRD /(tRRD + tBUB-AVG) (6)

Fig. 5. The block diagram for a dual-thread memory controller and memory module. One address bit is statically selected to steer each transaction to
either the “y” or “z” memory space. The controller maintains separate read and write queues for each of the independent memory spaces. The module
in this example has eight DRAMs, with four DRAMs in each memory space. There are two chip select signals (CSy and CSz) used to direct commands
on the CA signals to the two sets of DRAMs.

Fig. 6. Transaction timing for a dual-thread memory controller and memory module. The top diagram shows a single pair of read transactions. The “A”
transaction is directed to the “y” DRAMs using the CSY signal. It begins with an ACTIVE command, followed by four READ commands (the fourth
with an auto-pre-charge option). Four bursts of read data are returned, each with 32 bytes, for a total of 128 bytes. The “B” transaction is offset by two
CK cycles, and is directed to the “z” DRAMs. The bottom diagram shows pairs of interleaved read transactions. Each pair is like the one in the top
diagram, but is directed to different banks. Two blocks of 128 bytes is returned during each tRRD interval. The banks used in transactions A/B may be
re-used in transactions G/H (this is the tRC interval). This example uses DDR3-1600 from the 9-9-9 timing bins.

V. QUAD-THREADING

The multi-threading concept can be extended by adding
two additional chip select signals (four total) to the memory
module to provide four independent memory spaces. The
DRAM components would also need an option for a burst
length of 16. There would then be enough command
bandwidth on the CA signals to interleave four concurrent
transaction streams.

The interleave factor for each stream would be two
(compared with three and five for dual- and single-threading),
resulting in an effective read bandwidth of 88%. These results
are summarized in Table 2.

VI. MODULE POWER

The use of multi-threading also reduces the total power

for each transaction. Typically, the module power required for
row accesses (the ACTIVE command) accounts for 0.25 to
0.50 of the total power, with the rest consumed by the column
operation (the READ command).

Dual-threading has the same total number of column
accesses as single-threading, but only one-half as many
devices are accessed for each row transaction. This reduces
the total power to 0.75 to 0.875 that of a single-threaded
module..

Likewise, quad-threading has the same number of total
column accesses as single-threading, but only one-quarter as
many row accesses. This reduces the total power to 0.625 to
0.813 that of a single-threaded module. These results are
summarized in Table 2.

 TABLE 2. MULTI-THREADING BENEFITS

Threading Factor Read BW
(larger is better)

Power per Transaction
(smaller is better)

single 0.54 1

dual 0.75 0.750 – 0.875

quad 0.88 0.625 – 0.813

VII. QUEUE DETAILS

Figure 7 shows more detail for the queue elements used in

Figure 2 and Figure 5. As previously described, write
transactions are accumulated in the write queue. Read
transactions are accepted into the read queue and executed in
order. When the write buffer is filled to a predetermined
threshold, the controller will stop issuing transactions from the
read queue, and will issue a burst of write transactions. The
controller will then return to issuing transactions from the read
queue.

Fig. 7. Memory controller queue details. Write transactions are accumulated in the write queue. Read transactions are accepted into the read queue
and executed in order. When the write buffer is filled to a predetermined threshold, the controller will stop issuing transactions from the read queue,
and will issue a burst of write transactions. The controller will then return to issuing transactions from the read queue. The Wfull and Rfull signals
provide flow control, so transactions from the controller can be held off. Comparison logic checks read addresses against write addresses to ensure
coherency. The Rtag signal frames the read data.

The Wfull and Rfull signals are provided so transactions

from the controller can be held off if the associated queue
becomes full. The comparison logic checks read addresses
against write addresses to ensure coherency. For example, a
read of a pending write will return the write queue data. This
ensures that the results do not depend upon the order in which
read and write transactions are performed. The Rtag signal is
used to frame the read data. In the case of in-order read
transactions, it simply serves as a timing mark for each block
of data.

Note that the WD and RD logic blocks are shown as
slices – there is one for each each DRAM in Figures 2 and 5.
In the case of Figure 2, the eight slices are operated together.
In the case of Figure 5, there are two groups of four slices
operated independently for each of the two memory spaces.

Note also that the 16-bit input of the WD queue is loaded
many times for each load of the WA queue – 8 times for
single threading and 16 times for dual threading. This is
because each slice must store 16 bytes and 32 bytes,
respectively, for each 128 byte write transaction.

VIII. OUT-OF-ORDER WRITE EXECUTION

 When the write queue becomes full or nearly-full, some
or all of the transactions are written to memory. It is not
necessary to empty the write queue in the same order it was
filled. As long as read/write coherency is maintained, the write
transactions may be issued in any order.

In fact, there is a performance benefit to issuing the write
transactions in an order which avoids unnecessary bank
conflicts with previous transactions.

For example, after the final read transaction has issued
and a read/write turnaround bubble has been observed, a first
write transaction is selected. The selection criteria will include
choosing a bank address that doesn’t conflict with any of the
remaining read transactions that are still in progress.

Each subsequent write transaction will be chosen in the
same manner, so the smallest number of bank-interference
bubbles are added to the transaction stream.

An approximate relationship for out-of order efficiency of
the write buffer unloading process is as follows:

 Efficiency = tRRD /(tRRD + tBUB) (7)

Where

 tBUB ~ tRRD [NQ+1]/ [Q*BQ] (8)

With the following definitions:

 N = tRC / tRRD (9)
 B = banks per memory space (10)
 Q = transaction entries per queue (11)

The out-of-order efficiency is plotted in Figure 8 as a

function of queue depth for the single thread (N=5) and dual
thread (N=3) cases, with the number of memory banks set to
8.

Fig. 8. Queue Depth versus Efficiency. The expression for efficiency is
evaluated for queue depths of 1-8 transactions for an eight bank memory
for the single thread and dual thread examples previously discussed.

As expected, the dual-threading case is much more

efficient for small queues because there are a smaller number
of transactions which can potentially interfere with one
another. A benefit of the smaller queue size is less controller
area, and simpler controller logic for detecting the conflicts.

IX. OUT-OF-ORDER READ EXECUTION

The same out-of-order benefits may be realized for read

transactions. This requires that read transactions be tagged
with a sequence tag (the Rtag signal) in Figure 7). This
requires that the transaction generating logic be able to accept
the returning read data out-of-order – this may not be possible
in some applications

X. FINE GRANULARITY TRANSACTIONS

Finally, note that the 128 byte transaction size could be
reduced to 64 bytes in the case of the dual-threaded module in
Figure 6. This would increase the number of concurrent
transactions, but might be a benefit for some applications
which didn’t need as much data per access.

CONCLUSIONS
The historical trend of increasing row and column access

granularity of memory modules will increasingly limit the
performance in certain classes of applications. The
architectural technique of module-threading may be applied to
conventional memory modules with relatively low incremental
cost. This technique permits the module to provide greater
performance with reduced power consumption. It also permits
the option of lower granularity transactions at full bandwidth.

REFERENCES
[1] A Performance Comparison of DRAM Memory System Optimizations

for SMT Processors. Zhichun Zhu. The 11th International Symposium on
High-Performance Computer Architecture Palace Hotel, San Francisco,
February 12-16, 2005
http://www.hpcaconf.org/hpca11/papers/19_zhuperformancecomparisonofdram_updated.pdf

[2] Micro-threaded Row and Column Operations in a DRAM Core.
Frederick A. Ware and Craig Hampel. IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS05), Austin
TX, March 20, 2005.
http://www.rambus.com/news/technical_docs/MicroThread.pdf

[3] DDR/DDR2/DDR3 SDRAM Tutorial. JEDEX Conference 2006, San
Jose, CA, April 16, 2006.
 http://www.jedex.org

[4] Building DRAM-based High Performance Intermediate Memory
System. Junyi Xie and Gershon Kedem Department of Computer
Science Duke University Durham, North Carolina 27708-0129 May 15,
2002.
http://www.cs.duke.edu/~junyi/papers/dram/techrpt.pdf

[5] Reducing DRAM Latencies with an Integrated Memory Hierarchy

Design. Wei-fen Lin, Steven K. and Doug Burger. The 7th International
Symposium on High-Performance Computer Architecture, January 2001.
http://www.eecs.umich.edu/~stever/pubs/hpca01.pdf

.

