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Abstract 
Most of the coarse-grained reconfigurable array architec-

tures (CGRAs) are composed of reconfigurable ALU arrays 
and configuration cache (or context memory) to achieve high 
performance and flexibility. Specially, configuration cache is 
the main component in CGRA that provides distinct feature 
for dynamic reconfiguration in every cycle. However, fre-
quent memory-read operations for dynamic reconfiguration 
cause much power consumption. Thus, reducing power in 
configuration cache has become critical for CGRA to be 
more competitive and reliable for its use in embedded sys-
tems. In this paper, we propose dynamically compressible 
context architecture for power saving in configuration cache. 
This power-efficient design of context architecture works 
without degrading the performance and flexibility of CGRA. 
Experimental results show that the proposed approach saves 
up to 39.72% power in configuration cache with negligible 
area overhead. 
 
1. Introduction 
In order to provide high quality multimedia on mobile and 

embedded systems, various efficient algorithms for au-
dio/video data transfer and processing have been developed. 
These algorithms are complex and characterized by data-
intensive computations. For such applications, a coarse-
grained reconfigurable architecture (CGRA) can provide high 
performance flexibility. CGRA has higher performance than 
general purpose processor and wider applicability than ASIC. 
In spite of the above advantages, the deployment of CGRA 

is prohibitive due to its significant power consumption. This 
is due to the fact that CGRA is composed of many computa-
tional resources such as ALU, multiplier, divider and con-
figuration cache to perform frequent memory-read operations 
for dynamic reconfiguration in every cycle. The configura-
tion cache is the main component in CGRA that provides 
distinct feature for dynamic configuration. Even though con-
figuration cache plays an important role for high performance 
and flexibility, it suffers from large power consumption. 
Therefore, reducing power consumption in the configuration 
cache has been a serious concern for reliability of embedded 
systems. This paper addresses the power reduction issues in 
CGRA and provides a framework to achieve this. The paper 
has following contribution:  
 Design methodology for dynamically compressible context 

architecture and a new cache structure to support the con-

figurability are presented to reduce the power consumption in 
configuration cache without performance degradation.  
This paper is organized as follows. After mentioning the 

related work in Section 2, we describe coarse-grained recon-
figurable architecture and its context architecture in Section 3. 
In Section 4, we present the motivation of our approach. 
From Section 5 to Section 10, we describe a new design flow 
to implement dynamically compressible context architecture 
with an example. Then we show final context architecture 
and explain context evaluation in Section 11 and 12. We 
show the experimental results in Section 13 and conclude the 
paper in the Section 14.   

2. Related works 
Most of the research works in CGRA have been carried out 

in three different aspects: architecture exploration, code 
compilation and mapping, and physical implementation [1]. 
The architecture exploration flows that have been suggested 
in [2][3] generate a good instance of CGRA considering area 
and performance without power. In [4] the authors have pro-
posed energy-aware interconnection exploration to minimize 
energy by changing the topology between global register file 
and function units. However, this exploration only provides 
the trade-off between performance and energy. In the case of 
code compilation and mapping, power-conscious configura-
tion cache structure and code mapping are proposed in [9]. 
They classified the computation model of loop pipelining 
into two cases (spatial mapping and temporal mapping) and 
suggested spatial mapping with context reuse and temporal 
mapping with context pipelining for power saving of each 
case. Even though they achieved power reduction compared 
with the base architecture, their proposed techniques are 
dependent on specific computation model of loop pipelining. 
Therefore, those techniques cannot be applied to CGRAs 
with other computation models. Many reconfigurable archi-
tectures have been implemented with various technologies 
[6][7][8][10]. Most of these researches have focused on effi-
cient design with respect to small area and high performance. 
In [7][10], even though authors have presented power estima-
tion data of the implemented architectures, these are only 
accessorial results and don’t mean power/energy-aware im-
plementation. 

3. Preliminaries 
Typically, a CGRA consists of a main processor, a Recon-

figurable Array Architecture (RAA), and their interface [1]. 
The RAA has the array composed of identical processing 
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elements (PEs) containing functional units and a few storage 
units. In addition, RAA has a data buffer to provide operand 
data to PE array and a configuration cache (or context mem-
ory) to store the context words used for configuring the PE 
array elements.  
Figure 1 shows an example of PE structure and context ar-

chitecture for MorphoSys [6]. 32-bit context word specifies 
the function for the ALU-multiplier, the inputs to be selected 
from MUX_A and MUX_B, the amount and direction of 
shift of the ALU output, and the register for storing the result 
as Figure 1 (a). Context architecture means organization of 
context word with several fields to control resources in a PE 
as Figure 1 (b). 
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(a) PE structure               (b) Context architecture 

Figure 1. PE structure and context architecture of Mor-
phosys. 

The context architectures of other CGRAs such as 
[2][3][4][5][7][8][9] are similar to the case of MorphoSys 
although there is a wide variance in context-width and kind 
of fields used by different functionality. 

4. Motivation 
4.1. Power consumption by configuration cache 
By loading the context words from the configuration cache 

into the array, we can dynamically change the configuration 
of the entire array within just one cycle. However, such dy-
namic reconfiguration of CGRA causes many SRAM-read 
operations in configuration cache. In [9], power breakdown 
for the CGRA running 2D-FDCT was proposed with gate-
level implementation at 0.18 ㎛ technology based on Mor-
phoSys architecture. It has been shown that the configuration 
cache spends about 43% of the overall power, which is the 
second largest after the PE arrays consuming 48% of overall 
power budget. This is because the configuration cache per-
forms SRAM-read operations to load the context words in 
every cycle at run time.  

4.2. Valid bit-width of context words 
 When a kernel is mapped onto CGRA and application gets 
executed, the used context fields are limited to types of op-
erations of the kernel executed at run time. Furthermore, 
operation types of an executed kernel on PE array are 
changed in every cycle. It means the valid bit-width of exe-
cuted context word is frequently less than the full bit-width 
of a context word even though full bit-width can be less often 
used. For statistical evaluation of valid bit-width of contexts, 
we selected 32-bit context architecture based on [9] and 

mapped several kernels onto its PE array in order to maxi-
mize the utilization of the context fields. Figure 2 shows the 
results for various benchmark kernels and critical loops in 
real applications. In Figure 2, average bit-width is the aver-
age value of valid bit-widths of all the executed context 
words at run-time and the maximum bit-width is the maximal 
valid bit-width among all the context words considered at 
run-time. The statistical result shows that average bit-width 
varies from 7 to 11 bits and the maximum bit-width is less 
than or equal to 18 bits whereas the full bit-width is 32-bit.  
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Figure 2. Valid bit-width of context words. 

4.3. Dynamic context compression for low 
power CGRA 
If the configuration cache can provide only required bits 

(valid bits) of the context words to PE array at run time, it is 
possible to reduce power consumption in configuration cache. 
The redundant bits of the context words can be set to disable 
and make those invalid at run time. That way, one can 
achieve low-power implementation of CGRA without per-
formance degradation while context architecture dynamically 
supports both the cases at run time: one case is uncompressed 
context word with full bit-width and another case is com-
pressed context word with setting unused part of configura-
tion cache disabled. In order to support such a dynamic con-
text compression, we propose a new context architecture and 
configuration cache structure in this paper. 

5. Design flow of dynamically compressible 
context architecture 
In order to design and evaluate dynamically compressible 

context architecture, we propose a new context architecture 
design flow. Entire design flow is shown in Figure 3. This 
design starts from context architecture initialization and fi-
nally one can determine whether the initially uncompressed 
contexts can be compressed or not by context evaluator. 
From section 6 to section 9, we describe more detailed proc-
ess for each stage in entire design flow. 
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Figure 3. Entire design flow.  

6. Context architecture initialization 
Context architecture in CGRA design dependents on archi-

tecture specification. In the process of architecture specifica-
tion, CGRA structure is evolved with PE array size, PE func-
tionalities and their, interconnect scheme. The proposed ap-
proach starts from the conventional context architecture se-
lection and makes it dynamically compressible context archi-
tecture through the proposed design flow. We have defined 
generic 32-bit context architecture as an example to illustrate 
the design flow to support the kernels in Figure 2. It is simi-
lar to the representative CGRAs such as MorphoSys [6], 
Remark [1], ADRES [2][4], PACT_XPP [7] or [9]. The PE 
structure and bit-width of each field are shown in Figure 4. It 
supports various arithmetic and logical operations with two 
operands (MUX_A and MUX_B), predicated execution 
(PRED), Arithmetic saturation (SAT_logic), shift operation 
(SHIFT) and saving temporal data with register file 
(REG_FILE). In Figure 4, all of the fields are classified by 
‘Control’ of 2 cases – ‘Processing element’ and ‘context 
register’. It means that each case is configured by the fields 
included in that case. Furthermore, Figure 4 shows the bit-
width of each field and the component index to identify each 
component configured by each field.  
Even though each field can be positioned on context word 

under conventional design flow, this initialization stage does 
not define any field position. It means field position for un-
compressed case should be assigned by considering context 
compression. 
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Figure 4. PE structure. 

7. Field grouping 
All of the context fields are grouped into three sets - neces-

sary set, supplementary set and unnecessary set. Necessary 
set includes indispensable fields for all of the PE operations 
and supplementary set includes optional fields for PE opera-

tions. Unnecessary set is composed of fields unrelated to PE 
operations. It means necessary fields should be included in 
context words even if context words are compressed whereas 
supplementary and unnecessary fields can be excluded out of 
context words. In addition, we classify supplementary set 
into two subsets. One is a subset composed of fields depend-
ent on the field of ‘ALU_OP’ and another is a subset com-
posed of fields independent of ‘ALU_OP’. This classification 
is necessary for generating field control signals in Section 9. 
Figure 5 shows field-grouping based on the context initializa-
tion presented in Section 6.  
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Figure 5. Field grouping. 

8. Field sequence graph generation 
Field sequence graph (FSG) is generated from context ar-

chitecture initialization and field grouping. FSG is a directed 
graph composed of necessary and supplementary fields and it 
shows possible field combinations for PE operations based 
on PE structure. Each vertex of FSG corresponds to a neces-
sary or supplementary field in field grouping and each edge 
of FSG shows a possible field combination between two 
fields. The possible field combinations can be found by ver-
tex tracing in the edge directions and the combinations 
should include all of the necessary fields. Furthermore, sup-
plementary fields can be skipped out of vertex tracing to 
search possible field combinations. Figure 6 shows an exam-
ple of FSG from Figure 6 and Figure 5. While searching 
possible field combinations, some times it is possible (for 
example, MUX_A, ALU_OP, SAT is possible) whereas 
(MUX_A, ALU_OP, SAT, PRED) is not possible. FSG is a 
useful data structure for field positioning as described in 
Section 10.  
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Figure 6. Field sequence graph. 
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9. Generation of Field control signals 
When contexts are compressed, supplementary fields are 

relocated on compressed space and the positions of these 
fields may be overlapped with each other. Therefore, each 
supplementary field should be disabled when it is not being 
compressed in the context word. It means that compressed 
context should have control information for all of the sup-
plementary fields in order to make unused fields disable. In 
this section, control signals generation for supplementary 
fields has been described. 
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(a) Logical operations                  (b) Control signals 

Figure 7. Control signals for ‘MUX_B’ and ‘PRED’. 

9.1. Control signals for ALU-dependent fields 
If the truth table of ‘ALU_OP’ is classified by the operation 

type, enable/disable signals for ALU-dependent fields can be 
generated from ‘ALU_OP’ with some combinational logic. 
Figure 7 (a) shows the truth table manipulated by classifying 
operations. MSB (A4) of ‘ALU_OP’ is used for classifying 
operations according to the number of operands. For example, 
MSB =1 is used for the operations with two operands and 
MSB =0 is used for the operations with one operand. In addi-
tion, A3~A0 are used for classifying logical operations. Based 
on the truth table, we can generate control signals for two 
fields with some combinational logic as Figure 7 (b).  We 
define such a combinational logic as ‘CTRL BLOCK’. 

9.2. Control signals for ALU-independent 
fields 

In order to control ALU-independent fields when context 
words are compressed, the enable/disable flag bit on each of 
the ALU-independent field should be merged with a neces-
sary field. Figure 8 (a) shows the process that 1-bit flags of 
ALU-independent fields are merged with ‘ALU_OP’. After 
flag merging, the FSG should be updated because the bit-
widths of some of the fields are changed and 1-bit field such 
as ‘WDB_EN’ is no longer valid in FSG. Figure 8 (b) shows 
an updated FSG with modified bit-widths of some of the 
fields. 
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Figure 8. Updated FSG from flag merging. 

10.1. Field positioning on uncompressed con-
text word 

All the fields should have default positions for the case 
when contexts cannot be compressed. First of all, the neces-
sary fields are positioned to the part near to MSB and the 
unnecessary fields are positioned near the LSB as shown in 
Figure 9. Then the supplementary fields are positioned on the 
available space between the already occupied sides of context 
word. For supplementary field positioning, the bit-width of 
compressed context word should be determined. Compressed 
bit width can be different according to the definition of the 
capacity of compressed context word. The large capacity of 
compressed context word can show high compression ratio 
but the amount of power reduction is limited by long bit-
width. However, the little capacity of compressed context 
word may cause low compression ratio but the power reduc-
tion ratio can be high in short bit-width. To prevent the ex-
treme cases (much short or much long bit-width of com-
pressed context word), we determine compressed bit-width 
based on following criterions.   
I. Compressed context words should be able to support 

all of the ALU-dependent fields. 
II. Compressed context words should be able to include 

at least an ALU-independent field. 
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Figure 9.  Default field positioning. 

To satisfy criterions, we determine the longest field combi-
nation showing the maximum bit-width among I and II. The 
maximum width for satisfying I and II is found to be 18-bit 
that consists of ‘ALU_OP’, ‘MUX_A’, ‘MUX_B’ and 
‘PRED’. Therefore, 18-bit is the compressed bit-width. Sup-
plementary fields that are included in the longest field com-
bination are preferentially positioned on the compressed zone 
near the MSB and other fields are positioned on uncom-
pressed zone near the LSB as Figure 9. After this, the posi-
tions of the necessary fields on FSG are firmly determined 
and the positions of the field control signals are also deter-
mined because they are included in ‘ALU_OP’ as necessary 
field.  

10.2. Field positioning on compressed context 
word 
  This stage is for positioning fields on compressed context 
word to guarantee that all the possible field combinations are 
not exceeding the compressed bit-width. Therefore, first of 

398



all, all the possible field combinations should be found. This 
process can be achieved by searching them from FSG and 
then generating field concurrency graph (FCG) such as Fig-
ure 10 (a). The FCG shows the concurrency between the 
supplementary fields. Therefore the FCG is used for prevent-
ing position that is overlapping between the concurrent sup-
plementary fields. An edge between two fields means that the 
two fields are included in one of the possible field combina-
tions. Even though this example does not show concurrency 
between more than 2 supplementary fields, such a case can 
be represented by adding a dummy field connected with the 
fields as Figure 10 (b).  
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Figure 10. Field concurrency graph. 

Based on a given FCG, the next step is to position the sup-
plementary fields on compressed context word. The position-
ing means that some supplementary fields have additional 
positions as well as default positions on uncompressed con-
text words. To select a position among default and additional 
positions, multiplexers can be used that are composed of 
multiple position inputs and one feasible position output. 
Therefore, in this step, the field positioning is a mapping 
between inputs, outputs and control signals for multiplexers 
connected with the supplementary fields. Thus, we propose a 
field positioning and port mapping algorithm for the multi-
plexers which is outlined in [15]. 
Input to the algorithm is FCG and the output is multiplexer 

port mapping graph (PMG) such as in the Figure 11. Each 
vertex of PMG corresponds to an input or control signal of 
multiplexer and each edge shows the relationship between 
control signal and a position that is selected by the weight of 
the edge from control signals such as ‘SAT_EN’, 
‘MUX_B_EN’, etc. Then the outputs of multiplexers are 
connected with the component index defined in Figure 4. 
Therefore we can implement the multiplexers for the sup-
plementary fields by the PMG. 
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Figure 11. Multiplexer port mapping graph. 

11. Compressible context architecture 
 After the field positioning, we have generated a specification 
of dynamically compressible context architecture like one in 
the Figure 12. Figure 12 (b) shows the final field layout of 
compressible context architecture. ‘REG_FILE’, ‘SHIFT’ 
and ‘SAT’ have double positions for compressed and un-
compressed cases. Figure 12 (a) shows a modified structure 
between a PE and a cache element (CE). New cache element 
is composed of CE1 and CE2 and cache control unit provides 
compression information from port ‘CMP’ whether executed 
contexts are compressed or not. CE1 is always selected but 
CE2 is not selected under compression (‘CMP’=1) to remove 
power consumption in CE2. 
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(a) Modified structure between a PE and a CE. 
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(b) Field layout of compressible context architecture. 

Figure 12. Compressible context architecture. 

12. Context evaluation 
 The context evaluator in Figure 3 determines whether ini-
tially uncompressed contexts can be compressed or not. This 
evaluation process can be implemented by checking the fact 
that a given context word is compared with one of the possi-
ble field combinations not exceeding compressed bit-width. 
Using FCG, we can easily check this and generate com-
pressed context words with using position information from 
PMG. 

13. Experiments and Results 

13.1. Experimental setup 
We have implemented entire design flow in Figure 4 with 

C++. We have initialized context architecture as the example 
described in Section 6 ~ 11. The implemented design flow 
generated the specification of dynamically compressible 
context architecture. For quantitative evaluation, we have 
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designed two CGRAs based on the 8x5 reconfigurable array 
at RT-level with VHDL – one is conventional base CGRA 
and the other is the proposed CGRA supporting compressible 
features in context architecture. The architectures have been 
synthesized using Design Compiler [10] with TSMC 0.18 ㎛ 
technology [11]. We have used DesignWare library [10] for 
the frame buffer and configuration cache. ModelSim [12] and 
PrimePower [10] tools have been used for gate-level simula-
tion and power estimation. To obtain the power consumption 
data, we have used the kernels (Figure 3) for simulation with 
operation frequency of 100MHz and typical case of 1.8V 
Vdd and 27℃. 

13.2. Results 
The synthesis results show that area cost of new configura-

tion cache including cache control unit, added interconnects 
and multiplexers has increased by 10.35% but the overall 
area-overhead is only 2.16 %. Thus, the new configuration 
cache structure can support dynamic context compression 
with negligible overheads. In addition, the synthesis results 
show that the critical path delay of the proposed architecture 
is same as the base model i.e. 12.87 ns. 
To demonstrate the effectiveness of the proposed approach, 

we have applied several kernels in Figure 2 to the new and 
base architectures. These kernels were executed with 100 
iterations. Table 1 shows context compression ratio for the 
evaluated kernels. Compression ratio means how many con-
text words can be compressed among entire context words. 
The execution cycle count of each kernel on proposed archi-
tecture does not vary from the base architecture because the 
functionality of proposed architecture is same as the base 
model. All of the kernels show high compression ratio to be 
more than 95 %. Furthermore, the comparison of power con-
sumption is shown in Table 1. Compared to the base archi-
tecture, it has shown to save up to 39.72% of the power.  

Table 1. Power comparison 
Configuration cache 

Power (mW) Kernels CMP’ 
Ratio (%) 

Base proposed 

Reduced
(%) 

First_Diff 100 471.47  288.12 38.89 
Tri- Diagonal 100 519.22  313.00 39.72 
State 100 501.47  309.11 38.36 
Hydro 100 386.01  238.27 38.27 
ICCG 100 573.16 350.01 38.93 
Inner Product 100 364.50 224.56 38.39 
24-Taps FIR 100 682.70 418.69 38.67 
MVM 100 540.40 333.48 38.29 
Mult in FFT 100 460.67 281.11 38.98 
Comlex Mult  100 462.90 282.37 39.00 
ITRANS 100 547.86 335.00 38.85 
2D-FDCT 95.53 586.60 370.00 36.92 
2D-IDCT 95.49 579.23 365.65 36.87 
SAD 100 478.55 292.00 38.98 
Quant 95.12 559.36 354.85 36.56 
Dequant 95.23 561.41 355.10 36.75 

CMP Ratio : compression ratio = (number of compressed context words/ 
number of entire context words)×100, Base: base architecture, Proposed: 
proposed architecture, Reduced : {1-(Proposed/Base)}×100 

14. Conclusion 
Power consumption is very crucial for the coarse-grained 

reconfigurable architecture for embedded systems and all 
reconfigurable architectures have a configuration cache for 
dynamic reconfiguration, which consumes significant 
amount of power. In this paper, we introduced new context 
architecture (dynamically compressible context architecture) 
with its design flow and configuration cache structure to 
support it. The proposed dynamically compressible context 
architecture can save power in configuration cache without 
performance degradation. Experimental results show that our 
approach saves much power compared to conventional base 
model with negligible area overhead. We have reduced the 
power by up to 39.72% in configuration cache.  
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