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Abstract—One of the major design verification challenges in 
the development of Anton, a massively parallel special-purpose 
machine for molecular dynamics, was to provide evidence that 
computations spanning more than a quadrillion clock cycles 
will produce valid scientific results.  Our verification method-
ology addressed this problem by using a hierarchy of RTL, 
architectural, and numerical simulations.  Block- and chip-level 
RTL models were verified by means of extensive co-simulation 
with a detailed C++ architectural simulator, ensuring that the 
RTL models could perform the same molecular dynamics com-
putations as the architectural simulator.  The output of the 
architectural simulator was compared to a parallelized nu-
merical simulator that produces bitwise identical results to 
Anton, and is fast enough to verify the long-term numerical 
stability of computations on Anton.  These explicit couplings 
between adjacent levels of the simulation hierarchy created a 
continuous verification chain from molecular dynamics to indi-
vidual logic gates. 

I. INTRODUCTION 
Anton is a special-purpose parallel machine, currently un-

der construction, that is intended for use as a computational 
tool for research on the structural dynamics of biomolecular 
systems.  Anton was designed to dramatically accelerate 
molecular dynamics (MD) calculations relative to other par-
allel solutions [1], enabling the atomic-level modeling of 
proteins and other biological macromolecules over time-
frames far beyond the current state of the art.  Such compu-
tations should in principle allow qualitative advances in our 
scientific understanding of biological systems, and may ul-
timately prove useful in the process of drug discovery and 
development. 

A full Anton machine comprises 512 application-specific 
integrated circuits (ASICs) connected in a three-dimensional 
torus network.  In order to achieve its high performance, the 
Anton ASIC implements algorithms and numerical formats 
that differ from those that have been extensively validated 
within standard parallel MD codes.  The ultimate goal of 
Anton’s verification effort was thus to show not only that 
the register-transfer level (RTL) model correctly implements 

Anton’s design specification, but also that it correctly im-
plements the underlying physics of an MD calculation.  The 
substantial resource investment required to produce special-
ized hardware demanded pre-silicon verification that Anton 
can produce valid scientific results. 
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This design verification goal presented a formidable chal-
lenge.  As with other recent system-on-a-chip ventures [2], 
[3], extensive block-, chip- and system-level verification 
were essential.  These tasks alone required considerable ef-
fort due to the complexity of the Anton ASIC, which is a 
heterogeneous, high-performance multiprocessor with a 
large number of specialized functional units.  Even system-
level verification, however, was insufficient to demonstrate 
the validity of MD computations on Anton.  In particular, 
the detection of undesirable numerical artifacts within an 
implementation of MD requires much longer computations 
than can be modeled within an architectural simulation of a 
512-node Anton machine.  We therefore relied on a hierar-
chy of RTL, architectural and numerical simulations to form 
a continuous verification chain linking Anton’s gate-level 
implementation to the numerical stability of long MD com-
putations ( ).  The overall design verification process 
also included specialized methods such as model checking 
and asynchronous clock-domain crossing analysis, but in 
this paper we focus on our simulation-based methodology. 

Fig. 1

At the bottom of the hierarchy, certain gate-level simula-
tions were run to verify reset behaviour, but we primarily 
relied on logic equivalence checking to formally verify syn-
thesized logic gates against Anton’s RTL model.  Next, the 
RTL model was verified at both the block and chip level 
using a detailed C++ architectural simulator for Anton, 
which we refer to as Archsim.  At the block level, Archsim 
components were used as golden reference models within 
RTL testbenches driven by constrained random stimuli.  At 
the chip level, mixed-level simulations were run with 511 
C++ ASIC models and one full-chip RTL ASIC model.  
Combined with RTL assertions and coverage-driven com-
pleteness criteria, these test environments demonstrated that 
the ASIC is capable of correctly running the MD software 
and producing results identical to those of Archsim.  Finally, 
a parallelized numerical simulator, named Pyrite, was de-



  

veloped that exactly reproduces the computations and nu-
merical formats implemented by Anton, but runs over three 
orders of magnitude faster than Archsim.  Pyrite can per-
form MD computations that are long enough to test numeri-
cal stability, thus providing the top level of design verifica-
tion for Anton. 

In addition to discussing our overall simulation-based 
verification methodology, this paper also describes our tech-
nique for C++/Verilog co-simulation.  We developed a cy-
cle-based hardware simulation infrastructure that supports 
efficient and flexible interchange of arbitrary C++ and Ver-
ilog models at both the block and chip level.  This infra-
structure effectively removes the boundary between C++ 
and Verilog, greatly facilitating the creation of test environ-
ments containing a mixture of Archsim and RTL models. 

A. Related Work 
The multiple levels of simulation shown in  are 

similar to those use to verify the IBM eServer z900 
Fig. 1

[4], but 
with an additional numerical level, and with explicit com-
parisons between all adjacent levels to form a continuous 
verification chain throughout the simulation hierarchy.  
Comparisons between Archsim and RTL models in particu-
lar relied heavily on the support for C++/Verilog co-
simulation within our simulation infrastructure. 

Co-simulation has been used in a number of previous chip 
design endeavors both to verify the interactions between 
software and hardware, and to perform design verification 
with mixed-level simulations.  When different languages are 
used for RTL and behavioral models, multiple simulations 
are often run in different processes using various forms of 

inter-process communication (IPC) such as remote proce-
dure calls, Berkeley sockets, and Microsoft’s Component 
Object Model; these approaches are described in [5], [6], 
and [7] respectively.  Hoffman et al. used C language inter-
faces (such as VHDL’s Foreign Language Interface) in con-
junction with a bus protocol layer to perform mixed-level 
simulation within a single process [8].  This methodology 
was applied to both block- and chip-level verification for an 
ATM switch, and has much in common with our approach 
to verification at these levels. 

Anton 
 

~6600x 
faster 

A single-language co-simulation methodology has been 
gaining in popularity wherein the C++ SystemC library [9] 
is used for both behavioral and RTL models.  In [10], the 
SystemC bus functional model API is used for co-simulation 
of a processor instruction set simulator (ISS) with a hard-
ware model.  In [11], ISS co-simulation is performed by 
either directly embedding the ISS in a SystemC simulation, 
or by using the gdb protocol to communicate with the ISS 
within a SystemC wrapper.  More general couplings be-
tween behavioral and RTL models are explored in [12] by 
implementing a mixed-level adapter channel that translates 
specific data types to and from bit-level representations. 

We extend this previous work on co-simulation with an 
infrastructure that allows C++ and Verilog models to be 
connected within a single process, and that efficiently mar-
shals data between the C++ and Verilog simulation domains 
on a cycle-by-cycle basis. 

II. THE ANTON ASIC 
In this section we present a brief overview of the Anton 

architecture.  A more detailed explanation of the architecture 
and how it is used to perform MD computations can be 
found in [1], while the individual computational subsystems 
are described in [13] and [14]. 

Anton is designed to accelerate MD computations, which 
model the motion of a collection of atoms according to 
Newton’s laws of physics.  An MD computation divides 
continuous time into a sequence of discrete time steps, each 
of which consists of two phases.  In the force calculation 
phase, the total force on every atom is computed; this force 
depends only on the positions of the atoms and is composed 
largely of pairwise electrostatic forces.  In the integration 
phase, the force on every atom is used to update atom posi-
tions and velocities.  Typically, each time step represents a 
few femtoseconds of physical time; Anton is intended to run 
MD computations for up to milliseconds of physical time 
(close to a trillion discrete time steps). 

Anton achieves the speed required for computations of 
this scale through a combination of specialized hardware, 
high-bandwidth communication, and fine-grained parallel-
ism.  The Anton ASIC consists of two main computational 
subsystems: the high-throughput interaction subsystem 
(HTIS) [13], which computes pairwise interactions, and the 
flexible subsystem [14], which contains a number of pro-
grammable processors (Fig. 2).  Two memory controllers are 
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Fig. 1.  Verification chain from long MD computations to logic gates. 



  

connected to off-chip dynamic random-access memory 
(DRAM).  A host interface communicates with an external 
host processor used to control and monitor the ASIC, and 
six communication channels connect the ASIC to its 
neighbors in the three-dimensional torus network.  These 
components communicate with one another by sending 
packets over a bidirectional on-chip communication ring, 
which consists of six identical routers connected in a loop.  
Two packet types are of particular relevance to the MD 
computation and hence to verification: a position packet is 
used to send up to 16 atom positions to the computational 
units that compute forces, and a force packet is used to re-
turn the computed forces. 

The bulk of the MD calculations are performed by the 
HTIS, which contains an array of 32 specialized pairwise 
point interaction modules (PPIMs).  A systolic network dis-
tributes atom position data to the inputs of the 32 PPIMs and 
aggregates result data from their outputs.  Despite being 
largely composed of special-purpose hardware, the HTIS is 
highly configurable: it supports 16 different basic modes of 
operation, the PPIM interaction functions are table-driven, 
and there are over one hundred hardware configuration reg-
isters.  This configurability, while desirable for supporting a 
wide range of MD computations, results in a combinatorial 
explosion of possible HTIS settings, which makes design 
verification particularly challenging. 

Most of the remaining tasks are performed within the 
flexible subsystem.  Eight internally developed geometry 
cores (GCs) are used for numerical calculations; each GC is 
a 128-bit, dual-issue, 4-way SIMD processor.  Bookkeeping 
tasks and overall coordination are performed by four gen-
eral-purpose (GP) cores, each of which is a customized Ten-
silica LX processor [15].  Each GP core is paired with a re-
mote access unit (RAU) that can autonomously send and 
receive data.  The flexible subsystem also contains a correc-
tion pipeline (CP), a hardware pipeline that computes pre-
scribed adjustments to the force between certain pairs of 

atoms.  Finally, a high-bandwidth racetrack serves as a local 
interconnect between the four GP cores, the eight GCs, and 
the CP, each of which is connected to a racetrack station. 

III. ARCHITECTURAL SIMULATION AND RTL VERIFICATION 
Anton’s C++ architectural simulator, Archsim, was in-

strumental throughout the hardware-software codesign proc-
ess that was used to develop Anton.  As the MD computa-
tion was partitioned between specialized hardware and em-
bedded software (i.e. the software that runs on the embedded 
processors), detailed simulator models were constructed for 
each of the hardware components described previously.  
This was essential for verifying Anton at the architectural 
level, and ensuring that the individual hardware blocks 
could cooperate to correctly and efficiently compute an MD 
time step. 

Our RTL design verification strategy involved reusing, to 
the greatest extent possible, the considerable investment in 
Anton’s detailed architectural simulator.  This reuse was 
achieved in two ways.  First, individual simulator compo-
nents were instantiated as reference models within block-
level RTL testbenches.  Second, a full RTL ASIC model 
was instantiated as a replacement for a C++ ASIC model 
within Archsim, and the resulting mixed C++/RTL simula-
tion was used to run MD computations.  This co-simulation 
of C++ and RTL models established a strong verification 
link between the corresponding levels of our simulation hi-
erarchy.  

A. Interface Binding 
The effective use of co-simulation techniques requires an 

infrastructure that supports efficient communication and 
synchronization between C++ and RTL models.  To satisfy 
this requirement, Archsim was built using an internally de-
veloped cycle-driven hardware simulation infrastructure that 
allows a near-seamless interaction between C++ and Verilog 
within a single process.  The infrastructure contains a class 
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Fig. 2.  (a) Anton ASIC.  (b) High-throughput interaction subsystem.  (c) Flexible subsystem. 
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library that includes hardware interfaces consisting of typed 
ports, and it supports automatic interface binding between 
C++ models and Verilog modules: if a C++ model has an 
interface that exactly matches a portion of a Verilog mod-
ule’s interface with the same ports in the same order (with 
the exception of clock and reset which are handled sepa-
rately), an initialization-time function can establish a bind-
ing between corresponding ports.   

At simulation time, the infrastructure transparently mar-
shals data between the Verilog and C++ ports using the stan-
dard programming-language interface (PLI) of Verilog 
simulators.  On each clock cycle, the values of the bound 
Verilog ports are obtained in binary and copied directly to 
the corresponding C++ ports.  Next, update functions for the 
C++ models are called to simulate a single clock cycle.  Fi-
nally, the values of the bound C++ ports are retrieved and 
written in binary to the corresponding Verilog ports. 

Interface binding is an efficient mechanism for coupling 
C++ and RTL simulations as it avoids the overheads associ-
ated with IPC or an explicit protocol layer.  It also mini-
mizes the programmer effort required to create and maintain 
an association between C++ and Verilog models; the only 
requirement is that the interfaces be kept consistent.1 

The primary use of interface binding is to create a mixed-
level simulation by either instantiating a C++ component 
within an RTL simulation, or instantiating an RTL compo-
nent within a C++ simulation.  In the former case, the com-
ponent is implemented in C++, and a Verilog wrapper mod-
ule is defined with the same interface (Fig. 3a,b).  The wrap-
per module can then be instantiated within the Verilog simu-
lation in exactly the same manner as a pure Verilog module.  
Similarly, when a C++ wrapper is created around a Verilog 
implementation (Fig. 3c), the wrapper can be used in the 
same manner as a pure C++ component. 

 
1 Individual port binding is also supported to handle those cases where it is 

difficult to maintain consistency between the C++ and Verilog interfaces. 

Interface binding also provides a convenient mechanism 
for attaching C++ “probes” to an RTL model within a 
mixed-level simulation.  To monitor a set of module inter-
face signals, a C++ component with the appropriate input-
only interface (the probe) is instantiated.  Then the Verilog 
module to be monitored is registered as shown in Fig. 3c.  
Finally, a handle to the Verilog module is obtained, and the 
interface signals of interest are bound to the interface of the 
C++ probe.  Thereafter, the C++ probe has cycle-by-cycle 
visibility of the interface signals, and can perform any de-
sired action (e.g., write to a log, test assertions, collect statis-
tics).  The probe is non-destructive and does not affect the 
RTL simulation; one can also create an active C++ compo-
nent that both reads and writes signals, overriding any val-
ues driven from within the RTL simulation. 

B. Block-Level Testbenches 
The majority of Anton’s block-level design-verification 

(DV) testbenches made use of C++ components from Arch-
sim as reference models.  These models were instantiated 
within Verilog wrappers using interface binding, as de-
scribed in the previous section and illustrated in Fig. 4.  The 
device under test (DUT) and the reference model were 
driven by a constrained random stimulus generator within a 
Vera testbench; the outputs were then compared by the test-
bench.  The memory controller, GC, CP, RAU, HTIS, router 
and racetrack station were all tested in this manner. 

// C++ interface 
struct IAdder : public Interface 
{ 
  DECLARE_INTERFACE(IAdder); 
  Input<u16>  in_a; 
  Input<u16>  in_b; 
  Output<u16> out_sum; 
}; 

// C++ component 
class Adder : public Component, public IAdder {
  DECLARE_COMPONENT(Adder); 
public: 
  Adder (COMPONENT_CTOR) {} 
  void update () { out_sum = in_a + in_b; } 
}; 
 
// Verilog wrapper 
module adder_shell (in_a, in_b, out_sum); 
  input  [15:0] in_a; 
  input  [15:0] in_b; 
  output [15:0] out_sum; 
  initial $create_component(in_a, “adder”); 
endmodule 
 
// $create_component “adder” implementation 
Adder ∗adder = new Adder; 
BindInterface(adder, module_handle); 

// Verilog module 
module adder ( 
  in_a, in_b, out_sum 
); 
  input  [15:0] in_a; 
  input  [15:0] in_b; 
  output [15:0] out_sum; 
  assign out_sum = in_a + in_b;   
endmodule 
 
// Module registration 
adder a1(wire_a, wire_b, wire_sum); 
initial $register_component(a1, “adder”); 
 
// C++ wrapper instantiation 
IAdder ∗adder = 
 VerilogComponent<IAdder>::Create(“adder”);

 
 
 
 
 
 

wrapper 

 
 

adder 

a b sum 

interface 
binding 

(a) Interface binding; sample interface. (b) Verilog wrapper around C++ adder. (c) C++ wrapper around Verilog adder. 

Fig. 3.  (a) C++ interface for a simple adder.  (b) C++ implementation within a Verilog wrapper.  Update() is called automatically by the simulation infra-
structure on a rising clock edge.  The Verilog wrapper module calls $create_component to instantiate the C++ implementation, passing the name of the com-
ponent to instantiate (“adder”) and a port used to obtain the wrapper module handle.  The $create_component “adder” code creates a C++ adder and binds 
the interfaces.  (c) Verilog implementation within C++ wrapper.  The module instance is registered as “adder”; the C++ wrapper can then be created by sup-
plying the interface (IAdder) and the module name (“adder”).
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Fig. 4.  Block-level testbench with C++ reference model.



  

This methodology has two main advantages.  First, reus-
ing an existing model obviates the need to create yet another 
model specifically for checking RTL responses within the 
testbench.  Moreover, the C++ reference model of each 
block has already been debugged as a component of Arch-
sim, largely eliminating the difficult task of simultaneously 
debugging both the reference model and the DUT (but not 
completely, as there are certain hardware features that Arch-
sim does not exercise).  Without a pre-verified reference 
model, it is tedious to determine if testbench mismatches are 
due to a bug in the model or a bug in the DUT.  Second, the 
DUT is compared to a model that is known to work for the 
target application (MD).  This addresses discontinuities be-
tween the components of Archsim and their hardware speci-
fications, which can arise when the specification is incom-
plete or ambiguous, or when problems with a specification 
are directly addressed within the Archsim component and 
are not fixed in the specification itself. 

Each of the block-level DV testbenches implemented syn-
chronization and result comparison differently, depending 
on the accuracy of the corresponding C++ reference models.  
The racetrack station testbench was the simplest as the C++ 
racetrack model was both bit- and cycle-accurate, allowing 
for direct output comparisons.  The remaining models re-
quired a layer of translation to deal with packets, which are 
transmitted as pointers within Archsim rather than as indi-
vidual flits.  This translation only required a few lines of 
C++ code, and provided Archsim models with the bit-level 
interface required for the DV testbenches.  Most of the mod-
els were also not cycle-accurate, so validation within the 
testbenches was performed at the transaction level (e.g., a 
packet send).  For the RAU testbench in particular, it was 
necessary to account for possible reordering of output events 
between the RTL and Archsim models. 

C. Full-ASIC Testing 
The next level in Anton’s simulation-based design verifi-

cation hierarchy involved running actual MD embedded 
software on an entire RTL ASIC model.  These tests exer-
cised top-level connectivity logic not covered by block-level 
tests, and additionally verified interactions among hardware 
components that are difficult to adequately model in block-
level tests.  Running the embedded software also exposed 
some gaps in the block-level tests.  The configuration space 
for most of the hardware blocks is enormous, and there are 
complex inter-dependencies between input data whose arri-
val could be spread out over thousands of clock cycles.  This 
made it impossible for testbenches driven by constrained 
random stimuli to fully explore the state space relevant to 
the target MD application.  The full-ASIC tests with the 
embedded software therefore supplemented block-level de-
sign verification by testing additional states that arise during 
the MD computation.     

A full Anton machine contains 512 ASICs, and simulta-
neously simulating each of these ASICs as an RTL model 

would be far too expensive.  Instead, our approach was to 
run a mixed-level simulation by replacing a single C++ 
ASIC model in Archsim with an RTL ASIC model; the RTL 
model was placed within a C++ wrapper using interface 
binding.  We found the RTL ASIC model to be roughly 50 
times slower than the C++ ASIC model, so the speed of a 
mixed-level simulation (measured in cycles per second) is in 
fact limited by the 511 C++ models, not the single RTL 
model.  The total number of simulated cycles, on the other 
hand, is larger due to explicit modeling within the RTL 
ASIC of embedded processor initialization and cache 
misses.  Using mixed-level simulations, we were able to run 
up to 100 MD time steps with a full-ASIC RTL model, 
which took two and a half days and required simulating over 
three million clock cycles. 

A mixed-level simulation is validated by first running the 
same MD computation in Archsim with only C++ ASIC 
models.  In this reference run, a packet log is generated for 
all position and force packets sent from or received by sub-
systems on the ASIC of interest.  The MD computation is 
then rerun in the mixed-level simulation, and the corre-
sponding packet log is generated by using interface binding 
to attach a C++ packet logger class to the routers of the RTL 
ASIC model.  Once both simulations have completed, the 
two packet logs are compared, and any differences are 
flagged as errors.  The packet log comparison is non-trivial 
because the two simulations have very different timings, 
resulting in different packet orders and often even different 
groupings of position and force data within the packets.  A 
validation script was used to parse the packet contents from 
both runs so that comparisons could be made on a per-atom 
basis rather than a per-packet basis.  This approach is more 
difficult than simply comparing the final outputs of both 
computations, but it is much more valuable from a debug-
ging standpoint because miscomparisons isolate RTL model 
problems both in origin (which subsystem was the source of 
the problem) and in time (at what point during the MD com-
putation the error occurred). 

As with the block-level tests, we again generated con-
strained random inputs by randomizing both the MD compu-
tation and the machine configuration.  In this case the ASIC 
and the embedded software were, together, treated as the 
DUT, and the randomization was over molecular systems, 
MD operating parameters, machine size (number of nodes), 
and the location of the RTL ASIC model within the simu-
lated machine.  In addition, artificial network stressors were 
introduced by delaying packets either entering or leaving the 
RTL ASIC model according to a randomly-generated delay 
schedule. 

The full-chip test environment was also useful for exercis-
ing various ASIC control and debug features in conjunction 
with the system software that uses them.  For example, the 
JTAG-based gdb stub provided with the Tensilica proces-
sors was wrapped in a C++ JTAG interface and then at-
tached to the ASIC’s JTAG ports using interface binding.  



  

This allowed xt-gdb (the Tensilica version of gdb) to form 
remote connections to the Tensilica processors in the RTL 
ASIC model. 

D. Accelerating ASIC Initialization 
Booting the ASIC and preparing it to run an MD compu-

tation takes a significant number of cycles for several rea-
sons.  First, nearly two thousand configuration registers 
must be written to initialize the ASIC, and the hardware 
mechanism for setting these registers is quite slow.  Second, 
several megabytes of data must be copied into the ASIC’s 
DRAMs in preparation for an MD computation.  Third, 
when the four Tensilica processors in the flexible subsystem 
boot, they execute reset code that resides off-chip in an un-
cached region of address space and is fetched over a slow, 
shared 4-bit bus.  Explicitly performing all of these opera-
tions in simulation is expensive: all together, initializing a 
512-node machine with a single RTL ASIC model takes 
around 3 days of simulation on a 3 GHz Intel Xeon proces-
sor.  While it was necessary to occasionally test the full ini-
tialization sequence (this was part of a set of regression tests 
run weekly), we made use of a number of “back-door” tech-
niques to accelerate initialization for the majority of our full-
chip simulations. 

To speed up writes to the configuration registers (writes 
which are normally serialized), interface binding was used to 
connect multiple instances of a simple C++ driver class to 
the RTL modules containing these configuration registers.  
This allowed the modules to be initialized in parallel and at 
high bandwidth, reducing the configuration register initiali-
zation time by roughly 30-fold.  The explicit copying of data 
into the ASIC’s DRAMs was eliminated altogether by ob-
taining a DRAM image from the initial pure C++ reference 
run, then directly writing this data into the DRAM models 
from the top-level Verilog testbench.  Finally, the Tensilica 
processor boot time was shortened by removing the slowest 
portions of the reset vector code, which consisted of loops 
used to initialize the cache tags and data memory.  Again, 
the top-level Verilog testbench was modified to directly ini-
tialize these structures. 

Altogether, these accelerations reduced the mixed-level 
simulation initialization time from three days to about four 
hours, the vast majority of which consists of Tensilica proc-
essor boot time (the accelerated MMR writes take 14 min-
utes to complete, and the direct DRAM initialization takes 
seconds).  This is still a considerable amount of time, but it 
is only 40% of the total run time required to compute a sin-
gle MD time step within a mixed-level simulation using an 
RTL ASIC model2, so additional accelerations would not 
significantly increase the overall test throughput. 

 
2 The total time required to compute a single time step (~10 hours) is much 

larger than 1% of the time required to compute 100 time steps (~2.5 days) 
for two reasons.  First, there is a considerable amount of setup code that 
must run to prepare the computation, independent of the number of time 
steps.  Second, the first time step takes much longer than subsequent time 
steps due to instruction cache misses. 

E. The Trouble with X’s 
One of the obstacles that we faced when running full-

ASIC RTL model simulations was dealing with unknown 
values (X’s) in a 4-state (0/1/X/Z) simulator.  When a simu-
lation begins there are a large number of uninitialized data 
values in memories and in registers with unspecified reset 
behavior.  So long as these X’s remain confined to 
datapaths, the simulation can make forward progress, but 
there are two scenarios in which the X’s leak into the 
ASIC’s control logic, rapidly bringing the simulation to a 
halt.  First, if an embedded processor branches conditionally 
on uninitialized data or attempts to access memory using an 
undefined address, then the processor state becomes unde-
fined.  Second, if a hardware parity check is performed on 
uninitialized data, then the error detection logic will enter an 
undefined state, which can cause the entire ASIC model to 
stop functioning. 

In some cases, these X’s do not represent an actual error.  
Uninitialized data is often read from DRAM without being 
used: this happens, for example, the first time a cache line is 
read from memory, or when the granularity of a memory 
read is coarser than the granularity of the valid data being 
read.  Also, software round-robin counters do not need to be 
initialized in order to function correctly.  In other cases, 
however, the X’s are indicative of genuine hardware or soft-
ware errors, and provide a powerful mechanism for detect-
ing these errors that would otherwise be difficult to isolate.  
Many of the errors that manifested as X’s were reset prob-
lems that left various registers in undefined states; others 
were software bugs where a value was used without being 
defined. 

Because X’s were valuable from a verification perspec-
tive, we did not want to suppress them by using 2-state 
simulations.  To a large extent we were able to eliminate the 
software sources of X’s by compiling the embedded code 
for an x86 and running it under valgrind [16], which detects 
the use of uninitialized values.  In particular, we required all 
round-robin counters to be properly initialized.  We were 
also able to ensure that the external host processor would 
only read valid data from the ASIC model, thus preventing 
X’s from crossing the host interface.  Finally, we disabled 
all parity checking within the on-chip communication ring, 
allowing the simulation to tolerate packets containing un-
used, undefined bits.  With these adjustments, we were able 
to make effective use of 4-state RTL simulations for full-
ASIC verification. 

IV. NUMERICAL SIMULATION AND VERIFICATION 
Although molecular dynamics is a mature field with well-

understood algorithms, existing practice is almost entirely 
confined to calculations with single- and double-precision 
floating-point numbers.  Anton, on the other hand, uses 
fixed-point arithmetic to make more effective use of silicon.  
Anton also uses much more compact lookup tables to evalu-
ate complicated mathematical functions than software run-



  

ning on modern processors, which can quickly and easily 
access tables of almost arbitrary size.  Finally, Anton’s 
rounding rules differ slightly from the “round to nearest” 
rule employed by IEEE floating point implementations, and 
we have nowhere near the depth of practical experience with 
them that we have with IEEE floating point.  

These numerical modifications do not qualitatively affect 
the results of individual time steps, but the algorithms used 
to run MD computations for billions of time steps are re-
markably fragile: seemingly innocuous changes can render a 
computation unstable in subtle and surprising ways.  As a 
result, in order to be confident that Anton’s deviations from 
common practice will not affect the quality of its output, it 
was necessary to simulate Anton’s behavior over a long 
enough period of time—millions of time steps—to let any 
potential interactions between Anton’s numerics and the MD 
algorithms manifest themselves.  A common measure of 
stability, often used as a diagnostic for software MD pack-
ages, is conservation of energy.  Theoretically, with infinite-
precision arithmetic and infinitesimally small time steps, the 
energy contained in the physical system being modeled 
ought to remain constant.  In practice, energy is only ap-
proximately conserved, and the rate at which it changes over 
time, i.e., the “energy drift”, is a measure of the numerical 
quality of an MD computation. 

Millions of time steps are completely beyond the scope of 
Archsim simulations.  A ten million time step run of a small 
(~13,000 atoms) molecular system requires around 30 bil-
lion machine cycles, which represents roughly 100 years of 
Archsim runtime.  We addressed this simulation perform-
ance gap by modifying Desmond [17], a highly scalable, 
parallel software implementation of MD.  We reused Des-
mond’s parallel engine, which allows it to run efficiently on 
hundreds of processors, but re-implemented its floating 
point computational pipelines to exactly match the fixed-
point calculations of Anton.  We called the resulting pro-
gram “Pyrite” to indicate that it is not quite a golden model 
for the eventual machine because the MD software is subject 
to change; it simply demonstrates that Anton’s numerics are 
capable of producing stable MD computations. 

With Pyrite, we were able to compute almost ten million 
time steps in about a week for one molecular system; several 
other systems were run for around one million time steps 
each.  In all cases, the measured energy drift was well within 
acceptable limits.  We were also able to use these long runs 
to derive statistical properties of the molecular systems that 
match results based on floating-point MD codes.  These runs 
provided strong reassurance that the numerical choices made 
in Anton’s design do not have adverse numerical conse-
quences.  Finally, we reconciled Pyrite’s output against that 
of Archsim across many shorter (tens of time steps) MD 
computations, ensuring that they both produce bitwise iden-
tical results, which completed the top level of our verifica-
tion chain. 

V. DISCUSSION 
Our hierarchical simulation-based design verification 

strategy for Anton provided a continuous verification chain 
from MD to logic gates.  With Pyrite, we obtained convinc-
ing evidence that Anton’s customized numerical formats and 
hardwired datapaths should perform scientifically valid MD 
computations over billions of time steps.  Comparisons be-
tween Pyrite and Archsim ensured that Anton is able to pro-
duce exactly the same results, bit for bit, as Pyrite.  This 
provided verification at the architectural level, demonstrat-
ing the correctness of MD computations on Anton’s special-
ized hardware.  Mixed-level co-simulations provided RTL 
model verification at the ASIC and block levels, ensuring 
that the Anton ASIC exactly implements the functionality 
modeled by Archsim.  Finally, synthesized logic gates were 
formally verified against the RTL model, ensuring that these 
gates would correctly implement the MD calculations. 

Anton is particularly amenable to hierarchical verification 
because its target application, MD, is divided into many 
discrete time steps, each of which performs exactly the same 
computational tasks.  To establish equivalence between ad-
jacent levels of the hierarchy, it therefore suffices to show 
that they compute bitwise-identical results for individual 
time steps.  The longest Pyrite run contained five orders of 
magnitude more time steps than the longest Archsim run 
( ), but since Pyrite time steps were extensively vali-
dated against Archsim time steps at the bit level, we have a 
high degree of confidence that, were it possible to run 107 
time steps on Archsim, the results would exactly match 
those of Pyrite.  It is projected that the longest Anton run 
will contain yet another four orders of magnitude more time 
steps—a scale of MD computation that has never before 
been achieved.  Ultimately, the only way to confirm that 
computations of this scale will produce valid scientific re-
sults on Anton is to run them on the actual hardware, but our 
verification hierarchy at least provides compelling evidence 
that Anton’s MD computations should be correct and nu-
merically stable. 

Table 1

Table 1.  Longest MD runs in simulation, measured in total number of 
time steps, and projected longest run on Anton. 

Platform Longest run (time steps) 
Archsim (with 1 RTL ASIC) 100 
Pyrite 10,000,000 
Anton (projected) 400,000,000,000 

The RTL portion of Anton’s design verification effort re-
lied heavily on interface binding to effectively remove the 
boundary between C++ and Verilog.  By automatically con-
necting C++ components to Verilog modules at the interface 
level and transparently marshalling data between the C++ 
and Verilog domains during simulation, interface binding 
makes it possible to implement mixed-level co-simulations 
with little programmer effort and minimal run-time over-
head.  This feature of our simulation infrastructure allowed 
us to reuse Archsim for both block-level and ASIC-level 
RTL verification environments. 



  

The first Anton ASICs were delivered at the start of 2008.  
After seven months of testing, during which billions of MD 
time steps have been run on silicon, six logic bugs have been 
uncovered.  Three of these bugs are located in peripheral 
logic—tightly coupled to the high-speed controllers for the 
off-chip DRAM and the communication channels—that was 
omitted from the full-chip mixed-level environment and was 
verified separately.  The other three involve corner cases 
related to a numerical overflow signal that were simply 
never observed during the hundreds of thousands of time 
steps that were run in simulation on the RTL ASIC model.  
The natural response of a design verification engineer to 
these bugs is to question what went wrong, and how we 
could have found them during the pre-silicon phase.  Look-
ing at the bigger picture, however, we have simple software 
workarounds in place, and are currently performing multi-
million time step MD computations on first silicon. 
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