
CrashTest: A Fast High-Fidelity FPGA-Based
Resiliency Analysis Framework

Andrea Pellegrini, Kypros Constantinides, Dan Zhang, Shobana Sudhakar,

Valeria Bertacco and Todd Austin

University of Michigan
{apellegrini, kypros, danz, sshobana, valeria, austin}@umich.edu

Abstract— Extreme scaling practices in silicon technology are
quickly leading to integrated circuit components with limited
reliability, where phenomena such as early-transistor failures,
gate-oxide wearout, and transient faults are becoming increas-
ingly common. In order to overcome these issues and develop
robust design techniques for large-market silicon ICs, it is
necessary to rely on accurate failure analysis frameworks which
enable design houses to faithfully evaluate both the impact of
a wide range of potential failures and the ability of candidate
reliable mechanisms to overcome them. Unfortunately, while
failure rates are already growing beyond economically viable
limits, no fault analysis framework is yet available that is both
accurate and can operate on a complex integrated system.

To address this void, we present CrashTest, a fast, high-
fidelity and flexible resiliency analysis system. Given a hardware
description model of the design under analysis, CrashTest
is capable of orchestrating and performing a comprehensive
design resiliency analysis by examining how the design reacts
to faults while running software applications. Upon completion,
CrashTest provides a high-fidelity analysis report obtained
by performing a fault injection campaign at the gate-level
netlist of the design. The fault injection and analysis process
is significantly accelerated by the use of an FPGA hardware
emulation platform. We conducted experimental evaluations on
a range of systems, including a complex LEON-based system-
on-chip, and evaluated the impact of gate-level injected faults
at the system level. We found that CrashTest is 16-90x faster
than an equivalent software-based framework, when analyzing
designs through direct primary I/Os. As shown by our LEON-
based SoC experiments, CrashTest exhibits emulation speeds
that are six orders of magnitude faster than simulation.

I. INTRODUCTION

As silicon process technology pushes towards smaller

technology sizes, device reliability is an emerging challenge

for next-generation designs [5]. Silicon failure mechanisms

such as early transistor failures, gate-oxide wear-out, manu-

facturing defects, and radiation-induced soft errors threaten

the design’s reliability and severely reduce the yield and

lifetime of future systems [20].

These reliability challenges are usually addressed either

by conservative high-margin design techniques that avoid the

manifestation of device failures during the product lifetime

or by fault-tolerant techniques that detect failures and repair

the system functionality in the field during operation [19].

Classic high-margin techniques for guaranteeing system re-

liability are rendered inadequate by extreme technology

scaling and process variation [4]. The result is a steady shift

towards the adoption of fault-tolerant techniques into the

design flow of modern computing systems.

Recently, a number of commercial microprocessors that

employ fault-tolerant design techniques have appeared in the

marketplace [10, 15]. Furthermore, the research area of fault-

tolerant design is a well studied area and several solutions

have been proposed in the literature [2, 6, 19].

The need for Resiliency Analysis tools - Early in the

design flow, system engineers need to assess the threats

and reliability requirements of their design by employing

resiliency analysis tools. They first gauge the robustness of

the bare unprotected design to check if it meets the specified

reliability target. If it does not meet the reliability target, a

spectrum of fault-tolerant techniques must be considered and

evaluated to select the ones that meet the target with the best

trade-offs in implementation costs.

The process of accurately assessing the robustness of

a bare unprotected design, or evaluating the effectiveness

of candidate fault-tolerant techniques places the following

requirements on the resiliency analysis infrastructure:

Low-level Fault Analysis: High fidelity is a very important

aspect of the resiliency analysis framework. Using high-

level models of micro-architectural components with limited

knowledge of the underlying circuit is inadequate to perform

high-fidelity resiliency analysis. In order to correctly model

the introduction, propagation, and possible masking of the

faults, the resiliency analysis framework must accurately

gauge circuit-level phenomena using a detailed low-level

model of the design under analysis (e.g., gate-level netlist).

Flexible Fault Modeling: Due to the existence of multiple

silicon reliability threats, the resiliency analysis framework

needs to support an extensive collection of low-level fault

models to cover silicon failure mechanisms that range from

transient faults, to manufacturing faults, process variation

induced faults, and silicon wear-out related faults. Moreover,

silicon fault modeling is an open area of research with

continuous advancements [7, 11]. Often, new fault models

are devised targeting emerging silicon failure modes or more

accurately modeling existing failure mechanisms. Therefore,

it is crucial that an analysis framework’s existing fault model

collection could be easily upgraded with new fault models.

Fast Design Simulation: The simulation of the design must

deliver sufficient performance to enable the analysis of

complex systems, including booting an operating system and

run applications. This will allow users to assess the impact

of faults at the full-system level, and still deliver evaluations

with a fast turnaround.

Flexible Simulation Interface: It is critical for the usability

of the framework to provide an intuitive way to analyze a

wide range of designs and fault-tolerant techniques. Thus,

a resiliency analysis framework demands a flexible inter-

face and proper stubs to accommodate the evaluation of

different systems. Given this challenging set of requirements

for resiliency analysis, we focused our efforts toward the

use of fault injection campaigns performed on gate-level

models and accelerated by FPGA-based hardware emulation

to achieve both accuracy and performance.

A. Contributions of this Work

In this work we present CrashTest, a novel resiliency

analysis framework that addresses the challenges discussed

above. We achieve this through the following contributions:

• We propose a new method to automatically orchestrate

a fault injection campaign and perform a detailed fault

monitoring and analysis on the gate-level netlist of the

design. Our analysis approach accurately assesses the

impact of run-time injected faults on the operation of

a large complex system. The faults are injected using

novel gate-level logic transformations that instrument

the design’s netlist with fault emulation logic.

• Our framework is augmented with a rich collection
of fault models that encompass many types of faults

that can be encounter at run time, ranging from soft

faults to permanent silicon defects. These fault models

are defined by different logic netlist transformations that

can be easily modified and adapted by the user to model

new failure mechanisms.

• We employed FPGA-based hardware emulation that

enables the analysis of complex full-system designs

that can boot an operating system and run applications.

To the best of our knowledge, this is the first work

that performs gate-level fault injection on a full-system

design and observes the impact of the injected faults at

the system level.

• We demonstrate the flexibility of our resiliency analysis

framework by analyzing and presenting results for three

complex designs including the LEON3 system-on-chip.

The remaining of the paper is organized as follows:

Section II describes related work; Section III gives a high-

level overview of our framework; Sections IV and V ex-

plain in detail our injection methodology and the FPGA-

based fault emulation techniques used by our framework,

called CrashTest. Section VI evaluates the performance of

CrashTest and presents experimental results that demonstrate

its effectiveness. Finally, Section VII provides conclusions

and directions for future work.

II. RELATED WORK

Fault Simulation vs. Resiliency Analysis - Fault simulators

are software tools that determine the set of faults which

can be exposed by a given test vector, and they are mainly

used for ATPG (Automatic Test Pattern Generation) with

the objective of measuring the coverage of a given set of

test vectors [7]. On the other hand, resiliency analysis tools

employ fault injection campaigns on a design executing

typical workloads to measure the impact that the injected

faults have on the design’s operation and on the applications

running on it.

Even though both methodologies use fault models to sim-

ulate the effects of faults on the circuit under test, their goals

and requirements are fundamentally different. To prove the

effectiveness of a given set of test vectors, fault simulators

need to exercise faults in every node of the design for a

limited amount of time. In contrast, resiliency analysis tools

need to simulate the design under analysis for a significant

amount of clock cycles in order to observe possible fault

effects at the application level. Moreover, resiliency analysis

tools usually employ Monte Carlo simulation methodologies

and inject only the number of faults required to provide

adequate statistical confidence in the results obtained. Due

to these major differences, ATPG fault simulators cannot

be practically used as a fault injection substrate to perform

design resiliency analysis.

Several works in literature have proposed resiliency analy-

sis frameworks that are based on fault injection. These works

can be partitioned into software-based and hardware-based

resiliency analysis, depending on the methodology used to

perform the simulation and analysis [16].

Software-Based Resiliency Analysis - Often, software-

based fault injection is preferred to hardware-based solu-

tions due to its low cost, less complex development cycle,

flexibility of customization, or simply because no low-level

hardware model of the design is available. Several software-

based resiliency analysis frameworks have been presented in

literature [12, 17, 21]. Although they have many advantages,

the speed of low level (e.g., gate-level) simulations does not

make them viable solutions for analyzing complex designs

or complete systems running applications.

Hardware-Based Resiliency Analysis - The performance

limitation of the software-based fault injection approach can

be addressed by employing hardware-based fault injection.

Hardware-based resiliency analysis frameworks usually em-

ploy FPGAs (Field Programmable Gate Arrays), capable

of emulating the fault-injected design orders of magnitude

faster than software-based approaches, therefore significantly

speeding up the process. Although the use of FPGA emu-

lation platforms addresses the limited performance of the

software frameworks, it introduces some major challenges

in automating the fault injection and the analysis process.

Furthermore, it is difficult to map complex fault models

on the FPGA fabric. Hence, the hardware-based resiliency

analysis frameworks proposed so far are limited to simple

transient fault models and stuck-at faults [9, 14].

III. FRAMEWORK OVERVIEW

The goal of our resiliency analysis framework is to pro-

vide a fast, high-fidelity and comprehensive analysis of the

effects of a broad range of fault classes on the applications

running on a design under analysis (this could be either an

unprotected design or a fault-tolerant design).

Given the specification of the design under analysis in a

hardware description language (HDL), CrashTest automat-

ically orchestrates a fault injection/analysis campaign. This

process is composed of two stages: (i) a front-end translation

that generates the fault-injection ready gate-level netlist for

the design, and (ii) a back-end fault simulation and analysis

that performs the actual fault injection and fault monitoring,

�� � ��
�� �� � � 	

� �
� � � �� 	
� � � � �� � � � � �

� � � � � �� �� � � � � � �� �
L

o
g

ic

S
y
n

th
e
s
is

�� � �� � � � � � �� � ��
� � � � 	 � � � � �� �

G
a

te
-L

e
v
e

l
N

e
tl

is
t

T
ra

n
s
fo

rm
a
ti

o
n

s

Framework
Front-End

F
P

G
A

-B
a
s
e
d

S
y
n

th
e
s
is

�� � �� � � � � � � � � ��
� � � � � � � � � �

M
o

n
te

 C
a
rl

o
S

im
u

la
ti

o
n � � � � � � � � � 	

�� � � 	� ��
� � � �� �

Framework
Back-End

� �
 � � �� � �� � ��

�� � �� � � � � �� � ��
� � � � � � � � � �

� � � � � �� � � ��
�� � � � � �

�� � �� � � � � �� � ��
! � � � � � � � � ��

Fig. 1. Overview of the resiliency analysis framework: The framework is composed of (i) the front-end stage generating the fault injection-ready gate-level
netlist and (ii) the back-end stage performing fault injection and analysis and generating the final resiliency analysis report.

and evaluates the effects of the injected faults. Figure 1

represents an overview Crashtest.

Only a FPGA solution can provide sufficient performance

to run software applications on large and complex designs.

However, a major cost in adopting this solution is the

overhead necessary to map a design on the FPGA fabric.

For complex designs the time required to generate a netlist

mappable on the FPGA device can be prohibitively long. To

reduce this overhead, in Crashtest we insert multiple faults

in a same mapped netlist. These faults can be dynamically

activated individually via software, amortizing the synthesis

cost over several analyses.

Framework Front-End - First, on HDL model of the design

under analysis is synthesized by the front-end stage of the

framework using a standard cell library to obtain a gate-level
netlist. CrashTest does not require the use of any particular

library, as long as the chosen library can be properly modified

to support the fault models.

For each standard cell in the target library (i.e., a com-

binational gate or a sequential element), CrashTest provides

a gate-level logic transformation that modifies the cell and

inserts extra fault injection logic. This extra logic can be

activated at runtime to emulate the effects of a fault injected

into the cell. We developed a wide range of fault models

and gate-level logic transformations to provide the capability

of emulating different failure mechanisms. The collection of

all logic transformations is stored in the framework’s fault
library. Based on the injection parameters selected by the

user (i.e., the fault models and the injection locations), the

framework automatically generates the fault injection-ready
netlist selecting the transformed cells in the library. This

netlist is then transferred to the fault analysis simulator.

Framework Back-End - At the framework back end, the

fault injection-ready netlist is re-synthesized to target an

FPGA. At this point the fault injection and analysis campaign

is ready to begin. Based on the fault simulation parameters
given by the user, the fault injection/analysis emulator injects

faults at different sites in the netlist and monitors their propa-

gation and impact on the design and the running applications.

During fault emulation, the design under analysis is exercised

with the application stimuli. To gain statistical confidence on

the provided results, the experiments are repeated in a Monte

Carlo simulation model by altering the fault sites and/or

the application stimuli. After running a sufficient number

of experiments to gain statistical confidence, the results

are aggregated into the resiliency analysis report which is

the final deliverable of the CrashTest framework. In the

following sections, we describe each step of the CrashTest

framework in more detail.

IV. GATE-LEVEL FAULT INJECTION METHODOLOGY

Technology Independent Logic Synthesis - The first step

in the front-end stage of the CrashTest framework is to

convert the user-provided high-level HDL model of the

design under analysis into a common format that the frame-

work can analyze to obtain an accurate list of candidate

circuit locations for fault injection. This is achieved through

logic synthesis with Synopsys Design Compiler targeting

a technology-independent standard cell library (GTECH).

The resulting gate-level netlist is composed of simple logic

gates (e.g., AND, OR, NOT, Flip-Flops, etc,) and it is free

from any fabrication technology-related characteristics. This

netlist is subsequently parsed to generate a list of all possible

injection locations, that is, a list of all logic gates and flip-

flops in the design. This list can be used to specify the

injection locations; alternatively, if randomized fault injection

is desired, a random selection of fault sites can be performed

by the framework.

Netlist Fault Injection Instrumentation - After fault lo-

cations selection, the gate-level netlist is instrumented with

extra fault injection logic that, when enabled, emulates the

effects of the injected faults. Each fault model supported by

the framework is associated with a specific gate-level logic

transformation to achieve this goal. The collection of gate-

level logic transformations composes the framework’s fault

library. This modular design makes a straight forward task

upgrading the framework with new fault models by simply

implementing new logic transformations into the fault library.

Our resiliency analysis framework is already equipped with

a large collection of fault models and their corresponding

netlist logic transformations. This collection spans an exten-

sive spectrum of silicon failure mechanisms, ranging from

transient faults due to cosmic rays, to permanent faults due

to silicon wearout. Table 1 shows a list of supported fault

models along with a brief description.

Transistor-level
NAND2 gate

A 0 1 0 1

B 0 0 1 1

Fault-Free 1 1 1 0

Bridge-A-B 1 X X 0

Bridge-A-C X 1 X X

Bridge-A-n1 1 1 1 X

Bridge-B-n1 1 X 1 X

Bridge-B-C X X 1 X

Bridge-C-n1 1 1 X 0

Fault Symptom Table Instrumentation logic for Bridge-A-B

(a) (b) (c)

A B

B

A

C

n1

Gnd

Vdd
A
B C

Random ValueA
B
A
B Fault

Inject

0

1

Fig. 2. Logic Transformations - Bridge Fault: The CMOS transistor-level design of a gate in (a) is used to generate the gate’s fault symptom table for
the fault model shown in (b). Part (c) shows the instrumentation logic for emulating the effects of the Bridge-A-B fault.

Stuck-at: The stuck-at fault model is the industry standard model for

circuit testing. It assumes that the defect behaves as a node stuck at

logical 0 or 1. The stuck-at fault model is most commonly used to

mimic permanent manufacturing or wearout-related silicon defects.

Stuck-open: The stuck-open fault model assumes that a single

physical line in the circuit is broken. The unconnected node is not tied

to either Vcc or Gnd and its behavior is rather unpredictable (logical 0

or 1 or high impedance). This model is commonly used to mimic

permanent defects that are not covered by the stuck-at fault model.

Bridge: The bridge fault model assumes that two nodes of a circuit are

shorted together. The behavior of the two shorted nodes depends on

the values and strength of their driving nodes. This model covers a

large fraction of permanent manufacturing or wearout-related defects.

Path-delay: The path-delay fault model assumes that the logic

function of the circuit is correct, but that the total delay in a path from

inputs to outputs exceeds the allocated threshold and causes incorrect

behavior. This model is used to mimic the effects of process variation

or device degradation due to age-related wearout.

Single Event Upset: The single event upset (SEU) fault model

assumes that the value of a node in the circuit if flipped for one cycle.

After this one-cycle upset, the node returns to its normal behavior. The

SEU fault model is used to mimic transient faults commonly caused by

cosmic radiation or alpha particles.

Table 1. Fault models: CrashTest is enhanced with an extensive collection
of fault models. These fault models cover transient faults as single event
upsets and also a variety of permanent hard faults related to manufacturing,
wearout, and process variation silicon defects.

Gate-Level Logic Transformations - Some fault models

require trivial gate-level logic transformations. For example,

the instrumentation needed to emulate a stuck-at fault is just a

multiplexer that controls the output of the faulty gate and has

one of its inputs connected to logic zero/one. However, there

are more complex fault models which affect the design at the

transistor level. For example, the bridge fault model assumes

that two circuit nodes in the design are shorted together. To

emulate the effect of a bridge model with high fidelity, we

simulated the faulty CMOS gates at the transistor level and

generated a corresponding fault symptom table. To illustrate

this process with an example, Figure 2(a) shows the CMOS

transistor level representation of a NAND2 logic gate, while

Figure 2(b) shows the corresponding fault symptom table.

By observing the table we notice that the effects of the

fault are masked for some input combinations, thus the faulty

gate behaves as a fault-free gate. However, for other input

Fault Injection
Site 1

Fault Injection
Site 2

Fault Injection
Site N

D Q

Clk

…
…D Q

Clk

D Q

Clk

FI FI FI

Scan
In

Scan
Out

Fault-Injection Ready Netlist

Fault Injection Scan Chain

Fig. 3. Fault injection scan chain: The netlist is instrumented with fault
injection logic for multiple faults. The scan chain controls the fault injection
during emulation.

combinations the fault’s effects propagate to the gate’s output

and result is an unstable output signal (Random Value in

Figure 2(c)). The framework’s fault library is populated with

a fault symptom table for each combination of standard cell

library gate and supported fault model. Given a gate type and

a fault model, the instrumentation engine accesses the fault

library and applies the corresponding logic transformation to

instrument the fault. Figure 2(c) shows the instrumentation

logic for a bridge fault between circuit nodes A and B of the

NAND2 gate. A fault-tolerant design should be capable of

handling these faults and either mask the errors introduced

or reconfigure itself to exclude the faulty part of the design.

Path-Delay Fault Model - The logic transformations re-

quired by most fault models are similar to the one presented

in Figure 2(c) for the bridge fault. One exception is the path-

delay fault model which has slightly different characteristics.

Path-delay faults are characterized by slower combinational

logic gates causing longer delays than foreseen at design

time. Whenever these slower gates are exercised, they may

cause timing violations (i.e., flip-flops at the end of the path

miss to latch the newly computed value). In our framework,

the effects of the path-delay fault model are emulated by

a gate-level logic transformation such as that in Figure 4.

To determinate the set of flip-flops affected by the slower

faulty gate, we trace forward through the combinational logic

and find all those flip-flops that have a path including the

faulty gate. From that set of flip-flops we choose only those

that have a path delay with a timing slack smaller than a

predefined threshold specified by the user (i.e., the expected

Combinational
Logic

� �

���

� �

���

�

�

�	
Faulty
Gate

� �

���

�

�

…

Affected Flip-Flops

Gate-Level Logic Transformation
for the Path-Delay Fault Model

�	

Fig. 4. Logic transformation for the path-delay fault model: If the output of
the faulty gate changes in a given cycle, all affected flip-flops miss latching
the newly computed value and hold the previous cycle’s value.

delay due to the faulty gate).

Fault Injection Scan Chain - To avoid re-instrumenting the

netlist each time a new fault must be injected, the netlist can

be instrumented for several faults at multiple locations. This

accelerates the emulation at the back-end of the framework,

but also increases the instrumented circuit size. Moreover, the

insertion of each fault into the netlist adds an extra control

signal required for enabling and disabling it at runtime (for

instance, signal Fault Inject and Random Value in 2(c)). As

shown in Figure 3, these control signals are latched and

connected to a scan chain, which at runtime are accessible

by the Fault Injection Manager (see Figure 5).

V. FPGA-BASED FAULT EMULATION

CrashTest employs an FPGA platform to emulate the fault

injected hardware and accelerate the fault simulation and

analysis process. The first step in this process is to synthesize

and map the fault injection-ready netlist to the target FPGA.

To provide a standard simulation interface that is independent

of the design under analysis, we add an automatically gener-

ated interface wrapper to the fault injected-ready netlist. This

interface wrapper provides a seamless connection with the

fault injection manager, an automatically-generated software

program responsible for orchestrating the fault injection and

analysis campaign. The interface wrapper and the fault injec-

tion manager are connected through an on-chip interconnect
bus. Figure 5 shows the major components and the data-flow

of the fault injection, simulation and analysis process.

In our experiments we used a Xilinx Virtex-II Pro FPGA,

which has two on-chip PowerPC processors, and run the fault

injection manager software on one of them. Alternatively, the

fault injection manager can also run on a soft-core mapped

on the FPGA itself (e.g., Microblaze). The fault injection

manager is responsible for several tasks:

1) Feed the instrumented injection scan-chain with all the

control signals required in the fault injection campaign.

This is done through a FIFO queue updated each time a

new fault is activated into the design. The fault injection

parameters (i.e., fault location and time) are stored on an

off-chip memory accessible by the injection manager.

Instrumented
Fault-Injection
Ready Netlist

On-chip Processor Core
Fault Injection Manager

FI
FO

Interrupt Counter

In
pu

t
R

eg
is

te
rs

O
ut

pu
t R

eg
is

te
rs

Interface Wrapper

Off-chip Memory
- Stimulus
- Fault injection parameters
- Golden results
- Results/Statistics

Fig. 5. FPGA-Based fault injection and simulation: The FPGA-mapped
netlist is wrapped by a standard interface providing a seamless connection
to the fault injection manager that is running on an on-chip processor core.

2) Stimulate the design through the input registers. The

applications stimulus is either provided by the user or auto-

matically generated, and it is stored in the off-chip memory.

3) Monitor the output of the FPGA-mapped design for errors

through the output registers. The output is compared to a

golden output that is collected with a fault-free version of

the same design and it is stored in the off-chip memory.

4) Maintain fault analysis statistics and store the results to

the off-chip memory for later processing.

5) Synchronize the FPGA-mapped design with the fault

injection process through the interrupt counter.

VI. FRAMEWORK EVALUATION

In this section, we evaluate our FPGA-based resiliency

analysis infrastructure and compare its performance to an

equivalent software-based implementation. We also perform

an initial examination, using the CrashTest infrastructure, of

the effects of different fault models in design resiliency.

A. Experimental Methodology
Benchmark Designs - For the evaluation of CrashTest

we used three benchmark designs, described everywhere in

Table 2. The chip-multiprocessor (CMP) interconnect router

implements a wormhole router pipelined at the flit level with

credit-based flow control functionality for a two-dimensional

torus network topology [13]. We used SPEC CPU2000 com-

munication traces derived from the TRIPS architecture [18]

to provide application stimuli to the router. The DLX core

is a 32-bit 5-stage in-order single-issue pipeline running

the MIPS-Lite ISA. Finally, the LEON3 is a system-on-

chip including a 32-bit 7-stage pipelined processor running

the SPARC V8 architecture, an on-chip interconnect, basic

peripherals and a memory controller [10]. The LEON3 SoC

is capable of booting an unmodified version of Linux 2.6.

The LEON processor was configured without on-chip caches

and faults were injected only in the core component.

Netlist Fault-Injection Instrumentation - The HDL model

of the design under analysis is synthesized using Synopsys’

Design Compiler and the GTECH standard cell library. The

resulting netlist is a technology-independent GTECH gate-

level netlist. The gate-level netlist is then analyzed by Perl

scripts to locate all possible injection sites in the circuit. Once

the sites and fault types are selected (using a uniform random

distribution for these experiments), a Perl script applies the

required gate-level logic transformations.

Software-Based Analysis Methodology - The software-

based fault simulation and analysis is performed using Syn-

opsys’ VCS logic simulator for the CMP router and the DLX

Benchmark
Name

Logic Gates
(GTECH)

Flip
Flops

Description

CMP Router 16,544 1,705
chip-multiprocessor interconnect router for a
2D mesh network with 32-bit flits

DLX Core 15,015 2,030
5-stage in-order DLX pipeline running
MIPS-Lite ISA

LEON3
System-
on-chip

66,312 6,925

System-on-chip with a 7-stage pipeline 32-bit
processor compliant with the SPARC V8
architecture, an on-chip interconnect, basic
peripherals and a memory controller.

Table 2. Benchmark Designs: Characteristics of the benchmark designs
used to evaluate the CrashTest framework.

Confidence Level = 95% Confidence Interval
Number of Fault

Injections (Sample Size)
CMP Router
(18249 gates)

DLX Core
(17045 gates)

LEON3
(73237 gates)

256 6.08 6.08 6.11
512 4.27 4.27 4.32

1024 2.98 2.96 3.04
2048 2.04 2.03 2.14
4096 1.35 1.33 1.49
8192 0.8 0.78 1.02

Table 3. Statistical Confidence: The Table shows the confidence level of
the results obtained when different number of faults are injected during the
injection campaigns for our benchmark designs.

core. For the simulation of the LEON3 system-on-chip we

used ModelSim, since it required the simulation of both

Verilog and VHDL modules. The fault simulations using

VCS were run on an Intel Core 2 Duo running at 2.13GHz

with 2GB of RAM; while the ModelSim simulations were

run on a P4 at 3.4GHz and 2GB RAM.

FPGA-Based Analysis Methodology - For the FPGA-

based fault emulation and analysis we used the XUP V2P

Development Board [1]. The board is equipped with a Virtex-

2 Pro XC2VP30 FPGA with 13,696 slices (each with two

4-input LUTs and two flip-flops), and two PowerPC 405

processors. At the time of writing, this FPGA represented

a mid-sized device; devices with up to ten times more

resources are currently available. For off-chip memory we

used one 256MB module of DRAM. The main tools used to

map designs in the CrashTest framework are Xilinx Platform

Studioand Synplicity’s Synplify. The FPGA synthesis and

mapping process was ran on a P4 CPU at 3.0Ghz equipped

with 1GB RAM. The synthesis and mapping process for the

LEON3 system took about 45 minutes, while the other two

benchmark designs required significantly less time.

B. Monte Carlo Simulation & Statistical Confidence

Performing gate-level fault injection campaigns in com-

plex designs and observing their impact at the application

level is a computationally intensive process. The propagation

of fault effects from the gate-level up to the application

level requires a simulation of the design under analysis. To

reduce the number of fault injections and make the resiliency

analysis computationally tractable we adopted a Monte Carlo

analysis method. Through Monte Carlo simulation, fault

injection experiments are repeated several times, randomly

changing the fault injection location and time (i.e., the clock

cycle at which fault is enabled). The desired statistical con-

fidence affects the number of repetitions of the experiment.

Table 3 shows the confidence intervals for different num-

bers of fault injection experiments for our three benchmark

designs. These figures were calculated using the statistical

Bench.
Design

Injected
Faults

Slices
(out of 13696)

Slice Flip
Flops

(out of 27392)

4 Input LUTs
(out of 27392)

CMP
Router

0 (baseline) 2968 (21%) 3021 (11%) 3705 (13%)
0 (wrapper) 6679 (48%) 4731 (17%) 10840 (39%)

8 6718 (49%) 4745 (17%) 10781 (39%)
64 6912 (50%) 4857 (17%) 11192 (40%)

128 7161 (52%) 4985 (18%) 11408 (41%)
256 7279 (53%) 5241 (19%) 11425 (41%)
512 7854 (57%) 5753 (21%) 12020 (43%)

1024 8903 (65%) 6778 (24%) 13059 (47%)

DLX
Core

0 (baseline) 2499 (18%) 2520 (9%) 2386 (8%)
0 (wrapper) 6820 (49%) 8202 (29%) 4573 (16%)

1024 9593 (70%) 6700 (24%) 9948 (36%)
LEON3
System-
on-chip

0 (baseline) 10281 (75%) 10178 (37%) 20562 (75%)
0 (wrapper) 11057 (80%) 11103 (40%) 22113 (80%)

1024 11785 (86%) 13146 (47%) 23570 (86%)

Table 4. Fault injection logic overhead: Utilization of the FPGA resources
comparing the baseline (fault-free) designs and the fault injection instru-
mented designs mapped on the FPGA.

sample size equations from [3]. We deemed that for most

applications, a confidence level of 95% and a confidence

interval of 3% are acceptable. From Table 3 we notice that

this degree of statistical confidence can be achieved by just

1024 fault injections for all three benchmark designs.

C. Framework Performance

Fault Injection Logic Overhead - Table 4 shows the

allocated FPGA resources when the baseline (fault-free)

benchmark designs were synthesized and mapped on the

FPGA. When the designs are augmented with the fault

simulation interface wrapper, the utilization of the FPGA

slices is increased from 15% to 31%. As shown in the fourth

and fifth columns of Table 4, not all of the flip-flops and

LUTs in each utilized slice are used. The table also shows

the overhead of the instrumentation logic for designs injected

with different numbers of stuck-at faults. The capability of

injecting several faults into the design is very important since

it significantly accelerates the fault simulation process by

avoiding time-consuming iterations of netlist instrumentation

and FPGA synthesis/mapping.

Fault Simulation/Analysis Speed - Table 5 compares the

speed of a software-based and our FPGA-based fault emu-

lation and analysis engines. For the CMP router design we

noticed that the speed of a software-based scheme varied

for different fault models. This difference stems from the

different logic complexity required to emulate the behavior

of each fault model. On average, for the CMP router the

software-based scheme provides a simulation speed that is

on the order of 10 KHz. We have observed similar results

for the DLX core design (not shown in the table for brevity).

On the other hand, the speed of the FPGA-based scheme

is not affected by the fault injection logic. Therefore, all

fault models are emulated with the same clock frequency

and achieve the same emulation speed. For the CMP router,

the speed of the emulation framework is 220 KHz, leading

to an average speed up of ≈20X for simple fault models and

≈85X for the more complex ones.

The simulation speed achieved by the software-based

scheme when analyzing the LEON3 system-on-chip is much

0

10

20

30

40

50

60

70

80

90

100

�� ��
� ���
��

�� ��
� ���
��

�� ��
� �	

��

 ���
��

� ��
� ��
�� �� ��

�

�� ��
� ���
��

�� ��
� ���
��

�� ��
� �	

��

 ���
��

� ��
� ��
�� �� ��

�

�� � �
� ���
��

�� ��
� ���
��

�� ��
� �	

��

 ���
��

� ��
� ��
�� �� ��

�

�� ��
� ���
��

�� ��
� ���
��

�� ��
� �	

��

 ���
��

� ��
� ��
�� �� ��

�

�� ��
� ���
��

�� ��
� ���
��

�� ��
� �	

��

 ���
��

� ��
� ��
�� �� ��

�

�� ��
� ���
��

�� ��
� ���
��

�� ��
� �	

��

 ���
��

� ��
� ��
�� �� ��

�

�� ��
� ���
��

�� ��
� ���
��

�� ��
� �	

��

 ���
��

� ��
� ��
�� �� ��

�

�� ��
� ���
��

�� ��
� ���
��

�� ��
� �	

��

 ���
��

� ��
� ��
�� �� ��

�

�� ��� ��� �� �� ��� �� � !"# �� ��� ���$ �� %� �� ��� �� &'
(�� ��� �� "� �)� � �� ��� ��)* !& �� ��� ��+� ���, �� ��� �� -!� �� !.

/ 0
1 2
34 2
56
78
94 :
4;
74<
78:
2
56
7=9 8
>2
?@
A

Fig. 6. Design Resiliency vs. Underlying Fault Model: Percentage of injected faults that were exposed for each fault model. Experiments are run on the
CMP router using SPEC2000 traces.

Bench.
Design

Fault
Model

Software-Based Fault
Simulation Speed

FPGA-Based Fault
Simulation Speed

Speed Up

CMP
Router

Stuck-at-0 9.75 KHz

220 KHz

22X
Stuck-at-1 8.09 KHz 27X
Stuck-open 2.42 KHz 90X
Bridge 2.63KHz 83X
Path-delay 11.34 KHz 19X
SEU 13.04 KHz 16X

LEON3
System-
on-chip

Stuck-at-0 28 Hz 25 Mhz ~900 000X

Table 5. Fault simulation speed: Performance comparison of the software-
and FPGA-based fault simulation engines.

lower than the one observed for the other two simpler designs

(i.e., the CMP router and the DLX core). Specifically, the

simulation speed is limited to 28 Hz, due to the much higher

complexity of the full-system LEON3 design. In contrast,

the emulation speed of the LEON3 system on the FPGA-

based scheme is faster than the other two simpler designs.

This is due to how the application stimulus is applied to

different designs by the fault injection manager. Since the

LEON3 full-system design includes a memory controller,

the interaction with the external environment is limited to

memory read/write requests, which are served by the off-chip

DRAM module. Therefore, in the LEON3 analysis there is

very little interaction between the fault injection manager and

the design under analysis in feeding the application stimulus.

On the other hand, when emulating the other two designs, the

fault injection manager must provide input stimuli cycle-by-

cycle in order to drive the emulation, thus limiting the overall

performance. The emulation speed of the LEON3 design is

25 MHz, which leads to a six orders of magnitude speedup,

compared to the software-based scheme.

D. Fault Analysis Evaluation

To evaluate our solution for resiliency analysis, we con-

ducted a study on our CMP router, by exposing it to several

types of fault while running SPEC2000 testbenches.

Fault Effects per Fault Model - The graph in Figure 6

shows the percentage of injected faults that caused a failure,

grouped by fault model. The fault injection experiments were

run on the CMP router stimulated with communication traces

of several SPEC CPU2000 benchmarks and a synthetic high-

traffic communication trace (hi util). We observe that the

effects of the injected faults on the design vary for different

fault models. Specifically, fault models related to permanent

silicon failures (i.e., stuck-at, stuck-open, and bridge) have

more adverse effects on the design, and 70-80% of them

cause errors observable at the primary outputs of the design.

On the other hand, the path delay fault model has less adverse

effects, and on average only 40% of these faults manifest.

Finally, the SEU faults have the least impact on the correct

functionality of the design and on average less than 10% of

them cause an error.
Failure Observation Latency - The graph in Figure 7

shows the average latency of an injected fault to propagate

an error to the primary outputs of the design. The results

shown are for different fault models for the CMP router and

the LEON3 system-on-chip. The failure observation latency

is a very important metric when assessing the resiliency

of a design because it provides insight on whether spe-

cific error detection and recovery techniques can provide

a successful recovery from the fault’s effects. We noticed

that the failure observation latency varies depending on the

fault model. Specifically, we observed that, for the CMP

router, the injected path-delay faults have the highest failure

manifestation latency, while fault models associated with

permanent failure mechanisms usually have similar failure

manifestation latencies. Furthermore, we noticed that the

error manifestation latency for SEU faults is very small.

When this observation is combined with the results of the

previous experiment, we concluded that SEU transient faults

either cause an error in the design immediately after they

occur, or they do not cause an error at all, as would be

expected due to their transient nature.
We also noticed that the measured failure-observation

latencies for the LEON3 system-on-chip are orders of mag-

nitude larger than the ones observed for the CMP router.

This difference stems from the higher complexity of the

LEON3 system-on-chip, which in turn leads to more cycles

1

1,000

1,000,000

1,000,000,000
A

v
er

a
g

e
L

a
te

n
cy

 in

D
et

ec
ti

n
g

 a
 F

a
il

u
re

 (
C

y
cl

es
)

St
uc

k-
at

-0
St

uc
k-

at
-1

St
uc

k-
op

en

B
ri
dg

e
Pa

th
-d

el
ay

SE
U

St
uc

k-
at

-0
St

uc
k-

at
-1

CMP Router LEON3

Fig. 7. Failure Detection Latency: Failure observation latency at the
design’s primary outputs.

required for a fault to propagate to the design’s output

(the output of the running application). To provide more

insights on this aspect, the graph of Figure 8 shows the

cumulative distribution of the injected faults over the failure-

observation latency in clock cycles. Note that more than half

of the injected faults propagate a failure to the application

output almost immediately, but the remaining ones require

billions of cycles for the failure to manifest. This observation

supports the argument that if a fault hits a critical part of the

design, then its effect are immediate. On the other hand, if it

hits a less critical/exercised part of the design, then its effects

are largely delayed.

VII. CONCLUSIONS & FUTURE WORK

In this paper we presented CrashTest, a novel FGPA-

based resiliency analysis framework capable of automati-

cally orchestrating a fault injection and analysis campaign

on the gate-level netlist of the design. To accelerate the

fault injection process, multiple faults are injected into the

design simultaneously by instrumenting the netlist with fault

injection logic through gate-level logic transformations. The

framework supports an extensive collection of fault models

ranging from transient faults to silicon defects, and it can

easily be upgraded with new fault models. We evaluated

our framework on an FPGA-based platform, and found that

hardware emulation can accelerate the fault simulation and

analysis process by 16-90x for simple designs and six orders

of magnitude for a more complex system-on-chip design,

when compared to an equivalent software-based simulator.

The work presented here is the first step toward the

implementation of a widely usable resiliency analysis in-

frastructure on an FPGA-based emulation platform [8]. We

are currently working on porting the existing infrastructure

to the BEE2/RAMP platform [8, 22], thereby making it

widely available to researchers that are migrating to this

platform. The BEE2 platform will enable the analysis of even

more complex designs, and will further improve the fault

simulation speed and analysis quality since more resources

will be available for the fault injection instrumentation logic

and the fault analysis process.

0

10

20

30

40

50

60

70

80

90

100

0 1E+09 2E+09 3E+09 4E+09 5E+09

C
u

m
u

la
ti

v
e

F
a

u
lt

s
In

je
ct

ed
 (

%
)

Failure Detection Latency (Cycles)

Stuck-at-1

Stuck-at-0

Injected faults that did not cause

an error during the simulation

0 1x109 2x109 3x109 4x109 5x109

Fig. 8. Application-level Detection Latency: Latency (in cycles) for a
stuck-at fault to propagate to the application outputs in the LEON3 SoC.

ACKNOWLEDGMENTS

We acknowledge the support of the Gigascale Systems

Research Center (GSRC), National Science Foundation and

Semiconductor Research Corporation.

REFERENCES

[1] Xilinx University Program: Xilinx XUP Virtex-II Pro Development
System. http://www.xilinx.com/univ/xupv2p.html, 2005.

[2] T. M. Austin. DIVA: A reliable substrate for deep submicron
microarchitecture design. In MICRO-32, 1999.

[3] J. E. Bartlett et al. Organizational research: Determining appropriate
sample size in survey research. Information Technology, Learning,
and Performance Journal, 19(1):43–50, 2001.

[4] S. Borkar. Microarchitecture and design challenges for gigascale
integration. In MICRO, Keynote Presentation, 2004.

[5] S. Borkar et al. Design and reliability challenges in nanometer
technologies. In DAC-41, 2004.

[6] F. A. Bower et al. A mechanism for online diagnosis of hard faults
in microprocessors. In MICRO, 2005.

[7] M. L. Bushnell et al. Essentials of Electronic Testing for Digital,
Memory and Mixed-Signal VLSI Circuits. Kluwer Academic Publish-
ers, Boston, 2000.

[8] C. Chang et al. BEE2: A high-end reconfigurable computing system.
IEEE Design & Test of Computers, 22(2), 2005.

[9] P. Civera et al. FPGA-based fault injection techniques for fast
evaluation of fault tolerance in VLSI circuits. Lecture Notes in
Computer Science, 2147, 2001.

[10] J. Gaisler. A portable and fault-tolerant microprocessor based on the
SPARC V8 architecture. In DSN, pages 409–415, 2002.

[11] R. Guo et al. Evaluation of test metrics: Stuck-at, bridge coverage
estimate and gate exhaustive. In VTS, 2006.

[12] G. A. Kanawati et al. FERRARI: A flexible software-based fault and
error injection system. IEEE Trans. Computers, 44(2):248–260, 1995.

[13] Li-Shiuan Peh. Flow Control and Micro-Architectural Mechanisms for
Extending the Performance of Interconnection Networks. PhD thesis,
Stanford, 2001.

[14] C. López-Ongil et al. An autonomous FPGA-based emulation system
for fast fault tolerant evaluation. In FPL, 2005.

[15] C. McNairy and R. Bhatia. Montecito: A dual-core, dual-thread
Itanium processor. IEEE Micro, 25(2):10–20, 2005.

[16] Mei-Chen et al. Fault injection techniques and tools. IEEE Computer,
30(4):75–82, 1997.

[17] G. P. Saggese et al. Microprocessor sensitivity to failures: Control vs
execution and combinational vs sequential logic. In DSN, 2005.

[18] K. Sankaralingam et al. Exploiting ILP, DLP, and TLP using
polymorphism in the TRIPS architecture. In ISCA, 2003.

[19] D. P. Siewiorek and R. S. Swarz. Reliable computer systems: Design
and evaluation, 3rd edition. AK Peters, Ltd, 1998.

[20] J. Srinivasan et al. The impact of technology scaling on lifetime
reliability. In DSN-34, pages 177–186, 2004.

[21] N. J. Wang et al. Characterizing the effects of transient faults on a
high-performance processor pipeline. In DSN, 2004.

[22] J. Wawrzynek et al. RAMP: A research accelerator for multiple
processors. Technical report, Berkeley, 2006.

