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Abstract— Technology mapping aims at searching an opti-
mal implementation for a Boolean netlist using gates from
a technology library. Compared with its ./Z?-complete area
minimization counterpart, DAG mapping for delay minimiza-
tion is considered much sophisticated because matching choices
must be made without knowing actual arrival times and output
loads. Traditional approaches to this problem involve too many
approximate simplifications, and are far from accurate. In
contrast, this paper tackles this problem directly under load-
dependent DAG mapping. The enabling techniques for accu-
rate optimization include on-the-fly load-estimation refinement,
breadth-first backward covering for load consolidation, and use
of a piecewise linear model for accurate timing calculation.
Experimental results show that, compared with the state-of-
the-art mapper, our method averagely reduces circuit delay by
39%, with 11% increase in area, for large benchmark circuits.

I. INTRODUCTION

Technology mapping transforms a technology-independent
Boolean network into a circuit composed of primitive gates
chosen from a technology library. Before technology map-
ping, a Boolean network is often restructured to simplify its
Boolean expressions according to various design constraints,
such as area, timing, power, reliability, etc. Technology
mapping then continues to further optimize the circuit with
respect to a target technology node.

Technology mapping plays a pivotal role in the elec-
tronic design automation (EDA) flow. It bridges technology-
independent logic synthesis and technology-dependent phys-
ical optimization, and is the key to resolving the infamous
design closure problem, see, e.g., [1], [2], [3], [4], [5],
[6] for some recent advances along this line. Accordingly,
effective timing-driven technology mapping may alleviate
the design closure problem and help the convergence of
iterations between logic synthesis and physical design.

The first algorithmic approach to technology mapping
is DAGON [7]. Based on dynamic programming, Keutzer
formulated min-area technology mapping as a tree covering
problem. Rudell went on and showed that min-delay technol-
ogy mapping can be solved in linear time for tree mapping
under a load-independent timing model [8]. He also extended
the algorithm to take into account load effects for delay by
a binning technique. Touati et al. [9] later proposed a more
efficient approach using piecewise linear (PWL) functions to
implicitly consider any load values. They also indicated tree
covering alone tends to find a suboptimal solution because
most circuits are directed acyclic graphs (DAGs), rather
than trees. To handle the multiple-fanout problem, heuristic
algorithms were proposed to reduce the delay incurred by
distributing a signal to multiple destinations. These fanout
optimization techniques were also used during tree covering
to estimate delay at multiple-fanout nodes, which appear only
for tree roots.

In contrast to tree mapping, based on FLOWMAP [10]
Kukimoto et al. showed that min-delay DAG mapping can

be done in polynomial time under the constant delay model
[11]. On the other hand, Stok et al. took advantage of the
load-independence property of the gain-based timing model
and proposed the WAVEFRONT algorithm [12]. It is not until
these efforts that a DAG could be mapped directly without
being partitioned into a set of trees. Although impressive
progress has been made in timing-driven technology map-
ping, to the best of our knowledge the problem has not
been tackled directly for DAGs under load-dependent timing
models. Even though load estimation by counting fanout
numbers was proposed before in [13] and [14], the estimation
is still not accurate enough. Furthermore, other difficulties,
to be discussed, in load-dependent DAG mapping were not
fully addressed.

In this paper, we reexamine the problem of timing-driven
technology mapping for DAGs, and propose solutions to
overcome difficulties risen due to the use of load-dependent
timing models. Compared with prior work, our method
provides a more accurate optimization via the following
improvements:

« the use of PWL functions to the entire DAG, in contrast

to tree roots in [9],

« the use of a more accurate adaptive estimation of fanout

loads, and

« the use of backward covering in a breadth-first order for

early load consolidation.
Thereby, our algorithm can perform technology mapping
on DAGs directly under load-dependent timing models with
more accurate timing optimization than prior methods. We
believe our techniques can also be extended to estimate other
load-dependent metrics, such as power.

This paper is organized as follows. Preliminaries and the
problem definition are given in Section II. Our solutions
to the identified difficulties are detailed in Section III; the
computational complexity is analyzed in Section I'V. Section
V shows experimental results. Finally we conclude this paper
and outline future work in Section VI.

II. PRELIMINARIES AND PROBLEM DEFINITION

A Boolean network is a graph G(V,E) representation of
Boolean equations, where a node or vertex in V is associated
with a single-output completely specified Boolean function,
and a directed edge (u,v) € E, connecting from node u to
node v, signifies the function of node v depends on the output
of node u. Some nodes of V are identified as primary inputs
(PIs) and some as primary outputs (POs), where PIs have
only outgoing edges and POs have only incoming edges. The
Sanins of node v are the nodes {u | (u,v) € E}; the fanouts
of node u are the nodes {v | (u,v) € E}. A node u is a
transitive fanin of node v (likewise a node v is a fransitive
Jfanout of node u) if there is a path from u to v in G.

A Boolean network can be converted into a subject graph
by decomposing the network into a circuit of primitive gates,



often two-input NAND gates and inverters. A technology
library is a collection of pre-designed logic cells, where
each cell function is represented as a circuit of primitive
gates, called a pattern graph. A library provides detail
characteristics of its logic cells. Each pin of a pattern graph is
associated with rise/fall time, input load, maximum allowable
output load, etc., for circuit analysis. A match m at a vertex
v of a subject graph § is an instance of a pattern graph that
is functionally equivalent to some subgraph of S rooted at
v. We associate such a subgraph with a cut ¢, which is a
subset of the vertices in v’s transitive fanin cone such that
every path from PIs to v passes through at least one vertex
in the cut. An input to cut ¢ and to match m is a fanin of
some vertex in ¢. Moreover, the match set of v, denoted M,,
contains all the matches of v. The set of matches functionally
equivalent to the associated subgraph for cut ¢ is denoted as
M.. Note that M. C M, if c¢ is a cut of v.

For timing analysis, a simple, yet effective, load-dependent
timing model is the linear model, where the delay dy (/) of
gate (or pattern graph) g with respect to its input pin p under
output capacitive load / is given by

dS(1) = b8 +1 x f5, (1)

where bf, is the intrinsic gate delay, and f5 is the induced
delay per unit load in driving /. Excluding the second term
on the right-hand side of 1, it reduces to the constant delay
model. These two delay models are popularly used in logic
synthesis tools for delay calculation, e.g., in SIS [15]. These
two models are selected from load-dependent and load-
independent classes for our discussion.

We define the technology mapping problem formally as
follows. Given a subject DAG S, a library L, a load-
dependent timing model, timing-driven technology mapping
for S (without partitioning S into trees) aims at covering each
vertex of S with at least one pattern graph from L such that

« the inputs to a match are the outputs of some other
matches, and

« the circuit delay evaluated by the given timing model is
minimized.

III. BOTTLENECKS AND SOLUTIONS

This section constitutes the heart of this paper. We describe
the state-of-the-art mapper followed by the solutions to the
difficulties risen from the migration of the timing model.

A. Overview of the State-of-the-Art Mapper

Many mapping algorithms were developed under load-
independent timing models for optimality, under the premise
that load is unimportant, so was the state-of-the-art ABC
mapper. Algorithm 1 shows the main ideas of the ABC
mapper with some advanced techniques excluded, such as
supergates and phase assignment, and will be used to illus-
trate our method. This algorithm is based on the work of [11]
and is divided into two phases as usual. In the beginning,
a Boolean network is transformed into a subject graph S.
Then vertices of § are collected into the queue Q, in a
topological order by performing a depth-first search on S in
line 4. Lines 5-15 look for a best match with minimum arrival
time for every vertex of S. Since the vertices are matched
in a topological order, the arrival times at the inputs would
have been computed when a vertex v is under consideration.
Subsequently the arrival time, AT, at vertex v covered
by match m can be determined in line 11 by taking the
maximum among the summations of every input arrival time
and its corresponding pin-to-pin delay of m. The arrival time

Algorithm 1: Tech_ Map(NTK,LIB,MOD)

inputs: NTK is a Boolean network to be mapped;
LIB is a technology library;
MOD is a constant pin-to-pin delay model.
output: A solution with minimum delay.
1 begin
S = (Vs,Es) <« ToSubjectGraph(NTK);
// The matching phase.
while Qy # 0 do
v« POP(Qy);
ATV — oo
forall c is a cut of v do
M, — Match(c,LIB);
forall m € M. do
AT, «— ComputeArrival(m,MOD);
if AT, < AT" then
Set the best match of ¢ to m;
Set the best cut of v to c;
ATY — AT,
// The covering phase.
forall n is a fanin of a PO of S do
18 Covering(n);
19 end
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Algorithm 2: Covering(n) — a depth-first manner.

inputs: n is the node to reference.
output: A set of matches for the solution.
1 begin
if NotVisited(n) then
Mark n as visited;
¢ < the best cut of n;
Add the best match of ¢ to M,
forall i € Inputs(c) do
if i is not a PI then
Covering(i);

0 NN R W N

9 return M
10 end

at v is determined after all matches of v are considered and
the best match is remembered. After the matching phase is
done, the function Covering covers, in a reverse topological
order, an unvisited node with the best match kept in the
matching phase, and then proceeds to cover the inputs of the
match. The process repeats until all PIs are visited, thereby
deriving a mapped network.

Based on dynamic programming, Algorithm 1 always
produces a solution optimal under a load-independent tim-
ing model. However, if loading effects are considered, the
optimality is no longer guaranteed. Below we detail the bot-
tlenecks for timing-driven technology mapping under load-
dependent timing models, and propose solutions to eliminate
them.

B. Difficulties and Solutions

1) Preparing optimal matching candidates: Question.
The matching phase in Algorithm 1 determines a best match
with minimum arrival time for each node. The decision,
however, cannot be made unless the output pattern graphs
are known a priori since the delay of a match depends
on its output capacitive load under a load-dependent timing
model. Unfortunately, load values are unavailable in advance
because the network is traversed in a topological order



Fig. 1. Tllustration of uncertainty of fanin delay.

from PIs to POs. Accordingly the first question is: How fo
determine the best match at a node under unknown output
load?

Answer. Our solution is to defer decision making. Since
different load values result in different best matches and real
output loads are unknown, more than one optimal matching
candidates must be kept for each vertex to take care of
all possible load values. A straightforward idea is to store
the best match for each possible load value at every vertex.
However this approach is redundant and unpractical because
candidates for best matches often repeat and there may be
too many load values to consider. In [9] a better approach
was proposed to take advantage of the linear timing model
and was used in tree covering considering load effects. We
extend this idea to DAG mapping as follows.

We assume the input arrival times are known, even if this
is not true, but will be handled later. Under this assumption,
the arrival time at a vertex v covered by a match m associated
with a cut ¢ can be computed by

vV l m
ATm ViGInn}i)t(s(m) {AT + dp’(l)}

= max
Vielnputs(m)

{@AT' +))+ix fr}, @
where input i connects to m through pin p;. As both AT’ + bl
and f77 are constants, Eq. (2) states that not only the pin-to-
pin gate delay is PWL, but also is the arrival time at node v.
Accordingly, best matching candidates can be computed by
and represented in miny,ep, {A7,,}, which is again PWL.
Every linear segment of miny,ecp, {A7,,} corresponds to a
candidate; all load values under a linear segment share the
same candidate. Thereby an optimal match can be computed
easily by looking it up when a load value is given.

2) Estimating unknown input arrival time: Question. In
addition to the unknown loading problem at gate outputs,
problems occur at gate inputs, too. Since the arrival time
at a node depends on its inputs, apparently it cannot be
determined unless the input arrival times are certain. Un-
fortunately, they cannot be certain because of the unknown
output load. In the literature, such a problem is addressed
for subject graphs with multiple-fanout nodes. Partitioning
a subject graph into trees make each node drive at most
one output pattern graph in the final mapping. To tackle
DAG mapping directly, the at-most-one-output property no
longer holds for every node. As illustrated in Fig. 1, both
arrival times at node n. covered by match m; and at node
ng covered by match m; depend on the arrival time at the
common input ny; neither of them can be computed without
knowing the cover of the other node. This “deadlock” results
in the uncertainty of the arrival time at the input n,. Even
for the single-fanout node n,, the arrival time at n, is still
unknown because a match at this node may drive my, ms, or
both in the final mapped network. So the second question is:
How to estimate input arrival time in DAG mapping?

ny| n,

Q-

J

Fig. 2. The manipulation of the covering queue.
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Answer. Our solution is to predict under partial informa-
tion. Computing arrival times in the matching phase requires
output loads to be known, which is not possible until the
covering phase. Also the covering phase needs to know
the delay information produced in the matching phase. The
cyclic dependency of this chicken-and-egg problem must be
broken somehow.

We propose a look-ahead strategy, using the DynamicEx-
pectedLoad as defined below, such that input arrival times
can be estimated and determined independently.

DEFINITION 1. A potential fanout of a vertex v in a
subject graph is a match m' at another vertex V' in v’s
transitive fanout cone such that v € Inputs(m’).

For example, in Fig. 1, m3 and m; are potential fanouts of
node n,.

DEFINITION 2. A potential load of v is a load incurred

by one of its potential fanouts.
Let v be a vertex whose arrival time is to be determined and
let match m; € M; be a potential fanout of v. The arrival time
at v required by the vertex v in its transitive fanout cone can
be calculated by

DynamicExpectedLoad(v,m;) = PotentialLoad (v, mg)+

Z PotentialLoad(v,m,;) Xx —— (3)
wev’ va/ EMV/ |MV/ |
where V' is the collection of all the nodes in v’s transitive
fanout cone except v. By substituting this value for [ in Eq.
(2), the arrival time at v is obtained.

This strategy has several features: First, given a match
my of v, Eq. (3) assumes that my; happens to be the match
of v selected in the final covering. Hence this assumption
excludes other matches of v from being selected in the final
covering and from contributing to the potential load of v.
On the other hand, since the matches of v € V' can possibly
contribute to v’s potential load, their averaged potential loads
are taken into account. Thereby, Eq. (3) dynamically com-
putes potential loads with respect to different ¥’s, and even
different m;’s. Second, the computation explores in advance
the unmapped part of the subject graph in v’s transitive fanout
cone. Moreover, only matches that may possibly contribute
to v’s output load are considered. It disregards the matches
that are not potential fanouts. Third, although theoretically
there can be too many potential fanouts to consider for a
node v, especially for v close to PIs or having many fanouts,
the cut generator, which identifies cuts for every node in the
subject graph, tends to make our strategy practical since a cut
is often limited to some small input size or depth. Note that
only one forward traversal on the subject graph is needed in
this strategy. Whenever a cut is identified and matched, the
potential loads are remembered for the inputs of the match.

As will be seen in Table I, empirical results suggest our
estimation technique is superior to prior approaches [13]
[14].

3) Covering subject graph: Question. The remaining
problem is about the covering phase. Note that Algorithm
2 finds an optimal cover in a depth-first manner from POs to
PIs. By depth-first search, when a node is visited, probably
not all of its output matches to drive are clear yet. By
line 2, if a node has been covered as a root of a pattern



graph, it will never be covered as a root again. So upon
visiting a vertex, a match rooted at it must be decided even
under partial information only. Although this procedure is
okay for a load-independent timing model, it may result in
a suboptimal solution under a load-dependent model. The
third question is: How to rectify the partial load information
under depth-first based covering?

Answer. Our solution is instead to use breadth-first cov-
ering as shown in Algorithm 3.

Algorithm 3: Covering2(S) — a breadth-first manner.

inputs: S := (Vs,Ey) is the subject graph.
output: A set of matches for the solution.
1 begin

2 GetReverseTopologicalOrderAttribute(S);

3 On — 0;

4 forall n is a fanin of a PO of S do

5 InsertByReverseTopologicalOrder(Qy,n);
6 while O, # 0 do

7 n <« POP(Qy);

8 ¢ < the best cut of n;

9 Add the best match of ¢ to M;

10 forall i € Inputs(c) do

11 if i is not a PI then

12 InsertByReverseTopologicalOrder(Qy,i);
13 return M

14 end

Algorithm Covering2 starts to find a solution by first
computing the reverse topological-order attribute of each
node of S in line 2 by traversing S from POs to PIs. Lines
4-5 then collect all the fanins of POs. Q, here is a queue that
stores all the nodes waiting to be covered. Each activation
of InsertByReverseTopologicalOrder inserts an entry, if not
in Q,, into Q, by comparing the attribute of the entry with
those of the elements already in Q,. Every element in Q,
always takes priority over elements inserted afterwards. For
example, let nodes ny and n, in Fig. 1 connect to POs and
the best match at n, be m3. Then line 5th will collect these
two nodes into Qy; the content of Q, is shown in Fig. 2. If
now n, is popped out to be mapped, by line 12 n, and n,
then will be inserted into the queue behind n,.

The covering procedure maintains two properties: First,
only nodes that will appear in the final mapped network are
put in Q,. Second, whenever an element is popped out from
0y, its output load has been consolidated. The former ensures
the correctness of the final solution; the latter ensures the
readiness of complete load information during covering.

Practical experience suggests that breadth-first covering
is superior to depth-first one. Experiments show that, with-
out using breadth-first covering, circuit delay can increase
13.24% on average and up to about 2 times.

With our solutions to the difficulties, timing-driven DAG
mapping under a load-dependent timing model can be solved
with more accurate timing information, thus achieving better
optimization.

IV. COMPLEXITY ANALYSIS

In our actual implementation, there are three main traver-
sals on the subject graph. The first (forward) traversal collects
all possible matches at each node. For a match, its induced
output loads at its fanin nodes are recorded for later delay
calculation. The computation is of complexity O(npk), where
n is the number of nodes in the subject graph, p the number
of pattern graphs in the library, and k the maximal number of

inputs among pattern graphs.! The second (forward) traversal
computes arrival times using the potential loads obtained in
the first traversal, and filters out non-optimal matches at each
node. The arrival time at an input of a match is computed
by looking up delay values in its corresponding PWL table.
With binary search, there are at most O(log p) look-ups [9].
Then the arrival time, a PWL function, at the output of a
match is computed by taking the piecewise minimum among
its pin-to-pin delay functions added with their corresponding
input arrival times. For each node, only optimal matches are
kept. The complexity is bounded by O(nkplog p). The third
(backward) traversal in the covering phase is of complexity
O(n). Hence the overall complexity is O(nkplogp) = O(n)
because p and k are constants.

V. EXPERIMENTAL EVALUATION AND ANALYSIS

We implemented our method within ABC [16]. Exper-
iments were conducted on a Linux machine with Xeon
3.2GHz CPU and 5Gb RAM. Large circuits from ISCAS89,
IWLS93, and ITC99 benchmark suits are collected for eval-
uation. Target library MCNC.GENLIB [15] is used. Boolean
matching was applied to identify matches. All mapped net-
works were verified by equivalence checking.

Table I compares our method with the state-of-the-art
mapper in ABC. Columns 1-2 list the circuits and their sizes
in terms of AIG nodes. The mapping results of ABC for
delay minimization (the flow of Algorithm 1) are shown in
Columns 3-4. With further area recovery in ABC [17], where
matches for timing non-critical nodes are replaced by slower
but smaller gates, the results are shown in Columns 5-6. Our
results are listed in Columns 7-9.

As can be seen in the bottom three rows of Table I which
show average ratios that our method, compared with ABC-
Delay, averagely reduces circuit delay by 39%, under 11%
increase in area. Circuit b14 is the only exception, where
our method yields 1% increase in delay.” In fact, some of the
delay improvements are substantial. Taking circuit s35932
for example, we achieve 91% delay improvement subject
to only 2% area increase shown in Table I. Such substantial
improvements can be explained in Table II, where the fanout
numbers of nodes were profiled for the mapped circuits of
$35932 and s38584. For s35932, there are three high-
fanout nodes produced by ABC-Delay whereas our mapper
produced gates with no more than three fanouts. An analysis
shows that the gate delay, 176.4, of the 585-fanout node
dominates the circuit delay, 178. Such high-fanout nodes
are unfavorable. A similar scenario happens to s38584. As
discussed in Section III.B.3, our method tends to avoid such
problems and is better in general since load effects have been
taken care of directly during the mapping phase.

In addition, to see how well our output-load estimation
works, prior estimation techniques FanAvg and SgrtFanAvg
[13], which estimate the output load of a node by multiplying
the average load of the library with its fanout number and
with the square root of its fanout number, respectively, were
applied in our framework for comparison. The results are
listed in Columns 10-13 of Table I. With our estimation
technique, technology mapping yields better results, aver-
agely by 29% and 30% decreasing in delay over FanAvg and
SqrtFanAvg, respectively. FanAvg and SqrtFanAvg are likely
to under-estimate output loads since the actual number of

I The standard complexity for Boolean matching is excluded.

’In our experiment, only 7 out of 99 circuits are not improved by
our method, and most of them are small circuits not listed due to space
limitation.



TABLE I
COMPARISON OF DIFFERENT MAPPING APPROACHES.

output pattern graphs in a mapped network is often larger
than the number of fanouts in the subject graph.

The last three columns of Table I show the results obtained
using the fanout prediction method of [14], which was
proposed under the nominal delay model. We evaluated the
delay of the resultant mappings in terms of both linear
and nominal delays. In comparison, the mapping with our
prediction technique yields more than 37% delay reduction
on average under both linear and nominal delay models.

Another interesting observation from Table I is that the
area recovery of ABC-Default improves ABC-Delay not only
in terms of area, but also in terms of delay. Supposedly circuit
delay should remain the same, indeed under the constant
delay model. Here however we analyzed timing in a more
accurate load-dependent model. An investigation suggestes
that the delay reduction is resulted from the replacements
happening in non-critical regions. As a by-product, gates
drive less loads after area recovery and behave faster.

In addition to showing the solution quality evaluated by the
linear delay model, we also studied the circuit performance
based on the constant delay model. Fig. 3 compares the
difference. The column chart has y-axis indices on the left-
hand side indicating the delay of the solutions derived by the
ABC mapper and by our method, estimated by the constant
(denoted superscripted C) and the linear (superscripted L)
delay models. The line chart with y-axis indices on the
right-hand side shows a series of ratios. By comparing ABC-
Delay® and Ours®, we see that the ABC mapper always
outperforms our method under the constant delay model. But
under the linear delay model, however, situation is reversed.
This phenomenon suggests that the constant delay model
is not reliable for delay prediction since load effects are
ignored. The small values of ABC-Delay“/*, 0.23 on average,
indicates that the delay estimated by the constant delay model
is not representative. A win of the ABC mapper under the
constant delay model is often a loss under the linear delay

ABC-Delay ABC-Default Ours FanAvg[13] SqrtFanAvg[13] [14]
circuit #node || linear area linear area linear | nominal area linear [ area linear [ area linear [ nominal [ area
apex2 3191 169.3 | 9150.0 64.3 | 8006.0 | 82.8 419 | 11575.0 | 81.6 | 10028.0 | 80.9 | 9774.0 | 81.6 459 | 9148.0
bl4 9821 133.1 | 17091.0 || 107.3 | 10531.0 | 134.6 89.2 | 18222.0 | 137.0 | 16274.0 | 135.3 | 16669.0 | 170.5 86.7 | 16310.0
bl5 8437 189.2 | 23253.0 || 131.0 | 14948.0 | 172.3 102.7 | 24974.0 | 189.6 | 21881.0 | 190.6 | 22817.0 | 209.8 91.9 | 23034.0
bl7 30874 || 254.6 | 71437.5 || 179.7 | 47149.5 | 181.0 114.9 | 78389.5 | 215.8 | 69491.5 | 204.9 | 72296.5 | 271.9 114.1 | 71800.5
b20 19704 || 193.3 | 34056.0 || 135.6 | 21372.0 | 148.1 97.2 | 36970.0 | 156.9 | 32727.0 | 173.0 | 32903.0 | 176.3 93.7 | 32833.0
b21 20049 || 190.3 | 34878.0 || 129.6 | 21758.0 | 149.6 98.7 | 37175.0 | 159.8 | 33359.0 | 153.8 | 33885.0 | 177.2 93.4 | 33435.0
b22 29184 || 224.5 | 53031.0 || 171.8 | 32485.0 | 155.7 103.6 | 56121.0 | 213.8 | 50641.0 | 161.8 | 51769.0 | 213.8 112.3 | 50420.0
C5315 3211 59.4 | 38755 57.0 | 29455 | 49.6 39.9 | 4520.5| 614 | 4159.5| 61.1 | 4162.5| 614 39.2 | 4090.5
C6288 4832 154.7 | 8383.0 || 149.8 | 4666.0 | 127.5 102.8 | 8545.0 | 137.0 | 8835.0 | 128.9 | 8697.0 | 145.9 104.2 | 8935.0
C7552 3512 72.6 | 5171.0 783 | 3779.0 | 43.7 348 | 6028.0 | 74.0| 5306.0 | 72.7| 5577.0 | 99.4 404 | 5485.0
clma 25124 || 431.4 | 63622.0 || 327.4 | 38964.0 | 129.3 91.1 | 58907.0 | 395.9 | 59984.0 | 446.4 | 66379.0 | 395.9 162.4 | 52818.0
dsip 3429 279.5 | 6721.0 || 256.9 | 5141.0 | 104.5 59.7 | 6967.0 | 277.1 | 6744.0 | 277.4 | 6739.0 | 279.0 99.9 | 6510.0
misex3 3652 2149 | 9637.0 || 191.8 | 8747.0 | 195.2 70.4 | 13962.0 | 219.0 | 12276.0 | 231.7 | 10148.0 | 219.0 87.2 | 9733.0
s13207 7951 160.7 | 6269.5 || 108.0 | 5070.5 | 67.4 49.0 | 6710.5| 64.7| 61445 | 88.1 | 61455 | 101.0 56.8 | 6167.5
s15850 9772 99.9 | 8384.0 98.5 | 6288.0 | 85.6 58.1 | 8890.0 | 134.2 | 7967.0 | 99.1 | 8295.0 | 134.2 59.5 | 8290.0
$35932 | 16065 || 178.0 | 22019.0 || 348.1 | 18181.0 | 154 13.5 | 22535.0 | 178.0 | 21443.0 | 178.0 | 21603.0 | 178.0 55.3 | 20771.0
s38417 | 22655 52.8 | 20850.0 56.3 | 16292.0 | 39.1 29.4 | 24283.0 | 57.4 | 21452.0 | 54.2 | 22027.0 | 58.2 29.4 | 21913.0
$38584 | 19253 || 443.8 | 26921.0 || 417.8 | 21441.0 | 71.7 47.2 | 30775.0 | 416.8 | 26838.0 | 420.4 | 27314.0 | 473.6 142.0 | 27156.0
s38584.1 | 18580 || 449.8 | 27479.0 || 413.2 | 21570.0 | 60.9 42.7 | 30526.0 | 101.5 | 28613.0 | 436.9 | 27585.0 | 180.7 141.9 | 27730.0
Avg_linear_ratio 1.00 0.89 0.61 0.89 0.90 0.98
Avg_nominal _ratio 0.63 1.00
Avg_area._ratio 1.00 0.72 1.11 1.01 0.90 0.99
TABLE 11

COMPARISON OF FANOUT NUMBERS AFTER TECHNOLOGY MAPPING.

535932 $38584
ABC-Delay [ Ours ABC-Delay | Ours
#fanout #node #fanout #node

001 6540 | 6505 || 001-033 11020 | 12212
002 736 | 1185 || 034-066 4 3
003 0 64 || 067-100 1 2
208 1 0 144 1 0
432 1 0 177 0 1
585 1 0 1467 1 0

model. On the other hand, the values of Ours¢/L, 0.46 on
average, reveal that our method is less misled by the constant
delay model than ABC-Delay. Furthermore, the similarity
between the trends of the line for ABC-Delay“/" /OursC/t
and the line for Ourst /ABC-Delay" indicates that

o the larger OursC/L is than ABC-Delay“/", the more our
method outperforms the ABC mapper;

o the ABC mapper does not outperform ours much un-
der the constant delay model since a small value of
Ours® /ABC-Delay® is implied’;

« the high correlation of these two lines suggests poten-
tial room for circuit delay reduction and justifies our
method.

Table III compares the run time between ABC-Delay and
our method. Ten representative circuits were selected for
comparison. The results unsurprisingly show that our method
runs much slower than the ABC mapper. This slowdown is
due to the more elaborate computation. Nevertheless, our run
time is still reasonable even for the largest circuits.

3Note the ABC mapper guarantees optimality if the solution is evaluated
by the constant delay model. Therefore our method also achieve nearly
optimal results under the constant delay model.
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TABLE III
COMPARISON OF RUN TIME.
ABC-Delay Ours
(sec.) (sec.)
circuit || phasel [ phases2 [ total | phasel [ phases2 [ total

apex2 0.02 0.02 0.04 | 245 0.13 2.58
bl4 0.03 0.03 0.06 1.83 0.12 1.95
b20 0.07 0.08 0.15 3.47 0.45 3.92
C6288 0.02 0.02 0.04 | 0.52 0.01 0.53
C7552 0.01 0.01 0.02 | 0.46 0.01 0.47
clma 0.1 0.12 0.22 | 34.78 0.93 | 35.71
dsip 0.01 0.01 0.02 1.12 0.08 1.2

misex3 0.03 0.03 0.06 | 5.76 0.21 5.97
s15850 0.01 0.01 0.02 | 0.71 0.05 0.76
s38417 0.04 0.05 0.09] 223 0.32 2.55

VI. CONCLUSIONS AND FUTURE WORK

We proposed a dynamic accuracy-refinement approach to
timing-driven technology mapping. In particular, applied are
timing calculation with a load-dependent timing model, on-
the-fly load estimation refinement, and load consolidation
with breadth-first backward covering. Thereby we can per-
form DAG mapping directly under a load-dependent timing
model. Experimental results showed that, compared with the
state-of-the-art mapper, our method averagely reduces circuit
delay by by 39%, with a modest 11% increase in area, for
large benchmark circuits.

Future work includes identifying timing non-critical re-
gions for area recovery, and extending our methods for
different optimization objectives and constraints.
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