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Abstract—

Reducing a program’s instruction count can improve cache
behavior and bandwidth utilization, lower power consumption,
and increase overall performance. Nonetheless, code density is
an often overlooked feature in studying processor architectures.
We hand-optimize an assembly language embedded benchmark
for size on 21 different instruction set architectures, finding up
to a factor of three difference in code sizes from ISA alone.
We find that the architectural features that contribute most
heavily to code density are instruction length, number of regis-
ters, availability of a zero register, bit-width, hardware divide
units, number of instruction operands, and the availability of
unaligned loads and stores.

We extend our results to investigate operating system, com-
piler, and system library effects on code density. We find that
the executable starting address, executable format, and system
call interface all affect program size. While ISA effects are
important, the efficiency of the entire system stack must be
taken into account when developing a new dense instruction
set architecture.

I. BENEFITS OF CODE DENSITY

Dense code yields many benefits. The L1 instruction cache

can hold more instructions, which usually results in fewer

cache misses [1]. Less bandwidth is required to fetch instruc-

tions from memory and disk [2], and less storage is needed

to hold program images. With fewer instructions, more data

fits in a combined L2 cache. Also, on modern multi-threaded

processors, multiple threads share limited L1 cache space,

so having fewer instructions can be advantageous. Denser

code causes fewer TLB misses, since the code requires fewer

virtual memory pages. Modern Intel processors, for instance,

can execute compact loops entirely from the instruction

buffer, removing the need for L1 I-cache accesses. Finally,

the ability to consistently generate denser code can conserve

power, since it enables smaller microarchitectural structures

and uses less bandwidth [3], [4], [5], [6], [7].

Obviously, these benefits can come at a cost. For example,

a denser ISA might require larger (and thus slower) pipeline

decode stages, more complicated compilers, smaller logical

register set sizes (due to limitations in the number of bits

available in instructions), or even slower and more complex

functional units. Compilers tend to optimize for performance,

not size (even though the two are inextricably related):

obtaining optimal code density often requires hand-tuned

assembly language, which represents yet another tradeoff in

terms of programmer time and maintainability. The current

push for using CISC chips in the embedded market [8] forces

a re-evaluation of existing ISAs.
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Fig. 1. Sample output from the linux logo benchmark

II. METHODOLOGY

Investigations of code density often use microbenchmarks

(which tend to be short and not representative of actual

workloads) or else industry standard benchmarks (which

are written in high-level languages and thus are limited by

compiler code generation capabilities). As a compromise, we

take an actual system utility, but convert it into pure assembly

language in order to directly interact with the underlying

ISA. We hand-optimize it for size, attempting to create

the smallest binary possible, even if this potentially creates

slower code. The program we choose, linux logo [9],

is a utility available with many Linux distributions. When

given a sufficiently large input set, its characteristics are

similar to the stringsearch benchmark included with the

MiBench [10] suite. The program executes various syscalls to

gather system information, then displays this info along with

a colorful ASCII penguin (Figure 1 shows sample output).

The stock linux logo program contains a multitude of

features and command line options; we remove all but the

minimum for simplicity. Remaining code is divided into two

parts: the first decodes and displays the text logo, which

is packed using LZSS compression [11], [12]; the second

prints system information, which is gathered by reading

the Linux /proc/cpuinfo file, in addition to invoking

the uname() and sysinfo() syscalls. Major subroutines

include string copying, string searching, integer to ASCII

conversion, and centering routines. The code makes system

calls directly to avoid C library overheads. Code is assembled

with the GNU assembler and is linked with GNU ld. Exe-

cutables are stripped of non-essential data using the sstrip

“super strip” program [13], an enhanced version of the UNIX

strip command. Executables are tested on actual hardware or

under an emulator where hardware is unavailable.

We attempt to optimize each architecture’s code to the

minimum possible size without corrupting correct results.

978-1-4244-5028-2/09/$25.00 ©2009 IEEE 459



TABLE I

SUMMARY OF INVESTIGATED ARCHITECTURES

Type arch endian⋆ bits
instr len op GP int unaligned auto-inc hw stat branch predi-

(bytes) args regs ld/st address div flags delay cation

VLIW IA64 little 64 16/3† 3 127,zero no yes no yes no yes

RISC

Alpha little 64 4 3 31, zero no no no no no no
ARM little 32 4 3 15,PC no yes no yes no yes
m88k big 32 4 3 31,zero no no Q only no optional no

MicroBlaze big 32 4 3 31,zero no no Q only⋆⋆ no optional no
MIPS big 32/64 4 3 31,hi/lo,zero yes⋆⋆ no yes no yes no

PA-RISC big 32/64 4 3 31,zero no no part no yes no
PPC big 32/64 4 3 32 yes yes Q only yes no no

SPARC big 32/64 4 3 63-527,zero‡ no no Q only yes yes no

CISC

m68k big 32 2-22 2 16 yes yes yes yes no no
s390 big 32/64 2-6 2 16 yes no yes yes no no
VAX big 32 1-54 3 16 yes yes yes yes no no
x86 little 32 1-15 2 8 yes yes yes yes no no

x86 64 little 32/64 1-15 2 16 yes yes yes yes no no

Embedded

AVR32 big 32 2 2 15,PC yes yes yes yes no no
CRISv32 little 32 2-6 2 16,zero,special yes yes part yes yes no

SH3 little 32 2 2 16,MAC no yes part yes yes no
THUMB little 32 2 2 8/15,PC no yes no yes no no

8/16-bit

6502 little 8 1-3 1 3 yes no no yes no no
PDP-11 little 16 2-6 2 6,sp,pc no yes yes⋆⋆ yes no no

z80 little 8 1-4 2 18 no lim no yes no no
⋆ on the machine we used † 16-byte bundle has 3 instructions ‡ register windows, only 32 visible ⋆⋆ many implementations

For RISC architectures with fixed-length instructions this

is easier: typically, there is only one way to express an

operation, so there are limitations to clever implementations.

Optimizations are limited to trying to load 32-bit constants

in a small area, using registers instead of memory, and using

tail merging to shorten procedure lengths. CISC architectures

provide many more opportunities to decrease code size, but it

is much more difficult to track optimizations due to variable-

length instructions. Optimizing for density requires frequent

disassembler checks to verify sizes of individual instructions.

Interestingly, we find that the “do-everything” super-CISC

instructions available on these systems can often be imple-

mented with a smaller set of simpler CISC instructions.

III. ARCHITECTURAL NOTES

Table I lists relevant features of the architectures of

interest. We present a broad overview of these architectures.

VLIW: Very Long Instruction Word (VLIW) architectures

are designed to take advantage of parallelism in code. If the

code is not inherently parallel (and ours is not), code density

suffers, and many operations are wasted as nops. Writing

compact VLIW code can be hard: resolving dependences

correctly is a difficult task for compilers, and an even more

difficult task for programmers writing assembly by hand.

VLIW can be designed with code density in mind: e.g.,

the WM [14] architecture could exploit two operations per

instruction in over two-thirds of all cases. The only VLIW

architecture we investigate is Intel’s IA64 [15].

RISC: Reduced Instruction Set Computers (RISC) empha-

size simple architectures with easy to decode instructions.

Instruction length is fixed at four bytes, which necessitates

inefficiency in instruction encoding. These are load-store

architectures, which require moving memory values into

registers before operating on them (this negatively impacts

code density). Some of these architectures stretch the def-

inition of “reduced”; the PowerPC architecture has nine

different add instructions, and has the rlwimi (rotate left

word immediate then mask insert) instruction, which takes

five parameters. We investigate the Alpha [16], ARM [17],

m88k [18], MicroBlaze [19], MIPS [20], PA-RISC [21],

PowerPC [22], and SPARC [23] ISAs.

CISC: Complex Instruction Set Computers (CISC) tend

to have high code density. Most CISC architectures have

variable-sized instructions, which makes processor decode

more complicated, but allows for dense code. An example

of a dense “complex” instruction is the x86 one-byte lodsb

instruction, which both loads a byte from memory and incre-

ments a pointer. Another impressively complex instruction is

the VAX matchc, which does a full “find substring x inside

of string y in memory.” Compilers often have difficulty using

these instructions appropriately, so this potential for density

can be wasted. Also, these instructions may not be shorter

or faster than a set of simpler instructions performing the

same operations. We investigate the m68k [24], s390 [25],

VAX [26], x86 [27], and AMD64 [28] ISAs.

Embedded: Modern advances in CPU design have pushed

the limits of what qualifies as “embedded”. We use the term

to refer to any architecture with a fixed two-byte instruction

length, but capable of running a modern 32-bit Linux kernel.

These processors tend to have consistently small code sizes,

but can still be beaten by variable-instruction length CISC

systems. We investigate the AVR32 [29], CRISv32 [30],

SH3 [31], and ARM THUMB [17] ISAs.

8 and 16 bit: For comparison purposes we investigate

older processors with smaller word sizes. Such CPUs are

still used for embedded systems, and they are designed for

use where code density is a much more critical concern. We

investigate the 6502 [32], PDP-11 [33], and z80 [34] ISAs.
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TABLE II

CORRELATIONS OF ARCHITECTURAL FEATURES TO BINARY SIZE

Correlation
Architectural Parameter

Coefficient

0.9381 Minimum possible instruction length
0.9116 Number of integer registers
0.7823 Virtual address of first instruction
0.6607 Architecture has a zero register
0.6159 Bit-width
0.4982 Number of operands in each instruction
0.3129 Year the architecture was introduced

-0.0021 Branch delay slot
-0.0809 Machine is big-endian
-0.2121 Auto-incrementing addressing scheme
-0.2521 Hardware status flags (zero/overflow/etc.)
-0.3653 Unaligned load/store available
-0.3854 Hardware divide in ALU

IV. CODE DENSITY FINDINGS

Table II shows how architectural features contribute to

code size. A positive correlation means that high values

of the feature increase code size; a negative correlation

means that high values decrease code size. Figure 2 shows

total binary sizes across the investigated architectures and

Figures 3, 4, 5, and 6 show code sizes of various components.

We detail causes of these trends below.

Minimum instruction length: Short instruction encodings

help most with respect to reducing density. Architectures

with variable-length instructions, especially those with useful

single-byte instructions (like x86 and VAX), can accomplish

much work with little code. Fixed-length ISAs can be

dense if all instructions are 16-bit (like AVR32 and SH3);

RISCs with fixed 32-bit instructions generate less dense

code; and the VLIW generates the least dense code of all

platforms studied. Figure 3’s LZSS decompression clearly

demonstrates this.

Number of integer registers: Having fewer registers

reduces the number of bits needed to encode instructions,

increasing code density. There is a tradeoff, in that having

fewer registers generates more loads/stores from spilling in

load-store architectures.

Virtual address of first instruction: Operating system

design decisions affect code density. If the virtual address

space is configured so programs start near the bottom of

virtual memory, then a 16-bit constant is enough to point

to a small program’s entire memory. Constant 32-bit pointer

loads are at least double the size of 16-bit loads on most

architectures, and 64-bit pointer loads are even more waste-

ful. Using small system call numbers can help, too; avoiding

large immediate constants saves space in executables.

Existence of a zero register: Zero registers are normally

found in RISC architectures, so they tend to correlate with

less dense code. A zero register can be simulated using one

load instruction and sacrificing a register, so the feature offers

few benefits with regards to code density.

Bit width: Having a narrower bit-width leads to denser

code, mainly due to shorter immediate values for pointer

loads and branch offsets.

Number of operations in instruction: Operation count

directly affects the size of instruction encoding.

Year of introduction: Somewhat surprisingly, age does

not correlate highly with code density. This is due to the

many embedded architectures introduced recently.

Branch delay slots: Branch delay slots can decrease code

density due to added nops. For our benchmark, slots can

often be filled, so branch delay slots cause no problem.

Endianess: Endianess has little impact on code density

unless the program operates on data in a non-native format.

Status flags: Upon completion of ALU operations, these

flags (or condition codes) are set as side effects to indicate

that the result was zero, negative, an overflow, etc. These

flags can lead to denser code by eliminating the need for

comparison instructions before conditional branches. Most

RISC designs avoid status flags, as they add complexity and

ordering dependencies to out-of-order processors.

Auto-increment addressing: Auto-increment addressing

modes allow accessing consecutive memory addresses with-

out requiring separate increment instructions. This is espe-

cially useful for accessing arrays, of which C strings are

a subset. String copying and concatenation, as in Figure 4,

benefit from these instructions.

Unaligned memory access: Allowing unaligned loads

and stores leads to smaller code, especially for string ma-

nipulation. Unaligned 16 and 32 bit loads permit arbitrary

simultaneous access to consecutive bytes in memory. If

alignment is enforced, achieving the same results requires

a series of memory, shift, and logical operations. Results in

Figure 5 demonstrate benefits of this feature.

Hardware division: A hardware divide instruction is often

slower than using the equivalent multiply by the recipro-

cal [35] or lookup table-based division routines, but it almost

always takes fewer bytes in the instruction stream. Some

architectures only implement single-bit division routines that

require software pipelining; this can lead to less space-

efficient code than otherwise undesirable algorithms such as

iterative subtraction. Integer printing code benefits greatly

from hardware divide, as in Figure 6.

V. DENSITY OF COMPILER-GENERATED BINARIES

Hand-optimizing large programs in assembly language is

impractical under most circumstances. We therefore evaluate

compact code generation using more traditional methods. We

choose to experiment with the x86 architecture due to its

popularity and high code density.

We use a variety of C compilers and libraries to determine

how small an executable we can generate using off-the-

shelf tools. We use the GNU gcc 4.2 compiler (gcc 4.1 for

uClibc runs), the Intel C compiler version 9.1.038, and the

SunStudio 12 compiler, all under Linux. We use GNU libc

2.7 and the embedded uClibc 0.9.27.

We experiment with different compiler optimizations. In

general, we use -O3; this usually optimizes for maximum
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Fig. 3. Size of LZSS decompression code
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Fig. 4. Size of string concatenation code (machines with auto-increment addressing modes and dedicated string instructions perform better)
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Fig. 5. Size of string searching code (unaligned load instructions help, since four bytes at arbitrary offsets can be compared at once. CISC architectures
as well as avr32 and MIPS benefit)
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performance. We also evaluate -Os, which optimizes for

size. In practice, resulting executables are very similar. The

primary differences are lack of loop unrolling, use of the

hardware divide instruction instead of the faster multiply

by reciprocal method, lack of function inlining, and less

aggressive padding of function entry points.

Figure 7 shows that executable sizes vary by many orders

of magnitude. This is because statically linked programs

contain the entire C library, which represents an overhead

of at least 450KB (when using glibc).

By writing code that avoids the C library (and using

system calls directly), we obtain executables only twice as

large as hand-optimized codes. The remaining reasons for

larger code are:

• setting up the stack frame pointer at function entry

— this can be turned off with the compiler option

---fomit-frame-pointer;
• writing back to memory using 32-bit constants — due

to pointer aliasing issues the compiler must frequently

write values to memory using 5-byte instructions. The

optimized assembler avoids aliasing and places more

values in registers;
• loading of constants inefficiently — there are various

slow (but smaller) ways to load small constants on x86;

and
• avoiding string instructions — the compiler simply does

not use the x86 specialized string instructions.

VI. RELATED WORK

Most code density research addresses the compressibility

of instruction code [36], [37], [38], [39], [40], [41],

[42], [4], [43], [44], [45]. Usually what is compressed is

compiler-generated RISC or VLIW code, with compression

ratios typically in the 50-70% range. We show here that

embedded and CISC ISAs yield smaller binaries than RISC.

Adding compression to a RISC architecture likely negates the

speed benefits and decoder simplicity that initially motivated

the move away from CISC.

Previous work compares multiple architectures, but our

work is unique in the number (21) considered. Kozuch and

Wolfe [46] measure entropy and compressibility of six differ-

ent architectures (VAX, MIPS, SPARC, m68k, RS6000 and

PowerPC). Hasegawa et al. [3] compare SH3 code density

to that of code generated by gcc on 10 other platforms

(m68k, IA32, i960, Sparclite, SPARC, MIPS, AMD29k,

m88k, Alpha, and RS6000). They find results roughly similar

to ours, though they find the SH3 architecture generates

smaller code than the x86 and m68k by a small margin.

Flynn, Mitchell, and Mulder [47] compare code density of

synthetic architectures that do not model actual systems.

Phelan [48] investigates features added to Thumb-2 to

increase code density. Thumb-2 uses specialized instruc-

tions for enhanced constant support, limited predication, and

compare-against-zero. These are similar features to those we

find useful for density in Section IV. Halambi et al. [49]

investigate the benefits of using a reduced Instruction Set

Architecture (rISA), such as THUMB and MIPS-16. They

test hypothetical architectures, finding that a hybrid approach

unlike any current reduced architecture should perform best.

Massalin’s Superoptimizer [50] cleverly generates ex-

tremely dense (and non-intuitive) m68k and IA32 code by

exhaustive search, but it only operates on small blocks of

code (i.e., it’s a highly tuned peephole optimizer).

VII. CONCLUSIONS AND FUTURE WORK

A 1987 article by Chow and Horowitz [51] quotes an early

MIPS-X design document:

“The goal of any instruction format should be: 1.

simple decode, 2. simple decode, and 3. simple

decode. Any attempts at improved code density

at the expense of CPU performance should be

ridiculed at every opportunity.”

Two decades later, the debate between prioritizing code

density versus decoder simplicity in ISAs continues.

We investigate code density of 21 different architectures,

and find that very high density levels can be achieved with

proper planning of an ISA. To thoroughly exploit ISA density

there must be cooperation between the operating system,

system libraries, and compiler. On the x86 architecture,

even after eliminating the C library and choosing maximum

compiler options, a factor of two in code density can still

be realized by hand-optimizing the assembly code. This is

463



much greater than the 25% average size difference between

RISC and CISC codes.

New ISAs, especially embedded ones, are continually

being developed. Now that FPGAs are powerful enough to

contain competitive CPUs, this trend of creating custom ISAs

will likely increase. To aid in this development, we show

which architectural features contribute most to code density,

but also show that the entire system stack must be optimized

to avoid wasting an ISA’s inherent potential for density.

Ongoing work applies some of what we have learned to

much bigger benchmarks to see what the performance and

power implications are of using smaller libraries and different

compiler options on larger applications. We hope to raise

awareness of the importance of code density on all modern

architectures, not just those targeted for the embedded space.
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