
Topology-Driven Cell Layout Migration with Collinear Constraints

Abstract—
Traditional layout migration focuses on area minimization,

thus suffered wire distortion, which caused loss of layout to-
pology. A migrated layout inheriting original topology owns
original design intention and predictable property, such as
wire length which determines the path delay importantly.
This work presents a new rectangular topological layout to
preserve layout topology and combine its flexibility of han-
dling wires with traditional scan-line based compaction algo-
rithm for area minimization. The proposed migration flow
contains devices and wires extraction, topological layout con-
struction, unidirectional compression combining scan-line
algorithm with collinear equation solver, and wire restoration.
Experimental results show that cell topology is well preserved,
and a several times runtime speedup is achieved as compared
with recent migration research based on ILP (integer linear
programming) formulation.

I. INTRODUCTION

Manufacturing technology has been working on decreasing
feature size. Handcrafted re-design of a chip layout and cell
library conforming to new manufacturing technology design
rules spends considerable time. Moreover, a cost-down issue
emerges from the product in severe competitions. Seeking a
semiconductor foundry with decreased manufacture cost is an
alternative solution. Two semiconductor foundries generally
vary in the two manufacture technologies design rules of the
same generation, and it demands numerous layout modifica-
tions to satisfy the target design rules.

Traditional goal of layout migration is to efficiently shrink
and place each component in the layout as compact as possible.
Currently available layout migration algorithms were classi-
fied into constraint graph based [1, 2, 3] and integer linear
programming based [4, 5, 6, 7] algorithms. Constraint graph
based algorithms usually scans all components via a virtual
scan line of the design and then constructs a constraint graph.
New design rules are then employed on the graph to identify
the position of every component with the longest path algo-
rithm. However, the conventional constraint graph algorithm
intends to produce a compact layout with numerous changes in
interconnection shapes and topologies because it only consid-
ers space utilization. The resultant changes in the shape and
topology degrade the timing delay and other properties. With
original design intention destroyed, designers must spend time
comprehending and modifying the migration layout. The
bulky burden lowers the availability of layout migration. Heng
et al. proposed a minimum perturbation (MP) objective func-
tion to preserve original design intention by minimizing the
position changes of all edges [6]. To improve the MP objec-
tive function, Fang et al. considered that the effect of geomet-
ric changed by accumulating the effect of position changing in
subsequently processed objects [7]. The integer linear pro-
gramming approach can not guarantee that the relative rela-
tions among an object, and its neighbors are kept unchanged.
For example, an object A initially placed on the right top of the
other object B, and the migration algorithm based on the met-
ric of minimum position changes probably places A on the
right side of B. Besides, ILP based approaches are

time-consuming, and thus will take a long time to complete
migration as the number of layout objects and ILP constraints
increase.

Another well-know research about compaction is topologi-
cal layout model [8, 9]. Topological layout model using rub-
ber-band sketch (RBS) is proposed by Leiserson et al. and
focuses on the topological relation between wires and objects
rather than physical geometries and the imposed design rules
[8]. A topological layout is composed of topological points
and topological wires, where object polygons are regarded as
topological points. A topological wire only stores relative po-
sitions to adjacent topological wires and points instead of
physical wire size and position. Zhang et al. proposed a topo-
logical layout model, called triangulation encoding graph
(TEG), to partition the entire layout into many triangles.
Topological wires are presented by a sequence of passing
edges [9]. TEG feasibly handles post-layout optimization
when only wires and contacts are under consideration. For
topology-driven layout migration, TEG has difficulty to con-
trol the topology alteration since a two-dimensional move of a
node is allowed. Even if a node is moved unidirectionally, the
alteration of a triangle will be non-monotonic since every tri-
angle has at least one sloping edge and at least two edges
connecting to a node.

This study proposes a two level hierarchical topol-
ogy-driven cell migration system. A cell layout is regarded as
a composition of devices and interconnections. Conventional
edge-based constraint graph algorithm [10] shrinks device
layout to meet new design rules while interconnections and
devices are transformed into the proposed rectangular topo-
logical layout for interconnection-level migration. Corner
stitching data structure fixes the corner relations. During mi-
gration, the entire layout can be regarded as a compressed
sponge. Corner stitches and collinear constraints keep the
layout topology unchanged. Experimental results show that
cell topology is well preserved, and it hastens runtime several
times as compared with recent migration research based on
ILP formulation. The rest paper is organized as follows. Sec-
tion 2 briefly reviews topological layout and our proposed
system. Section 3 presents the layout extraction and device
migration. Section 4 proposes the rectangular topological lay-
out framework. Section 5 presents our topology-driven migra-
tion. Section 6 discusses the cell migration experiments.
Finally, Section 7 draws conclusions.

II. PRELIMINARIES

A. Topological Layout
A physical geometrical layout thoroughly describes the size,

shape, and location of each wire, and it identifies the design
rule violation clearly. Conversely, in a topological layout, a
wire is represented by its relative positions (such as the wire
next to this wire) and connection points. This representation
relaxes the constraints of design rules on the layout objects
and modifies the layout more flexibly. Topological layouts
initially perform topological routing [8]. The routability theo-
rem ensures that a topological layout with modifications that
pass a routability test can feasibly converted back to a geome-
try layout. A geometrical layout is transformed into a topo-

De-Shiun Fu, Ying-Zhih Chaung, Yen-Hung Lin and Yih-Lang Li
Computer Science Department National Chiao Tung University Hsin-Chu 300, Taiwan

gis93539@cis.nctu.edu.tw;starshow999@gmail.com; homeryenhung@gmail.com; ylli@cs.nctu.edu.tw

978-1-4244-5028-2/09/$25.00 ©2009 IEEE 439

logical layout via layout encoding, which determines the re-
quired memory size, the efficiency of topological layout crea-
tion, and operations on a topological layout.

B. System Flow Overview
As Fig. 1 shown, the proposed migration system comprises

four components: layout extraction, topological layout model
builder (TLMB), constraint-graph based device migration,
and topology-driven migration. Since the input layout is com-
posed of polygons, the layout extraction first recognizes de-
vices from polygons by geometrical Boolean operations. After
device recognition, remainder polygons will suppose to be
wire polygons; and then, the centerline of wire polygons will
be extracted from wire extraction stage. All polygons of the
devices are sent to device migration process which migrates
devices to the target technology by conventional edge-based
constraint graph compaction algorithm. Device migration
would produce original devices and migrated devices. Before
topology-driven migration, the rectangular topological layout
is built according to wire centerline and components of device.
When building the original topological layout, topology con-
straint builder constructs topological constraints according to
the original topological layout in the corner stitching data
structure. Those topological constraints ensure that layout
topology remains consistent before and after migration. Topo-
logical layout migration is then realized by invoking tile
scan-line algorithm and back-trace mechanism. Finally,
physical wires are restored within associated space tiles to
transform the topological layout into a physical layout.

III. LAYOUT EXTRACTION AND DEVICE
MIGRATION

A. Device Recognition And Wire Extraction

All devices are extracted by geometrical Boolean operations.
For example, diffusion contacts are identified by performing
an AND operation on contact and diffusion layers; transistor
gates can be obtained in a similar manner—by replacing the
contact layer with the polysilicon layer. The OR operation
generates transistor devices. Notably, polysilicon wires are
viewed as gates and wires. The part of a polysilicon wire used
for interconnection is considered as a wire and split from the
transistor gate via the NOT operation. Figure 2 displays the
process of breaking a polysilicon wire into two parts. The top
end of the most left polysilicon wire and the bottom of the
most right polysilicon wire slightly extended to indicate a
connection point for further routing (Fig. 2). In addition to
transistor devices, the contacts are devices in metal layer.

The wire extraction procedure obtains wire information
from wire polygons, such as the centerline position and the
width of a wire. Only the work by Lakos [6] addressed wire
extraction. This study proposes a fast and efficient poly-
gon-to-wire extraction algorithm based on iterative polygon
shrinking. Figure 3 displays the proposed wire-extraction al-
gorithm, which repeatedly shrinks a processed polygon based
on minimum wire width. The first iteration of the
wire_extraction function sets base_width to zero. After
shrinking the polygon by using minimum wire width, the
polygon become centerlines, and the others are under-sized.

B. Constraint-Graph Based Device Migration
 This stage uses the edge-based constraint-graph compac-

tion algorithm [11, 12] to construct a constraint graph. The
edge-based constraint graph model has some advantages: first,
this model can deal with device design rules and produce a
minimal migrated device layout. Second, the device topology
can be preserved by introducing new constraints. Every edge
of a polygon is first traversed in anti-clockwise direction as
shown in Fig. 4a. Rightward and downward edges are set as
True, whereas leftward and upward edges are set as False.
Space, width, and enclosure rules are thus recognized by the
state of an edge pair, represented by (Stl, Sbr), where Stl is the
state of the top-left edge of a horizontal/vertical edge pair, and
Sbr is the state of the other edge. For example, the (F, T)/(T, F)

Figure 2: Transistor gates are identified by performing AND op-
eration on polysilicon and diffusion layers. Polysilicon wires are
obtained by removing transistor gates from the polysilicon layer.
Finally, a transistor gate is inserted via a small extension when it
connects to a polysilicon wire.

__
Algorithm wire_extraction (Polygon P, int base_width).
1. min_width = Identify_Minimum_Width(P);
2. wire_width = base_width + min_width;
3. Shrink polygon P by min_width;
4. Identify and report all centerlines from P;
5. = P –{the points of extracted centerlines};
6. for (every polygon pi)
7. wire_extraction(pi,wire_width);
__

Figure 3: Wire extraction algorithm.

Figure 1: System Flow.

Figure 4: Design rule checking by traversing the point arrays of all
polygons. (a) MinWidth W (F, T)/(T, F); (b) MinSpace S (T, F)/(F,
T); (c) MinEnc E (F, F)/(T, T).

440

state of a horizontal/vertical edge pair defines a width rule; the
(T, F)/(F, T) state of a horizontal/vertical edge pair defines a
space rule; and the (F, F)/(T, T) state of a horizontal/vertical
edge pair defines an enclosure rule.

Because 2-D migration is an NP-complete problem [13], we
adopt a 1-D edge-based constraint-graph compaction algo-
rithm. The vertical migration algorithm is as follows. The
perpendicular-plane sweep algorithm [10] is enhanced by in-
troducing topological constraints. A node in the constraint
graph represents a horizontal edge of a polygon. If a horizontal
line overlaps another horizontal line, a constraint edge is in-
serted to connect their nodes. Three types of constraint edges
are defined in this work. The first type is novel, and the other
two types are conventional constraint edges.
1. Topology constraint edge: This edge imposes a topo-

logical order on two nodes even when their associated
shapes have no design rule between the nodes. The
conventional constraint graph based algorithm does not
create a constraint edge between two shapes in different
layers when the shapes have no design rule.

2. Two-way constraint edge: This edge primarily fixes the
distance between two layout edges. For example, we set
two-way constraint edge in a metal wire because its
width is immobile.

3. Basic constraint edge: This edge is a one-way edge for
maintaining space rules.

During the vertical compression, a virtual scan line scans a
device upwards to generate its edge-based constraint graph.
Figure 5 presents the layout of an inverter and its edge-based
constraint graph. The green edges in Fig. 5 indicate topologi-
cal constraints; the red edges are two-way constraints, and the
black edges represent basic constraints. When we complete the
constraint graph, the longest-path algorithm determines the
lowest position of each horizontal edge.

IV. RECTANGULAR TOPOLOGICAL LAYOUT
MODEL

In this section, we introduce the method to construct a rec-
tangular topological layout and topological constraints. To
understand our method easily, some nouns would be defined
under following.

Definition 1 (Isomorphic Tile Planes). Two layouts which
are constructed by maximum stripped tile plane are said to be
isomorphic if they have the same tiling structure. These means
that a tile in a tile plane could be one-by-one mapped to an-
other tile plane and their neighboring relation could not
change.

Definition 2 (Tile Topology). In maximum stripped tile plane,
every space tile could represent topological relation between
two block tiles. Those topological relations are called tile

topology.

 For instance, in Figs. 6(a) and (b), tiles A, B, C, and D are
block tiles, and the other tiles are space tiles. Figure 6(a) dis-
plays the first two constraints. Tile 1 retains the “overlap”
property between block tile A and C, while tile 2 retains the
“on-the-top” property of block D to device C. Figure 6(b) dis-
plays the topology constraint of devices B and C aligning on
their top.

Lemma 1. If two layouts are tile isomorphism, their tile to-
pology is identical absolutely.
A. Topological Layout Construction

Because maximum stripped tile plane can represent tile to-
pology, our rectangular topological layout is constructed by
corner-stitching data structure. The input data comes from
device-level migration and wire extraction. Device-level mi-
gration produces and delivers the following information: de-
vice layer, the device position in the original layout, the
original shapes of devices, the new shapes of devices after
migration, and routing demands on every boundary. Wire ex-
traction derives the layer, centerlines, and width of every wire
segment. The devices and wires in the proposed rectangular
topological layout are introduced below. Every tile contains
tile type, tile height and width before cell migration. Every
device in the topological layout is composed of block tiles.
Because every device was migrated by constraint-graph based
device migration process, block tile height and width after cell
migration are given. Since one-dimensional migration opera-
tion is invoked in every pass, it has to construct both the
maximum horizontal stripped and vertical stripped tile planes
simultaneously. Moreover, the change in one-pass migration
needs to be transferred to its adjacent tile planes, and thus
every tile needs to recognize its related tiles on adjacent tile
plane to synchronize the change.

Topological wires lack for physical information, and the
wires are characterized by the tiles that they have passed. To
increase the availability of topological wires, physical seg-
ments need to represent all wire segments in a tile and to at-
tach them in their tile. A physical segment denotes the
centerline of a wire with its width, and it can be horizontal or
vertical. A horizontal physical segment can only connect to a
vertical physical segment, and devices. Every space tile con-
tains all physical segments, which pass this space tile. Every
physical segment has its position and reference objects to in-
dicate the connectivity of the net. A reference object of physi-
cal segment implies continuous connectivity of a net, while a
reference object of a block tile (device) implies the connection
of a wire to a device.

The two endpoints of a horizontal/vertical physical segment
are only identified by the segment’s y-coordinate/x-coordinate
values since the other values can be derived from its preceding
and following reference objects. By this scheme, a physical

Figure 6. Topology constraints characterized by space tiles. (a) Space
tiles 1 and 2 retain “overlap” and “on-the-top” topology constraints
between devices A and D and devices D and C, respectively; (b)
space 3 retains the “align-on-the-top” topology constraint of devices
B and C.

Figure 5. An inverter layout and its edged-based constraint graph.

441

wire can be quickly deduced from a series of reference object
traversal starting at any physical position. The new positions
of physical segments have to re-compute during migration.
Figure 7 shows the structure of the physical segments and
reference objects, where physical segments a, b, and s denote
partial wire segments of a net connecting to device c. Figure
7(b) shows the relation between physical segments and their
reference objects.
 Besides general wire segment, power and ground (P/G)
wires have difficulties to construct in a topological cell layout
since P/G wires are fat wires containing many contact devices.
A topological wire connects with two points, while P/G wires
are pairs of straight wires, which have more than two contact
devices. Therefore, virtual P/G block tiles and additional flags
are adopted in this study. Because P/G wires only connect to
metal layer's contact devices, we add an additional flag, say g,
to some contact block tiles, to indicate whether the tile has any
passing wires connecting with P/G wires. During migration, a
block tile without flag g should be located above the ground
wire with the distance of ground wire width and metal separa-
tion. Only the tile with flag g can be moved downwards. This
rule can avoid moving the devices not connecting with the
ground wire towards the ground wire so that design rule viola-
tions occur.
 In the beginning, P/G wires extracted their centerlines, like
general wire segment; and then, two virtual block tiles are
added on the top and bottom of the topological layout to re-
place P/G wires. The centerlines of wire segments which con-
nect contact block tiles and P/G wires are extracted and
connect P/G virtual block tiles and contact block tiles.

B. Collinear Constraint Construction
 In order to guarantee that migrated layout and original lay-
out are isomorphic tile planes, we construct collinear con-
straints according to original layout. Every space tile is
assigned a variable to represent its length along the compres-
sion direction. When two neighbor tiles’ ceilings are collinear,

a collinear equation is formed. This equation means that the
summation of tiles’ height until those two tiles must be equal.
For example, Fig. 8(a) contains six collinear equations on the
line Z1, Z2, and Z3. Considering tile height Se of tile height
functions Z2 and Z3, constant function B3 is chosen as the
basis for further tile height derivation, since it is treated as
constant after formulating Z1. For instance, the height function
of tile Sf is defined as B3+ Se rather than Sa+ Sb+ Se or Sc+ Sd+
Se. Thus, the collinear equation based on the line Z2 is Sa+
B3= B3+ Se+ Sf. Finally, the top boundary also forms a collin-
ear equation.
 A vital issue in a layout contact is how to synchronize the
contact positions in two adjacent layers. Therefore, a collinear
equation needs to link the variables adopted to compute the
contact position in two adjacent layers. In Fig. 8(b), the con-
tact position alignment in polysilicon and metal layers is real-
ized by introducing an equation Sa+consant1= Sb+ Sc+
Sc+constant2.

V. TOPOLOGY-DRIVEN MIGRATION
The proposed migration algorithm in this study invokes it-

erative one-dimensional migration. One-dimensional migra-
tion involves two stages: topological layout migration and
wire restoration. In previous stage, we assign a set of variable
to represent tiles’ height, so the migration problem can refor-
mulate to determine every tile’s height. The vertical migration
algorithm is as follows. From definition 2, we know that the
MHS (maximum horizontal stripped) tile plane keeps the ver-
tical topology, therefore vertical migration works on MHS tile
plane.

A. Topological Layout Migration
 Figure 9 illustrates the vertical migration algorithm. First,
upward enumeration operation on all tile planes decides tile
migration order. According to the tile order, migration algo-
rithm computes every tile’s height. If the tile is block tile, the
tile height which is determined from device migration will be
assigned. If the tile is space tile, the minimum height of tile Ta
is evaluated by tile scan-line algorithm to accommodate all
embedded wires by using new design rules. To comply with
all related collinear equations, Ta is generally a value above its
minimum value. If Ta cannot feasibly be assigned a value to
hold all related collinear equations, then the variables that
invalidate collinear equations are identified, and the computa-
tion process returns to the related tiles and adjusts their tile
heights to equalize all tile height functions of every mis-
matched collinear equation. Once a tile’s height altered, the

Figure 7. Segment structure. (a) A net connecting to device c is de-
scribed by three physical segments; (b) segment s has three reference
objects –segments a and b and tile c.

__
Algorithm vertical_migration.
1. // TileList: tile list array, TileList[i] contains all tiles on
2. // layer i’s tile plane in enumeration order;
3. // Ta: currectly processed tile; ha: tile Ta’s height;
4. for each layer i
5. TileList[i] = upward enumeration order on layer i’s tile plane;
6. while there is unvisited tile in tile list array TileList {
7. tile Ta = the lowest tile in tile list array TileList;
8. compute Ta’s minimum height (ha) to accommodate all

embedded wires using new design rules;
9. if new ha value can not conform to all collinear equations

containing ha
10. back-trace related tiles appearing in mismatched collinear

equations and adjust tile height to equalize the values of all
tile height functions of the mismatched collinear equation;

11. } // end while
12. updateTileplane();
__

Figure 9. Vertical migration algorithm.

Figure 8. Collinear topology constraints. (a) Three collinear equa-
tions are established on the tile plane; (b) one equation is established
for the contact position alignment in polysilicon and metal layers.

442

process of checking related collinear equations, back-tracing,
and updating tile height variables repeats until all collinear
equations hold. Finally, the plane is updated and restructured
after vertical migration to reflect tile under-sizing during mi-
gration.

1) Tile Scan-Line Algorithm
Upward scan-line algorithm provides the objects intersected

by the scan line for processing. The shadow front, which is
initially empty, continuously stores the objects closest to the
advancing scan line. If a newly coming object into the shadow
front totally covers an existing object in the shadow front, then
the existing object removed from the shadow front, because it
can no longer be seen from the scan line. It constituted by the
bottom border of current tile and shadow front. Namely, the
current object cannot be assigned at a lower position since
moving it to another tile may destroy the wire topology.

The objects that must be processed by the scan line algo-
rithm are the segments embedded in the currently processed
space tile, which are sorted in increasing order of their
y-coordinates. Every segment sequentially computes its lowest
legal position under the new design rules. Diagonal separation
checking and other constraints, including connectivity con-
straints, must be also considered. After the segment is as-
signed its new position, the shadow front is updated by
inserting the contours of the segment. In Fig. 10, when seg-
ment S1 is being processed, the shadow front contains the
contours of segment S2 and device D1. Notably, the left end-
point of device D1 shifts rightwards because the reduced range
is covered by segment S2. The new height of the tile can be
determined when all the segments in the currently processed
tile have been processed, and their new positions have been
computed. The final tile height has to consider potential sepa-
ration influence from its top neighboring tiles.

2) Back-Trace Mechanism
The tile height determined by scan line algorithm is a lower

bound under the current shadow front. If the tile height vari-
able, ha, can be assigned a value not less than the lower bound
in order to comply with related collinear equations, then ha is a
successful set. Conversely, if ha has to be assigned a value
below the lower bound in order to comply with related collin-
ear equations, then ha setting is infeasible. In this case, if ha is
assigned to its lower bound value, then its tile height function
value is greater than other tile height functions, which means
that some previously assigned variables have to reassigned a
new larger value to comply with the lower bound constraint
induced by the embedded wires. Figure 11 shows this case,
where the assignment of the HE of tile E with its lower bound
makes the left tile height function be greater than the right tile
height function. Reassigning the variables in other tile height
functions back-traces the variables appearing in related col-
linear equations. The back-tracing order follows the reverse

tile enumeration order.
To remedy the problem of mismatched collinear equations,

tile height variables are categorized into two types, namely
free variables and constant variables. A free variable can be
freely assigned any value not less than its lower bound, while
a constant variable has a fixed value after equation derivation,
most likely a device tile’s height. The lower bound of a free
variable is defined by the scan-line algorithm or the
back-tracing mechanism. In Fig. 11, tiles A, B, C, D, and E are
sequentially processed to derive their tile heights. After deter-
mining the minimum tile height of tile E, tile height variables
HA, HB, HD and HE are free variables, and HC is a constant vari-
able. The lower bounds of all free variables are currently de-
fined by the scan-line algorithm. However, a new HE breaks
this collinear equation, therefore the back-tracing mechanism
is initiated. In this case, variable HB and its lower bound both
increased to equalize the two tile height functions. Notably,
adjusting HB initiates the checking of other collinear equations
containing HB, and it causes new back-tracing mechanisms to
start if these collinear equations do not hold. This process re-
peated until all collinear equations hold.

B. Wire Restoration
Since the segments store helpful physical information, wire

restoration becomes straightforward and simple. It simply
links connected segments to form wires, and creates power
and ground wires.

Because all tiles migrated one by one, the number of tile
would not change after layout migration. Moreover, collinear
constraints preserve tile isomorphic property. Therefore, from
lemma 1, the tile topology of the migrated layout is the same
with the original layout.

VI. EXPERIMENTAL RESULTS
The proposed migration system has implemented in C/C++

language on a PC operating at 2.8GHz with 992MB memory.
The cell layouts for test come from a standard cell library
which used 0.18um technology. The proposed migration sys-
tem compresses the cell layout from 0.18um technology to
90nm technology. In Table 1, the column “No. of traversed
tiles” is the total number of traversed tiles in all tile planes
during topological layout migration, and the column “No. of
back-tracing” is the number of back-tracing for solving the
inequalities of the tile height functions of a collinear equation.
The runtime for topological layout migration includes three
parts: device-level migration, preprocessing, and topological
migration, where preprocessing includes layout extraction and
topological layout construction. The runtime of device-level
migration is proportional to the constraint graph size.

The runtime of topological layout migration mainly depends
on the number of traversed tiles and has no direct connection
with the number of equations. For example, cell AND3X2
needs 41 back-tracings while it only cost 0.063 seconds. On

Figure 11. Back-tracing example. After scan-line algorithm deter-
mines tile E’s minimum tile height, the collinear equation does not
hold. Back-tracing mechanism increases the lower bound of tile Figure 10. Scan line algorithm moves scan line upwards. Currently

processed object S1 determines its lowest position by examining the
positions of the objects in shadow front, say D1 and S2, and their
legal separation.

443

the other hand, BUFFX20 produces the most equations, but its
runtime is less than that of cell DFFX2. Equation number
connects with the runtime indirectly because increasing num-
ber of equations may increase the number of back-tracing.

Table 2 compares the experimental results of rectangular
topological layout migration with Calligrapher. Calligrapher
was running on a SUN Blade 100 system operating at 500MHz.
The source and target technologies are 1.2um and 0.25um.
Since the results of two migration systems are obtained from
different cell layouts and run on different computer platforms,
only similar designs are selected for comparison. The runtime
of Calligrapher is composed by generating constraints and
solving ILP. Our runtime is much faster than Calligrapher
several times after normalization. Figure 12 displays the lay-
outs of cell DFFX2 before and after migration. The layout
after migration is in the left part.

VII. CONCLUSION

This work presents a new rectangular topological layout for
topology-driven cell migration. Topological layout migration
combines its flexibility of handling wires with traditional
scan-line based compaction algorithm for area minimization.

Beside, our migration algorithm guarantees that the tile to-
pology of original layout and migrated layout is not change.
Experimental results show that cell topology is well preserved,
and a several times runtime speedup is achieved as compared
with recent migration research based on ILP formulation.

REFERENCES
[1]. Gershon Kedem and Hiroyuki Watanabe, “Graph-Optimization

Techniques for IC Layout and Compaction”, in Proceedings of the
20th annual conference on Design Automation, pp.113 –120, 1983.

[2]. David G. Boyer and Bellcore, “Process Independent Constraint
Graph Compaction”, in Proceedings of the 29th annual conference
on Design Automation, pp. 318 –322, 1992.

[3]. Joseph Dao, Nobu Matsumoto, Tsuneo Hamai, Chusei Ogawa, and

Shojiro Mori, “A Compaction Method for Full Chip VLSI Layouts”,
in Proceedings of the 30th annual conference on Design Automation,
pp. 407 –412, 1993.

[4]. So-Zen Yao, Chung-Kung ChengT, Debaprosad Dutt, Surendra
Nahar and Chl-Yuan Lo, “Cell-Based Hierarchical Pitchmatching
Compaction Using Minimal LP”, in Proceedings of the 30th annual
conference on Design Automation, pp.395 –400, 1993.

[5]. Fang Fang and Jianwen Zhu, “Automatic Process Migration of Da-
tapath Hard IP Libraries”, in Proceedings of ACM/IEEE Asia South
Pacific Design Automation Conference, pp. 887 –892, 2004.

[6]. Fook-Luen Heng, Zhan Chen, and Gustavo E.Tellez, “A VLSI art-
work legalization technique based on a new criterion of minimum
layout perturbation”, in Proc. Int. Symp. Physical Design,
pp.116 –121, 1997.

[7]. Fang Fang, Jianwen Zhu and Qianying Tang, “Calligrapher: A New
Layout Migration Engine Based on Geometric Closeness”, IEEE
Transaction on Computer-aided Design of Integrated Circuits and
Systems, vo. 24, pp.1347 –1361, Sep., 2005.

[8]. C.E. Leiserson and F.M. Maley, “Algorithms for routing and testing
routability of planar VLSI layout”, in Proccedings of the seventeenth
annual ACM symposium on Theory of Computing, pp.69 –78, 1985.

[9]. Shuo Zhang and Wayne Dai, “TEG: A new post-layout optimization
method”, IEEE Transaction on Computer-aided Design of Integrated
Circuits and Systems, vol. 22, pp. 446 –456, Apr., 2003.

[10]. Jiaji Fang , Joshua S. L. Wong', Kaihe Zhang, Pushan TangA, “A
New Fast Constraint Graph Generation Algorithm for VLSI Layout
Compaction”,IEEE International Symposium Circuits and Systems,
pp.2858 –2861, Jun., 1991.

[11]. Shuilong Chen, Xiangqing He and Zhilian Yang, “Edge based Lay-
out Compaction,” in Proceedings of the 4th annual conference on
ASIC, 2001, pp. 198-201.

[12]. Michael A. Riepe and Karem A. Sakallah, “The Edge-Based Design
Rule Model Revisited,” ACM Transactions on Design Automation of
Electronic Systems, 1998, pp.463-486.

[13]. Williams, J. D. “STICKS – Graphics Editor for High-Level LSI
Design,” in Proceedings of National Computer Conference, 1978, pp.
289-295.

Figure 12. The layouts of cell DFFX2 before and after migration.

Migration Run Time(second)
Cell Name No. of trav-

ersed tile
No. of

back-tracing
Device

migration
Preproc-

essing migration

AND3X2 609 41 0.546 0.078 0.063
AOI21X2 1125 92 0.718 0.094 0.125
AOI211X2 953 71 0.938 0.141 0.140
BUFFX20 1102 21 3.765 0.25 0.250

DFFX2 2586 106 3.406 0.328 0.641
INVX8 375 6 0.764 0.078 0.047
INVX12 547 3 1.752 0.125 0.094

NAND3X4 1169 62 1.359 0.156 0.204
NAND4X4 944 17 1.75 0.203 0.187
NOR3X2 545 23 0.656 0.109 0.078
NOR4X4 1816 90 1.75 0.203 0.375
OAI21X2 561 26 0.672 0.062 0.078
OR3X1 425 20 0.516 0.047 0.047

XNOR2X2 737 31 1 0.219 0.125
XOR2X2 654 19 1.032 0.094 0.110
FA1D1 7948 375 7.406 0.469 3.109

Table 1.Migration statistics.

Calligrapher Our work

Cell Name Run Time(s) Cell Name Run Time(s)

andf301 21.21 AND3X2 0.687

buff102 7.17 BUFFX1 0.343

nanf201 4.38 NAND2X1 0.281

norf211 12.05 NOR2X1 0.334

oaif2201 18.97 OAI21X2 0.812

of401 50.58 OR3X1 0.61

xnof201 42.27 XNOR2X1 1.125

xorf201 37.96 XOR2X1 1.142

adder 1244.9 FA1D1 10.984
Table 2. The comparison of migration results between

Calligrapher and ours.

444

