

Abstract— RFID tags will supplant barcodes for product
identification in the supply chain. The capability of a tag to be
read without a line of sight is its principal benefit, but
compromises the privacy of the tag owner. Public key
cryptography can restore this privacy. Because of the extreme
economic constraints of the application, die area and power
consumption for cryptographic functions must be minimized.
Elliptic curve processors efficiently provide the cryptographic
capability needed for RFID.

This paper proposes efficient architectures for elliptic curve
processors in GF(2m). One design requires six m-bit registers and
six Galois field multiply operations per key bit. The other design
requires five m-bit registers and seven Galois field multiply
operations per key bit. These processors require a small number
of circuit elements and clock cycles while providing protection
from simple side-channel attacks. Synthesis results are presented
for power, area, and delay in 250, 130 and 90 nm technologies.
Compared with prior designs from the literature, the proposed
processors require less area and energy. For the B-163 curve,
with bit-serial multiplier, the first proposed design synthesized in
an IBM low-power 130 nm technology requires an area of 9613
gate equivalents, 163,355 cycles and 4.14 µJ for an elliptic curve
point multiplication. The other proposed design requires 8756
gate equivalents, 190,570 cycles and 4.19 µJ.

Index Terms—Elliptic Curve Cryptography, RFID, security

I. INTRODUCTION

Radio Frequency Identification (RFID) has evolved with

falling semiconductor prices and power requirements. Low-
cost RFID tags now include modest computing capability
using power coupled by antenna from the reader [1]. When
tags reach a sufficiently low price, perhaps $0.05, RFID
systems will become viable replacements for barcode tech-
nology used to track products through the supply chain [2].

The capability of a tag to identify itself without a line of
sight to the reader is the principal benefit of RFID over
barcode systems; however, this capability also compromises
the privacy of the tag’s owner. Public key cryptography on the
RFID tag can protect the owner.

To make the economic cost of tags very low, die area and
power consumption must be minimized. The cost of the
silicon needs to be low, about $0.01. The tag’s antenna must
be small, severely limiting the power available to the silicon.

The Rivest-Shamir-Adleman (RSA) system was the first
practical implementation of a public key cryptosystem. RSA is
still the most widely used system but elliptic curve crypto-
graphy (ECC) provides the same security for fewer resources,

so is better for small devices such as RFID [3]. Much of its
efficiency is due to the definition of elliptic curves over Galois
fields, especially those of characteristic two, GF(2m), which
can be implemented efficiently in specialized digital hardware.

II. CONTRIBUTIONS

A. Six Register, Six Multiply Elliptic Curve Processor

A processor is proposed that requires 6 m-bit registers and 6
Galois field multiply operations per key bit. The processor
requires 6m + O(log m) flip-flops and 6m2 + O(m·log m)
cycles per encryption. No processor in the literature that
requires as few multiply operations has as few flip-flops (if
inversion has at least twice the cost of multiplication).

B. Five Register, Seven Multiply Elliptic Curve Processor

A processor is proposed that requires 5 m-bit registers and 7
Galois field multiplies per key bit. It requires 5m + O(log m)
flip-flops and 7m2 + O(m·log m) cycles. No processor in the
literature that has as few flip-flops requires as few multiplies.

C. Efficient Integration of Elliptic Curve Technologies

 The proposed designs combine well-known algorithms
(Lopez-Dahab addition and doubling, Montgomery ladder
multiplication, Itoh-Tsujii inversion) in efficient architectures,
while preserving resistance to side-channel attacks.

D. Processor Synthesis Case Study in 3 Technology Scales

Synthesis results are presented at 250, 130 and 90 nm
nodes, demonstrating the practicality of public key
cryptography for RFID tags, while illustrating the difficulty of
comparing gate equivalent area across technology scales.

III. BACKGROUND

Galois field background is given in McEliece [4]. The
proposed processors use characteristic two Galois extension
fields, GF(2m). Itoh and Tsujii provided an inversion algorithm
that requires O(log m) multiplies and O(m) squarings [5].

An elliptic curve is the graph of an equation of the form of
the generalized Weierstrass equation [6]:

ଶݕ ൅ ܽଵݕݔ ൅ ܽଷݕ ൌ ଷݔ ൅ ܽଶݔଶ ൅ ܽସݔ ൅ ܽ଺
Defined over GF(2m), if a1 ≠ 0, and by change of variable:

ଶݕ ൅ ݕݔ ൌ ଷݔ ൅ ܽԢଶݔଶ ൅ ܽԢ଺
The Group Law defines a way of adding two points, P1 and

P2, that satisfy the elliptic curve equation, to produce a third
point, P3, also on the curve [7]. The Group Law defines the
additive inverse, P = (x, y) = (x, x + y). Graphically, P1, P2,

Efficient Architectures for Elliptic Curve
Cryptography Processors for RFID

Lawrence Leinweber, Christos Papachristou, and Francis G. Wolff

978-1-4244-5028-2/09/$25.00 ©2009 IEEE 372

and P3 are collinear. A point at infinity is also needed (and is
the additive identity). Since rational numbers are maintained
to postpone division, a denominator of zero indicates infinity.

The line through P1 and P2 has  = (y1 + y2) / (x1 + x2) as its
slope if x1 ≠ x2, or  = x1 + y1 / x1, if x1 = x2. Therefore:

ଷݔ ൌ ଶ ൅ ൅ ܽԢଶ ൅ ଵݔ ൅ ଶݔ
ଷݕ ൌ ሺݔଵ ൅ ଷሻݔ ൅ ଵݕ ൅ ଷݔ

The projective coordinate system is used to represent a
point P = (x, y, z) , which is equivalent to the affine (x/z, y/z).

The Montgomery ladder performs point multiplication by
maintaining two points, kP and (k+1)P and either doubling the
first and adding the two to get 2kP and (2k+1)P or adding the
two and doubling the second to get (2k+1)P and (2k+2)P [8].

Lopez and Dahab gave efficient adding and doubling [9]:

ଶ௞ݔ ൌ ௞ݔ
ସ ൅ ܽᇱ଺ · ௞ݖ

ସ ൌ ൫ݔ௞
ଶ ൅ ܽᇱ଺

½ · ௞ݖ
ଶ൯

ଶ

ଶ௞ݖ ൌ ௞ݔ
ଶ · ௞ݖ

ଶ
ଶ௞ାଵݔ ൌ ଵݔ · ଶ௞ାଵݖ ൅ ሺݔ௞ · ௞ାଵሻݖ · ሺݔ௞ାଵ · ௞ሻݖ
ଶ௞ାଵݖ ൌ ሺݔ௞ · ௞ାଵݖ ൅ ௞ାଵݔ · ௞ሻଶݖ

where (xk, yk, zk) = kP and x1 is the x coordinate of P.
There is no known polynomial time method for recovering k

given kP and P, though the elliptic curve discrete logarithm
problem (ECDLP) has been studied extensively [10].

The Montgomery ladder is regarded as immune to timing
attacks and SPA. To protect against DPA, it is recommended
that a random r is generated and used in the conversion from
affine (x, y) to projective (rx, ry, r) [11]. This would require
an extra register in the proposed architecture. A result in
projective coordinates can be weak because it is not supported
by the study of ECDLP. In the extreme case, an affine (x, y)
could be represented as projective (kx, ky, k), revealing k.
This can be corrected by multiplying the projective result by a
random r, producing (rx, ry, rz) to represent (x, y, z) [12].
This alleviates the RFID tag from the need to perform
division, but requires transmitting both rx and rz to the
reader. Our solution is to divide and transmit x/z. This requires
O(mlog m) machine cycles to avoid transmitting m bits.

IV. RELATED WORKS

Architecture for ECC is given in Fournaris and
Koufopavlou [13]. Most of the background and design
decisions of elliptic curve processors were presented in a
paper in 2006 [14]. Subsequently, a series of processors was
proposed by the Computer Security and Industrial
Cryptography (COSIC) research group. These processors
would use projective coordinates, most-significant-bit-first
Galois field multiplication, versions of the Lopez-Dahab
formulas and the Montgomery ladder. All omitted inversion.
Most would not include a dedicated squarer [15][16][17].

Another processor performed modified Lopez-Dahab
formulas in seven Galois field multiply operations per key bit
and required only six registers [18]. A modified version of the
projective coordinate system was used in which the two
Montgomery ladder points shared one z coordinate. The ALU
had no dedicated registers, but shared the processor’s elliptic
curve registers. Datapaths were reduced to a bare minimum to
save area and interconnect.

V. DESCRIPTION OF THE PROPOSED ECC PROCESSORS

A. Data Flows

Fig. 1 and Fig. 2 illustrate the data flows required to
perform Lopez-Dahab point adding and doubling. Point
multiplication is formed by repeatedly performing point
adding and doubling, according to the Montgomery ladder.
There are two versions of the processor, R6 and R5. Fig. 1
gives the adding and doubling data flow diagram for the R6
processor, which requires 6 m-bit registers. Fig. 2 gives that of
the R5 processor, which uses 5 m-bit registers.

In Fig. 1, the top of the diagram shows the initial register
contents and the bottom, the final. At any one time, no more
than five variables are live. Usually, additions and
multiplications are between one x and one z variable. It can be
arranged so that this is always true by introducing a third z
variable and by grouping a′6

½ and x1 with the x variables.
The right side of Fig. 1 gives the data flow for point adding,

which must be carried out before point doubling on the left
side of the diagram. The left column of Table 1 gives the
algorithm for point adding for the R6 processor, which
requires four Galois field multiplications. Squaring is
performed with a dedicated circuit of combinatorial logic,
which requires only one cycle to complete. The left column of
Table 2 gives the algorithm for point doubling, which requires
two more Galois field multiplications. The five m-bit registers
are xA, xB, zA, zB and zC. The sixth register is the multiplier
product. There are O(log m) flip-flops in the control logic.

Fig. 2 shows the data flow for the R5 processor. This altern-
ative uses the multiplier product register, p, in the ALU as a
temporary variable for the adding and doubling algorithms.
The generator, x1, and constant zero can be grouped with the x
variables. The register p and a′6

-½ can be grouped with the z’s.
Since p is both the multiplier product and used as a temporary,
it must not be used as such during Galois field multiply oper-
ations. That poses no difficulty during point adding, whose
flow is shown in the right half of the diagram in Fig. 2, but
during point doubling, in the left half, an extra Galois field
multiply is required, as represented by these formulas:

ଶ௞ݔ ൌ ൫ܽᇱ଺
ି½ · ௞ݔ

ଶ ൅ ௞ݖ
ଶ൯

ଶ

ଶ௞ݖ ൌ ܽᇱ଺
ି½ · ൫ܽᇱ଺

ି½ · ௞ݔ
ଶ൯ · ௞ݖ

ଶ

Fig. 1: Adding and Doubling
Data Flows for R6 Processor

Fig. 2: Adding and Doubling
Data Flows for R5 Processor

373

Note that these produce different values for x2k and z2k than
used in the R6 processor or the Lopez-Dahab equations, but
the ratio, x2k/z2k, is the same.

The algorithms for point adding and doubling for the R5
processor are shown on the right sides of Table 1 and Table 2.
The five m-bit registers are xA, xB, zA, zB and p, the ALU
multiplier product. There are no other flip-flops in the R5
processor except O(log m) flip-flops in the control logic.

B. Arithmetic Logic Unit (ALU)

The Galois field ALU can produce a2, b2, a + b, or ab. The
ALU exposes the multiplier p register used by the R5 version
of the processor. Addition in GF(2m) is simply bit-wise XOR.
Squaring requires about 1.5m or 0.5m XOR gates for reduction
depending on whether the minimum reduction polynomial for
m is a pentanomial or a trinomial. To save area, we use
minimum reduction polynomials.

The multiplier is digit serial, MSB-first. Fig. 3 illustrates a
six bit multiplier (m = 6) with three bit digits (w = 3). a and b
are the multiplier inputs; y is the output. There are w multi-
plexers that select w bits from b. Each multiplexer selects one
of ۀݓ/݉ڿ inputs. If the high order digit of b is incomplete, it
must be padded with zeroes. There is a register to count
logଶڿ steps for selector s. That register has ۀݓ/݉ڿ .bits ۀݓ/݉
The multiplier has only one m-bit register, p.

C. Key Control Logic

The Montgomery ladder resists side-channel attacks when
implemented so the key has no influence on the sequence of

operations. In these designs, multiplexers select xA vs. xB and
zA vs. zB for input and output from the ALU during point
adding and doubling, minimizing the key’s influence on the
processor’s power profile. The multiplexer selector signals are
connected via XOR gates in the key control logic, in Fig. 4.

A counter of ڿlogଶ bits is initialized at reset with the ۀ݉
constant m – 1. During each loop to perform point adding and
doubling, the counter output forms the selector signals of an
m-to-1 multiplexer that selects a key bit. At the end of each
iteration of the loop, the counter is decremented.

D. Inversion Control Logic

The Itoh-Tsujii inversion algorithm raises a number, a, to
the power 2m – 2. This can be broken down into a sequence of
squarings and multiplies. Let ݄ሺ݊ሻ ൌ ܽଶ

೙ିଵ. So h(1) = a. And,

ሾ݄ሺ݉ െ 1ሻሿଶ ൌ ൫ܽଶ
೘షభିଵ൯

ଶ
ൌ ܽଶ

೘ିଶ ؠ ܽିଵሺmod 2௠ሻ.
Therefore [h(m – 1)]2 is the inverse of h(1), mod 2m. If h(n)

is squared n times then multiplied by h(n), this produces h(2n):

ሾ݄ሺ݊ሻሿଶ
೙
· ݄ሺ݊ሻ ൌ ൫ܽଶ

೙ିଵ൯
ଶ೙
· ܽଶ

೙ିଵ ൌ ܽଶ
మ೙ିଵ ൌ ݄ሺ2݊ሻ.

If h(2n) is squared and multiplied by a, this gives h(2n + 1):

ሾ݄ሺ2݊ሻሿଶ · ܽ ൌ ൫ܽଶ
మ೙ିଵ൯

ଶ
· ܽଵ ൌ ܽଶ

మ೙శభିଵ ൌ ݄ሺ2݊ ൅ 1ሻ.
Initially, h(1) = a, so this provides a procedure to get h(n)

for any n > 0, by repeatedly shifting the binary form of n, to
get 2n or by shifting n and adding one, to get 2n + 1. The
desired final value for n is m – 1.

Shifting and selectively adding one to form m – 1 while
performing repeated squarings and multiplies produces a to
the power 2m-1 – 1, and squared again gives 2m – 2. The control
logic for this is shown in Fig. 5. A shift register of 2ڿlogଶ ۀ݉
bits is initialized with the constant m – 1 in the lower half. The
loop begins with a left shift. If a one bit is shifted into the
upper half, the accumulated result is squared and multiplied by
a. Then the upper half is loaded into a counter of ڿlogଶ bits ۀ݉

Fig. 3: MSB Digit-Serial Multiplier

Fig. 4: Key Control Logic Fig. 5: Inverter Control Logic

counterclk

done

k
q

decr.

goto
kloop

ssA/sB

ss sx

(3) kloop
(2) store
(1) swap

sz

sxA/xB

__
szA/zB

keyswap

Table 1: Point Adding Algorithms
(xB, zB) ← (xA, zA) + (xB, zB)

R6: Temporary register zC

Generator x coordinate x1
 R5: Multiplier Product p

Generator x coordinate x1
xB ← xB × zA
zB ← xA × zB
zC ← xB + zB
xB ← xB × zB
zB ← zC

2
zC ← x1 × zB
xB ← xB + zC

 xB ← xB × zA
zB ← xA × zB

p ← xB × zB

zB ← xB + zB
xB ← 0 + p
zB ← zB

2
p ← x1 × zB
xB ← xB + p

 Table 2: Point Doubling Algorithms
(xA, zA) ← 2(xA, zA)

R6: Temporary register zC

EC Constant a′6
½

 R5: Multiplier Product p
EC Constant a′6

-½
xA ← xA

2
zA ← zA

2
zC ← a′6

½ × zA
zA ← xA × zA
xA ← xA + zC
xA ← xA

2

xA ← xA
2

zA ← zA
2

xA ← xA × a′6
-½

p ← xA × zA
zA ← xA + zA
xA ← 0 + p
p ← xA × a′6

-½
xA ← zA

2
zA ← 0 + p

374

to count squarings of a copy of the accumulated result, and
multiplied. This is repeated for each bit of the constant m – 1.

E. High-Level Organization

The ALU inputs are supplied from the x and z buses. In the
R6 design, x is selected by multiplexer from xA, xB, a′6

½ and x1
while z is selected from among zA, zB and zC. The ALU output
is the s bus. In R6, registers xA, xB, zA, zB and zC are equipped
to hold, or load from s. The last register is the multiplier
product, p. In the R5 design, x is xA, xB, 0 or x1 and z is zA, zB,
a′6

-½ or p. Registers xA, xB, zA and zB can hold, or load from s.
The high-level control logic consists of a five bit program

counter that selects 12-bit microinstructions to select the ALU
inputs, operation and output register and to select key and
inversion control flow. Processor inputs are the key, k, and
generator, g = x1. The output is e = xA. The processors perform
the elliptic curve point multiplication, E = kG, where E and G
are points with affine x coordinates e and g.

Initially, 0G and 1G are loaded into xA/zA and xB/zB,
requiring xA  0, zA = 0, and xB/zB = g = x1 using only g and
the ALU’s adding and squaring operations. Firstly, g2 is stored
by selecting g from the x bus and the a2 operation from the
ALU to set xB = g2 and zB = g2. Then zA = xB + zB = g2 + g2 = 0,
using the ALU’s a + b. And zB = g + zA = g + 0 = g. Such
microcoding avoids special hardware for initializing registers.

F. Implementation

The processors were modeled and tested at the gate level in
a C++ program which then generated Verilog code that was
synthesized and simulated with Synopsys Design Compiler.
The simulated processors were tested at the class level and as
complete systems, in many cases using 11 bit examples from
[7]. Full scale tests were carried out with the degree 163
elliptic curve NIST B-163 [19], using twenty-six vectors from
COSIC. Verilog versions were verified for 1 ≤ w ≤ 16.

The number of machine cycles required for point
multiplication for the R6 and R5 designs and the final division
are given in the following formulas for t6, t5 and td. HW is the
Hamming weight function. The number of flip-flops required
for R6 and R5 are given in the formulas for n6 and n5:
଺ݐ ൌ 6݈݉ ൅ 13݉ ൅ 11 ൅ ,ௗݐ ହݐ ൌ 7݈݉ ൅ 17݉ ൅ ௗݐ ൅ 5, ݈ ൌ ۀݓ/݉ڿ
ௗݐ ൌ ሺ݈ ൅ 2ሻڿlogଶ ۀ݉ ൅ ሺ݈ ൅ 1ሻܹܪሺ݉ െ 1ሻ ൅݉ െ ݈ െ 1
݊଺ ൌ 6݉ ൅ ݊௖, ݊ହ ൌ 5݉ ൅ ݊௖, ݊௖ ൌ logଶڿ4 ۀ݉ ൅ logଶڿ ۀ݈ ൅ 6

VI. PERFORMANCE OF THE PROPOSED ECC PROCESSORS

A. Synthesis Results

Both versions of the processor, R6 and R5, were synthesized
for 113 ≤ m ≤ 251, m prime, and w {1,2,4,8,16} א using
Synopsys Design Compiler and 3 standard cell libraries: a
LEDA library, excluding cells with large leakage current, for a
TSMC 0.25 µm process and two ARM libraries, provided by
MOSIS, for low-power 130 nm and high-vt 90 nm IBM
processes. Area, delay, dynamic power and leakage power
simulation results were obtained using Synopsys tools. For
dynamic power, activity was measured by simulating the
synthesized circuits with hard-wired random a′6 parameters
and random g and k vectors. Each activity test was run for 16
complete encryption operations with different g and k vectors.

Fig. 6 through Fig. 13 graph area, time and energy vs. the
degree, m, from 125 to 250. One NIST recommended curve
has m = 163. Each graph includes plots for the two versions of
the processor, R6 and R5. In area, R5 is smaller than R6. In
time and energy, R6 is generally smaller.

Fig. 6 gives area in gate equivalents, relative to the area of a
two-input, single drive strength NAND gate for the tech-
nology. The figure compares bit-serial (w = 1) processors in
250, 130 and 90 nm. Processor size in gate equivalents
increases as technology scale decreases. Fig. 6 also gives the
gate equivalent area for D flip-flops for the bit-serial process-
ors. This also increases as scale decreases simply because of
the ratio of areas of D flip-flops and NAND gates in the cell
libraries. Although gate equivalent area is often used to
compare architectures, it is dependent on technology scale.

Fig. 7 through Fig. 13 graph R6 and R5 processor versions
in five digit sizes: w = 1, 2, 4, 8 and 16.

 Fig. 7 graphs time in machine cycles to complete the point
multiply operation. This graph includes a very small curve
labeled “÷” for the final division to convert the projective
result to an affine value. This is a very small portion of the
total times shown in the graph. Propagation delay varied from
7.47 to 12.34 ns for 250 nm, 8.81 to 14.85 ns for 130 nm and
9.68 to 16.20 ns for 90 nm, trending slower for the smaller,
lower power processes. With a delay of 16.20 ns, the top of
the graph, 400,000 cycles, represents 6.48 ms to complete an
encryption operation, performance enough for an RFID tag.

Fig. 8 through Fig. 10 graph area results in (mm)2 for the

Fig. 6: w=1 Processor, DFFs, Area (Gate Eqv.) vs. Degree, m

Fig. 7: Processor, Division, Time (Cycles) vs. Degree, m

0

5,000

10,000

15,000

20,000

125 150 175 200 225 250

A
re

a
(G

at
e

E
qu

iv
al

en
ts

)

130 nm

130 nm

R6
R5

DFFs

w=1

250 nm

250 nm

R6

R5

0

100,000

200,000

300,000

400,000

125 150 175 200 225 250

T
im

e
(C

yc
le

s)

R5
R6

R5
R6

R5
R6

÷

375

processors and the D flip-flops in the processors. Fig. 11
though Fig. 13 graph energy in µJ for one complete crypto-
graphic operation, the point multiplication. The two sets of
three graphs give the results for 250, 130 and 90 nm processes.
Energy includes dynamic power and leakage power running at
the maximum clock frequency limited by propagation delay. It
is perhaps worth noting that the energy required to lift a drop
of water (0.025 mL) one centimeter is 2.45 µJ.

B. Comparison with Other Works

Fig. 14 compares several reference works with our designs
in terms of registers and multiply operations (if inversion costs
two multiplies). No processor that requires as few multiply
operations as the R6 has as few flip-flops. No processor that

has as few flip-flops as the R5 needs as few Galois field
multiply operations to complete a point multiplication.

 Table 3 compares performance vs. our proposed designs
synthesized in 130 nm. References [20] and [21] were in 350
nm; [17] used 250 nm; [16] and [18] used 130 nm.

The algorithm in [20] depends on the number of one bits in
the key and is vulnerable to side-channel attacks. [20] and [21]
operate in affine coordinates, requiring division for point
addition and doubling. Each includes an extended Euclidean
algorithm divider, which requires a large number of gates.

References [16] and [17] are compared for combinatorial
area. They do not report memory area. [16], [17] and [18] pro-
duce projective coordinate results that require transmitting an

Fig. 8: 250 nm Processor, DFFs, Area (mm)2 vs. Degree, m

Fig. 9: 130 nm Processor, DFFs, Area (mm)2 vs. Degree, m

Fig. 10: 90 nm Processor, DFFs, Area (mm)2 vs. Degree, m

0.000

0.200

0.400

0.600

0.800

1.000

125 150 175 200 225 250

A
re

a
(m

m
)2

R6
R5

R6
R5

R6
R5

w=1
w=2

0.000

0.050

0.100

0.150

125 150 175 200 225 250

A
re

a
(m

m
)2

R6
R5

R6
R5

R6
R5

w=1

w=2

0.000

0.025

0.050

0.075

125 150 175 200 225 250

A
re

a
(m

m
)2

R6
R5

R6
R5

R6
R5

w=1

w=2

Fig. 11: 250 nm Energy per Encryption (µJ) vs. Degree, m

Fig. 12: 130 nm Energy per Encryption (µJ) vs. Degree, m

Fig. 13: 90 nm Energy per Encryption (µJ) vs. Degree, m

0

20

40

60

80

100

125 150 175 200 225 250

E
ne

rg
y

pe
r E

nc
ry

pt
io

n
(µ

J)

R5
R6

R5
R6

R5
R6

R6
R5

0

2

4

6

8

10

125 150 175 200 225 250

E
ne

rg
y

pe
r E

nc
ry

pt
io

n
(µ

J)

R5
R6

R5
R6

R5
R6

R5
R6
R5
R6

0

2

4

6

8

125 150 175 200 225 250

E
ne

rg
y

pe
r E

nc
ry

pt
io

n
(µ

J) R5
R6

R5
R6

R5
R6

R5
R6
R5
R6

376

extra m bits to the tag reader. [18] has limited datapaths which
may allow side-channel attacks depending on implementation.

Comparing energy, [18] reported that using a low leakage
power, 130 nm UMC library for a 163-bit processor, in word
sizes 1, 2 and 4, required 8.94, 5.29 and 2.94 µJ, respectively.
In the low-power 130 nm IBM process, our R6 processor uses
4.14, 2.22 and 1.22 µJ, and R5 requires 4.19, 2.26 and 1.26 µJ.

VII. CONCLUSION

Efficient elliptic curve processors have been presented,
which are especially useful for RFID applications. The designs
use resources well while resisting side-channel attacks.
Synthesis results were discussed and compared.

One of the proposed processors, the R6, requires only six
Galois field multiplies per key bit. For large key size, m, each
additional field multiply represents a 17% increase in delay.
No processor in the literature that requires as few multiply
operations requires as few flip-flops as the R6 design.
Whereas the R6 requires six flip-flops per key bit, the R5
design requires only five. For large key size, as flip-flop area
reaches 50% of processor area in the R5, each additional m-bit
register represents a 10% increase in circuit area. No processor
in the literature that requires as few flip-flops as the R5 needs
as few Galois field multiply operations to complete an elliptic
curve point multiplication.

VIII. REFERENCES

[1] K. Finkenzeller, RFID Handbook: Fundamentals and
Applications in Contactless Smart Cards and Identification, 2nd
Ed., John Wiley & Sons Ltd., 2003.

[2] S. Garfinkel and B. Rosenberg (Eds.), RFID Applications,
Security, and Privacy, Addison-Wesley, 2005.

[3] U.S. National Security Agency, “The Case for Elliptic Curve
Cryptography,”
http://www.nsa.gov/business/programs/elliptic_curve.shtml

[4] R.J. McEliece, Finite Fields for Computer Scientists and
Engineers, Kluwer Academic Publishers, 1987.

[5] T. Itoh and S. Tsujii, “A Fast Algorithm for Computing
Multiplicative Inverses in GF(2m) Using Normal Bases,” Inf.
Comput., 1988.

[6] L.C. Washington, Elliptic Curves: Number Theory and
Cryptography, Chapman & Hall/CRC, 2003.

[7] R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange K. Nguyen,
and F. Vercauteren, Handbook of Elliptic and Hyperelliptic
Curve Cryptography, Chapman & Hall/CRC, 2005.

[8] P.L. Montgomery, “Speeding the Pollard and Elliptic Curve
Methods of Factorization,” Math. of Computation, Vol.48, 1987.

[9] J. Lopez and R. Dahab, “Fast Multiplication on Elliptic Curves
over GF(2m) without Precomputation,” Workshop on
Cryptographic Hardware and Embedded Systems (CHES),
LNCS Vol. 1717, Springer-Verlag, 1999.

[10] I. Blake, G. Seroussi and N. Smart, Elliptic Curves in
Cryptography, Cambridge University Press, 1999.

[11] K. Okeya and K. Sakurai, “Power Analysis Breaks Elliptic
Curve Cryptosystems Even Secure Against the Timing Attack,”
Progress in Cryptography, LNCS, Vol. 1977, 2000.

[12] D. Naccache, N.P. Smart, and J. Stern, “Projective Coordinates
Leak,” Advances in Cryptography, LNCS, Vol. 3027, 2004.

[13] A.P. Fournaris and O. Koufopavlou, “Hardware Design Issues in
Elliptic Curve Cryptography,” Wireless Security and
Cryptography, Specifications and Implementations, N. Sklavos
and X. Zhang (Eds.), CRC Press, 2007.

[14] L. Batina, G.M. de Dormale, E. Oswald and J. Wolkerstorfer,
“State of the Art in Hardware Implementations of Cryptographic
Algorithms,” Information Society Technologies Publication IST-
2002-507932, 2006.

[15] P. Tuyls and L. Batina, “RFID-Tags for Anti-Counterfeiting,”
Cryptographers’ Track of RSA Conference (CT-RSA), LNCS,
Vol. 3860, Springer-Verlag, 2006.

[16] L. Batina, N. Mentens, K. Sakiyama, B. Preneed, and I. Verbau-
whede, “Low-Cost Elliptic Curve Cryptography for Wireless
Sensor Networks,” European Workshop on Security and Privacy
in Ad hoc and Sensor Networks, LNCS Vol. 4357, 2006.

[17] L. Batina, J. Guajardo, T. Kerins, N. Mentens, P. Tuyls, and I.
Verbauwhede, “Public Key Cryptography for RFID-Tags,”
IEEE Int. Workshop on Pervasive Computing and Commun.
Security, 2007.

[18] Y.K. Lee, K. Sakiyama, L. Batina, and I. Verbauwhede,
“Elliptic-Curve-Based Security Processor for RFID,” IEEE
Trans. on Comput., 2008.

[19] U.S. National Institute for Standards and Technology, “Recom-
mended Elliptic Curves for Federal Government Use”, 1999.

[20] J.H. Kim and D.H. Lee, “A Compact Finite Field Processor over
GF(2m) for Elliptic Curve Cryptography, IEEE Int. Symp. on
Circuits and Systems, 2002.

[21] C. Huang, J. Lai, J. Ren and Qianling Zhang, “Scalable Elliptic
Curve Encryption Processor for Portable Application,” Int. Conf.
on ASIC, 2003.

Fig. 14: Register, Multiply Comparison with Other Works

R5

R6

[18] [17]

[16]

[15]

[21]

0

5

10

15

0 5 10 15

G
F

M
ul

tip
y

O
pe

ra
tio

ns
 p

er
 K

ey
 B

it

m-bit Registers

Table 3: Area and Time Comparison with Other Works
 Area (Gate Equiv.) Time (Cycles)
Ref. m w Ref. R6 R5 Ref. R6 R5

[20] 192 1 16,847 11,191 10,199 296,383 226,593 264,219

[21] 251 1 56,000 14,414 13,149 550,000 384,815 448,814

[16]* 131 1 6,718 4,295 4,193 210,600 106,007 123,686

[16]* 131 4 8,104 5,487 5,378 57,720 28,097 32,938

[16]* 163 1 8,214 5,261 5,097 353,710 163,355 190,570

[16]* 163 4 9,926 6,897 6,621 95,159 42,819 50,148

[17]* 131 1 8,582 4,295 4,193 159,250 106,007 123,686

[17]* 131 2 8,603 4,722 4,543 84,000 54,332 63,496

[17]* 163 1 10,122 5,261 5,097 241,500 163,355 190,570

[17]* 163 2 10,933 5,729 5,601 124,250 83,327 97,339

[18] 163 1 10,106 9,613 8,756 275,816 163,355 190,570

[18] 163 4 12,863 11,240 10,271 78,544 42,819 50,148

*Area comparison does not include memory devices.

377

