
 

 

Abstract— RFID tags will supplant barcodes for product 
identification in the supply chain. The capability of a tag to be 
read without a line of sight is its principal benefit, but 
compromises the privacy of the tag owner. Public key 
cryptography can restore this privacy. Because of the extreme 
economic constraints of the application, die area and power 
consumption for cryptographic functions must be minimized. 
Elliptic curve processors efficiently provide the cryptographic 
capability needed for RFID. 

This paper proposes efficient architectures for elliptic curve 
processors in GF(2m). One design requires six m-bit registers and 
six Galois field multiply operations per key bit. The other design 
requires five m-bit registers and seven Galois field multiply 
operations per key bit. These processors require a small number 
of circuit elements and clock cycles while providing protection 
from simple side-channel attacks. Synthesis results are presented 
for power, area, and delay in 250, 130 and 90 nm technologies. 
Compared with prior designs from the literature, the proposed 
processors require less area and energy. For the B-163 curve, 
with bit-serial multiplier, the first proposed design synthesized in 
an IBM low-power 130 nm technology requires an area of 9613 
gate equivalents, 163,355 cycles and 4.14 µJ for an elliptic curve 
point multiplication. The other proposed design requires 8756 
gate equivalents, 190,570 cycles and 4.19 µJ. 
 

Index Terms—Elliptic Curve Cryptography, RFID, security 

I. INTRODUCTION 

 
Radio Frequency Identification (RFID) has evolved with 

falling semiconductor prices and power requirements. Low-
cost RFID tags now include modest computing capability 
using power coupled by antenna from the reader [1]. When 
tags reach a sufficiently low price, perhaps $0.05, RFID 
systems will become viable replacements for barcode tech-
nology used to track products through the supply chain [2]. 

The capability of a tag to identify itself without a line of 
sight to the reader is the principal benefit of RFID over 
barcode systems; however, this capability also compromises 
the privacy of the tag’s owner. Public key cryptography on the 
RFID tag can protect the owner. 

To make the economic cost of tags very low, die area and 
power consumption must be minimized. The cost of the 
silicon needs to be low, about $0.01. The tag’s antenna must 
be small, severely limiting the power available to the silicon. 

The Rivest-Shamir-Adleman (RSA) system was the first 
practical implementation of a public key cryptosystem. RSA is 
still the most widely used system but elliptic curve crypto-
graphy (ECC) provides the same security for fewer resources, 

so is better for small devices such as RFID [3]. Much of its 
efficiency is due to the definition of elliptic curves over Galois 
fields, especially those of characteristic two, GF(2m), which 
can be implemented efficiently in specialized digital hardware. 

II. CONTRIBUTIONS 

A. Six Register, Six Multiply Elliptic Curve Processor 

A processor is proposed that requires 6 m-bit registers and 6 
Galois field multiply operations per key bit. The processor 
requires 6m + O(log m) flip-flops and  6m2 + O(m·log m) 
cycles per encryption. No processor in the literature that 
requires as few multiply operations has as few flip-flops (if 
inversion has at least twice the cost of multiplication). 

B. Five Register, Seven Multiply Elliptic Curve Processor 

A processor is proposed that requires 5 m-bit registers and 7 
Galois field multiplies per key bit. It requires 5m + O(log m) 
flip-flops and 7m2 + O(m·log m) cycles. No processor in the 
literature that has as few flip-flops requires as few multiplies. 

C. Efficient Integration of Elliptic Curve Technologies 

 The proposed designs combine well-known algorithms 
(Lopez-Dahab addition and doubling, Montgomery ladder 
multiplication, Itoh-Tsujii inversion) in efficient architectures, 
while preserving resistance to side-channel attacks. 

D. Processor Synthesis Case Study in 3 Technology Scales 

Synthesis results are presented at 250, 130 and 90 nm 
nodes, demonstrating the practicality of public key 
cryptography for RFID tags, while illustrating the difficulty of 
comparing gate equivalent area across technology scales. 

III. BACKGROUND 

Galois field background is given in McEliece [4]. The 
proposed processors use characteristic two Galois extension 
fields, GF(2m). Itoh and Tsujii provided an inversion algorithm 
that requires O(log m) multiplies and O(m) squarings [5]. 

An elliptic curve is the graph of an equation of the form of 
the generalized Weierstrass equation [6]: 

ଶݕ ൅ ܽଵݕݔ ൅ ܽଷݕ ൌ ଷݔ ൅ ܽଶݔଶ ൅ ܽସݔ ൅ ܽ଺ 
Defined over GF(2m), if a1 ≠ 0, and by change of variable: 

ଶݕ ൅ ݕݔ ൌ ଷݔ ൅ ܽԢଶݔଶ ൅ ܽԢ଺ 
The Group Law defines a way of adding two points, P1 and 

P2, that satisfy the elliptic curve equation, to produce a third 
point, P3, also on the curve [7]. The Group Law defines the 
additive inverse, P = (x, y) = (x, x + y). Graphically, P1, P2, 
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and P3 are collinear. A point at infinity is also needed (and is 
the additive identity). Since rational numbers are maintained 
to postpone division, a denominator of zero indicates infinity. 

The line through P1 and P2 has  = (y1 + y2) / (x1 + x2) as its 
slope if x1 ≠ x2, or  = x1 + y1 / x1, if x1 = x2. Therefore: 

ଷݔ ൌ ଶ ൅ ൅ ܽԢଶ ൅ ଵݔ ൅  ଶݔ
ଷݕ ൌ ሺݔଵ ൅ ଷሻݔ ൅ ଵݕ ൅  ଷݔ

The projective coordinate system is used to represent a 
point P = (x, y, z) , which is equivalent to the affine (x/z, y/z). 

The Montgomery ladder performs point multiplication by 
maintaining two points, kP and (k+1)P and either doubling the 
first and adding the two to get 2kP and (2k+1)P or adding the 
two and doubling the second to get (2k+1)P and (2k+2)P [8]. 

Lopez and Dahab gave efficient adding and doubling [9]: 

ଶ௞ݔ ൌ ௞ݔ
ସ ൅ ܽᇱ଺ · ௞ݖ

ସ ൌ ൫ݔ௞
ଶ ൅ ܽᇱ଺

½ · ௞ݖ
ଶ൯

ଶ
 

ଶ௞ݖ ൌ ௞ݔ
ଶ · ௞ݖ

ଶ 
ଶ௞ାଵݔ ൌ ଵݔ · ଶ௞ାଵݖ ൅ ሺݔ௞ · ௞ାଵሻݖ · ሺݔ௞ାଵ ·  ௞ሻݖ
ଶ௞ାଵݖ ൌ ሺݔ௞ · ௞ାଵݖ ൅ ௞ାଵݔ ·  ௞ሻଶݖ

where (xk, yk, zk) = kP and x1 is the x coordinate of P. 
There is no known polynomial time method for recovering k 

given kP and P, though the elliptic curve discrete logarithm 
problem (ECDLP) has been studied extensively [10]. 

The Montgomery ladder is regarded as immune to timing 
attacks and SPA. To protect against DPA, it is recommended 
that a random r is generated and used in the conversion from 
affine (x, y) to projective (rx, ry, r) [11]. This would require 
an extra register in the proposed architecture. A result in 
projective coordinates can be weak because it is not supported 
by the study of ECDLP. In the extreme case, an affine (x, y) 
could be represented as projective (kx, ky, k), revealing k. 
This can be corrected by multiplying the projective result by a 
random r, producing (rx, ry, rz) to represent (x, y, z) [12]. 
This alleviates the RFID tag from the need to perform 
division, but requires transmitting both rx and rz to the 
reader. Our solution is to divide and transmit x/z. This requires 
O(mlog m) machine cycles to avoid transmitting m bits.  

IV. RELATED WORKS 

Architecture for ECC is given in Fournaris and 
Koufopavlou [13]. Most of the background and design 
decisions of elliptic curve processors were presented in a 
paper in 2006 [14]. Subsequently, a series of processors was 
proposed by the Computer Security and Industrial 
Cryptography (COSIC) research group. These processors 
would use projective coordinates, most-significant-bit-first 
Galois field multiplication, versions of the Lopez-Dahab 
formulas and the Montgomery ladder. All omitted inversion. 
Most would not include a dedicated squarer [15][16][17]. 

Another processor performed modified Lopez-Dahab 
formulas in seven Galois field multiply operations per key bit 
and required only six registers [18]. A modified version of the 
projective coordinate system was used in which the two 
Montgomery ladder points shared one z coordinate. The ALU 
had no dedicated registers, but shared the processor’s elliptic 
curve registers. Datapaths were reduced to a bare minimum to 
save area and interconnect. 

V. DESCRIPTION OF THE PROPOSED ECC PROCESSORS 

A.  Data Flows 

Fig. 1 and Fig. 2 illustrate the data flows required to 
perform Lopez-Dahab point adding and doubling. Point 
multiplication is formed by repeatedly performing point 
adding and doubling, according to the Montgomery ladder. 
There are two versions of the processor, R6 and R5. Fig. 1 
gives the adding and doubling data flow diagram for the R6 
processor, which requires 6 m-bit registers. Fig. 2 gives that of 
the R5 processor, which uses 5 m-bit registers. 

In Fig. 1, the top of the diagram shows the initial register 
contents and the bottom, the final. At any one time, no more 
than five variables are live. Usually, additions and 
multiplications are between one x and one z variable. It can be 
arranged so that this is always true by introducing a third z 
variable and by grouping a′6

½ and x1 with the x variables. 
The right side of Fig. 1 gives the data flow for point adding, 

which must be carried out before point doubling on the left 
side of the diagram. The left column of Table 1 gives the 
algorithm for point adding for the R6 processor, which 
requires four Galois field multiplications. Squaring is 
performed with a dedicated circuit of combinatorial logic, 
which requires only one cycle to complete. The left column of 
Table 2 gives the algorithm for point doubling, which requires 
two more Galois field multiplications. The five m-bit registers 
are xA, xB, zA, zB and zC. The sixth register is the multiplier 
product. There are O(log m) flip-flops in the control logic. 

Fig. 2 shows the data flow for the R5 processor. This altern-
ative uses the multiplier product register, p, in the ALU as a 
temporary variable for the adding and doubling algorithms. 
The generator, x1, and constant zero can be grouped with the x 
variables. The register p and a′6

-½ can be grouped with the z’s. 
Since p is both the multiplier product and used as a temporary, 
it must not be used as such during Galois field multiply oper-
ations. That poses no difficulty during point adding, whose 
flow is shown in the right half of the diagram in Fig. 2, but 
during point doubling, in the left half, an extra Galois field 
multiply is required, as represented by these formulas: 

ଶ௞ݔ ൌ ൫ܽᇱ଺
ି½ · ௞ݔ

ଶ ൅ ௞ݖ
ଶ൯

ଶ
 

ଶ௞ݖ ൌ ܽᇱ଺
ି½ · ൫ܽᇱ଺

ି½ · ௞ݔ
ଶ൯ · ௞ݖ

ଶ 

 

Fig. 1: Adding and Doubling 
Data Flows for R6 Processor

 
Fig. 2: Adding and Doubling 
Data Flows for R5 Processor
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Note that these produce different values for x2k and z2k than 
used in the R6 processor or the Lopez-Dahab equations, but 
the ratio, x2k/z2k, is the same. 

The algorithms for point adding and doubling for the R5 
processor are shown on the right sides of Table 1 and Table 2. 
The five m-bit registers are xA, xB, zA, zB and p, the ALU 
multiplier product. There are no other flip-flops in the R5 
processor except O(log m) flip-flops in the control logic. 

B. Arithmetic Logic Unit (ALU) 

The Galois field ALU can produce a2, b2, a + b, or ab. The 
ALU exposes the multiplier p register used by the R5 version 
of the processor. Addition in GF(2m) is simply bit-wise XOR. 
Squaring requires about 1.5m or 0.5m XOR gates for reduction 
depending on whether the minimum reduction polynomial for 
m is a pentanomial or a trinomial. To save area, we use 
minimum reduction polynomials. 

The multiplier is digit serial, MSB-first. Fig. 3 illustrates a 
six bit multiplier (m = 6) with three bit digits (w = 3). a and b 
are the multiplier inputs; y is the output. There are w multi-
plexers that select w bits from b. Each multiplexer selects one 
of ۀݓ/݉ڿ inputs. If the high order digit of b is incomplete, it 
must be padded with zeroes. There is a register to count 
logଶڿ steps for selector s. That register has ۀݓ/݉ڿ  .bits ۀݓ/݉
The multiplier has only one m-bit register, p. 

C. Key Control Logic 

The Montgomery ladder resists side-channel attacks when 
implemented so the key has no influence on the sequence of 

operations. In these designs, multiplexers select xA vs. xB and 
zA vs. zB for input and output from the ALU during point 
adding and doubling, minimizing the key’s influence on the 
processor’s power profile. The multiplexer selector signals are 
connected via XOR gates in the key control logic, in Fig. 4. 

A counter of ڿlogଶ  bits is initialized at reset with the ۀ݉
constant m – 1. During each loop to perform point adding and 
doubling, the counter output forms the selector signals of an 
m-to-1 multiplexer that selects a key bit. At the end of each 
iteration of the loop, the counter is decremented. 

D. Inversion Control Logic 

The Itoh-Tsujii inversion algorithm raises a number, a, to 
the power 2m – 2. This can be broken down into a sequence of 
squarings and multiplies. Let ݄ሺ݊ሻ ൌ ܽଶ

೙ିଵ. So h(1) = a. And,  

ሾ݄ሺ݉ െ 1ሻሿଶ ൌ ൫ܽଶ
೘షభିଵ൯

ଶ
ൌ ܽଶ

೘ିଶ ؠ ܽିଵሺmod 2௠ሻ. 
Therefore [h(m – 1)]2 is the inverse of h(1), mod 2m. If h(n) 

is squared n times then multiplied by h(n), this produces h(2n): 

ሾ݄ሺ݊ሻሿଶ
೙
· ݄ሺ݊ሻ ൌ ൫ܽଶ

೙ିଵ൯
ଶ೙
· ܽଶ

೙ିଵ ൌ ܽଶ
మ೙ିଵ ൌ ݄ሺ2݊ሻ. 

If h(2n) is squared and multiplied by a, this gives h(2n + 1): 

ሾ݄ሺ2݊ሻሿଶ · ܽ ൌ ൫ܽଶ
మ೙ିଵ൯

ଶ
· ܽଵ ൌ ܽଶ

మ೙శభିଵ ൌ ݄ሺ2݊ ൅ 1ሻ. 
Initially, h(1) = a, so this provides a procedure to get h(n) 

for any n > 0, by repeatedly shifting the binary form of n, to 
get 2n or by shifting n and adding one, to get 2n + 1. The 
desired final value for n is m – 1. 

Shifting and selectively adding one to form m – 1 while 
performing repeated squarings and multiplies produces a to 
the power 2m-1 – 1, and squared again gives 2m – 2. The control 
logic for this is shown in Fig. 5. A shift register of 2ڿlogଶ  ۀ݉
bits is initialized with the constant m – 1 in the lower half. The 
loop begins with a left shift. If a one bit is shifted into the 
upper half, the accumulated result is squared and multiplied by 
a. Then the upper half is loaded into a counter of ڿlogଶ  bits ۀ݉

Fig. 3: MSB Digit-Serial Multiplier 
 

Fig. 4: Key Control Logic Fig. 5: Inverter Control Logic

counterclk

done

k
q

decr.

goto 
kloop

ssA/sB

ss sx

(3) kloop
(2) store
(1) swap

sz

sxA/xB

__
szA/zB

____

keyswap

Table 1: Point Adding Algorithms 
(xB, zB) ← (xA, zA) + (xB, zB) 

R6: Temporary register zC 

Generator x coordinate x1 
 R5: Multiplier Product p 

Generator x coordinate x1
xB ← xB × zA 
zB ← xA × zB 
zC ← xB + zB 
xB ← xB × zB 
zB ← zC

2 
zC ← x1 × zB 
xB ← xB + zC 

 xB ← xB × zA 
zB ← xA × zB 

p ← xB × zB 

zB ← xB + zB 
xB ← 0 + p 
zB ← zB

2 
p ← x1 × zB 
xB ← xB + p 

 

 Table 2: Point Doubling Algorithms 
(xA, zA) ← 2(xA, zA) 

R6: Temporary register zC 

EC Constant a′6
½ 

 R5: Multiplier Product p 
EC Constant a′6

-½ 
xA ← xA

2 
zA ← zA

2 
zC ← a′6

½ × zA 
zA ← xA × zA 
xA ← xA + zC 
xA ← xA

2 

xA ← xA
2 

zA ← zA
2 

xA ← xA × a′6
-½ 

p ← xA × zA 
zA ← xA + zA 
xA ← 0 + p 
p ← xA × a′6

-½ 
xA ← zA

2 
zA ← 0 + p 
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to count squarings of a copy of the accumulated result, and 
multiplied. This is repeated for each bit of the constant m – 1. 

E. High-Level Organization 

The ALU inputs are supplied from the x and z buses. In the 
R6 design, x is selected by multiplexer from xA, xB, a′6

½ and x1 
while z is selected from among zA, zB and zC. The ALU output 
is the s bus. In R6, registers xA, xB, zA, zB and zC are equipped 
to hold, or load from s. The last register is the multiplier 
product, p. In the R5 design, x is xA, xB, 0 or x1 and z is zA, zB, 
a′6

-½ or p. Registers xA, xB, zA and zB can hold, or load from s. 
The high-level control logic consists of a five bit program 

counter that selects 12-bit microinstructions to select the ALU 
inputs, operation and output register and to select key and 
inversion control flow. Processor inputs are the key, k, and 
generator, g = x1. The output is e = xA. The processors perform 
the elliptic curve point multiplication, E = kG, where E and G 
are points with affine x coordinates e and g. 

Initially, 0G and 1G are loaded into xA/zA and xB/zB, 
requiring xA  0, zA = 0, and xB/zB = g = x1 using only g and 
the ALU’s adding and squaring operations. Firstly, g2 is stored 
by selecting g from the x bus and the a2 operation from the 
ALU to set xB = g2 and zB = g2. Then zA = xB + zB = g2 + g2 = 0, 
using the ALU’s a + b. And zB = g + zA = g + 0 = g. Such 
microcoding avoids special hardware for initializing registers. 

F. Implementation 

The processors were modeled and tested at the gate level  in 
a C++ program which then generated Verilog code that was 
synthesized and simulated with Synopsys Design Compiler. 
The simulated processors were tested at the class level and as 
complete systems, in many cases using 11 bit examples from 
[7]. Full scale tests were carried out with the degree 163 
elliptic curve NIST B-163 [19], using twenty-six vectors from 
COSIC. Verilog versions were verified for 1 ≤ w ≤ 16. 

The number of machine cycles required for point 
multiplication for the R6 and R5 designs and the final division 
are given in the following formulas for t6, t5 and td. HW is the 
Hamming weight function. The number of flip-flops required 
for R6 and R5 are given in the formulas for n6 and n5: 
଺ݐ ൌ 6݈݉ ൅ 13݉ ൅ 11 ൅ ,ௗݐ ହݐ ൌ 7݈݉ ൅ 17݉ ൅ ௗݐ ൅ 5, ݈ ൌ    ۀݓ/݉ڿ
ௗݐ ൌ ሺ݈ ൅ 2ሻڿlogଶ ۀ݉ ൅ ሺ݈ ൅ 1ሻܹܪሺ݉ െ 1ሻ ൅݉ െ ݈ െ 1 
݊଺ ൌ 6݉ ൅ ݊௖, ݊ହ ൌ 5݉ ൅ ݊௖, ݊௖ ൌ logଶڿ4 ۀ݉ ൅ logଶڿ ۀ݈ ൅ 6 

VI. PERFORMANCE OF THE PROPOSED ECC PROCESSORS 

A. Synthesis Results 

Both versions of the processor, R6 and R5, were synthesized 
for 113 ≤ m ≤ 251, m prime, and w {1,2,4,8,16} א using 
Synopsys Design Compiler and 3 standard cell libraries: a 
LEDA library, excluding cells with large leakage current, for a 
TSMC 0.25 µm process and two ARM libraries, provided by 
MOSIS, for low-power 130 nm and high-vt 90 nm IBM 
processes. Area, delay, dynamic power and leakage power 
simulation results were obtained using Synopsys tools. For 
dynamic power, activity was measured by simulating the 
synthesized circuits with hard-wired random a′6 parameters 
and random g and k vectors. Each activity test was run for 16 
complete encryption operations with different g and k vectors.  

Fig. 6 through Fig. 13 graph area, time and energy vs. the 
degree, m, from 125 to 250. One NIST recommended curve 
has m = 163. Each graph includes plots for the two versions of 
the processor, R6 and R5. In area, R5 is smaller than R6. In 
time and energy, R6 is generally smaller. 

Fig. 6 gives area in gate equivalents, relative to the area of a 
two-input, single drive strength NAND gate for the tech-
nology. The figure compares bit-serial (w = 1) processors in 
250, 130 and 90 nm. Processor size in gate equivalents 
increases as technology scale decreases. Fig. 6 also gives the 
gate equivalent area for D flip-flops for the bit-serial process-
ors. This also increases as scale decreases simply because of 
the ratio of areas of D flip-flops and NAND gates in the cell 
libraries. Although gate equivalent area is often used to 
compare architectures, it is dependent on technology scale. 

Fig. 7 through Fig. 13 graph R6 and R5 processor versions 
in five digit sizes: w = 1, 2, 4, 8 and 16. 

 Fig. 7 graphs time in machine cycles to complete the point 
multiply operation. This graph includes a very small curve 
labeled “÷” for the final division to convert the projective 
result to an affine value. This is a very small portion of the 
total times shown in the graph. Propagation delay varied from 
7.47 to 12.34 ns for 250 nm, 8.81 to 14.85 ns for 130 nm and 
9.68 to 16.20 ns for 90 nm, trending slower for the smaller, 
lower power processes. With a delay of 16.20 ns, the top of 
the graph, 400,000 cycles, represents 6.48 ms to complete an 
encryption operation, performance enough for an RFID tag. 

Fig. 8 through Fig. 10 graph area results in (mm)2 for the 

Fig. 6: w=1 Processor, DFFs, Area (Gate Eqv.) vs. Degree, m

 

Fig. 7: Processor, Division, Time (Cycles) vs. Degree, m 
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processors and the D flip-flops in the processors. Fig. 11 
though Fig. 13 graph energy in µJ for one complete crypto-
graphic operation, the point multiplication. The two sets of 
three graphs give the results for 250, 130 and 90 nm processes. 
Energy includes dynamic power and leakage power running at 
the maximum clock frequency limited by propagation delay. It 
is perhaps worth noting that the energy required to lift a drop 
of water (0.025 mL) one centimeter is 2.45 µJ. 

B. Comparison with Other Works 

Fig. 14 compares several reference works with our designs 
in terms of registers and multiply operations (if inversion costs 
two multiplies). No processor that requires as few multiply 
operations as the R6 has as few flip-flops. No processor that 

has as few flip-flops as the R5 needs as few Galois field 
multiply operations to complete a point multiplication. 

 Table 3 compares performance vs. our proposed designs 
synthesized in 130 nm. References [20] and [21] were in 350 
nm; [17] used 250 nm; [16] and [18] used 130 nm. 

The algorithm in [20] depends on the number of one bits in 
the key and is vulnerable to side-channel attacks. [20] and [21] 
operate in affine coordinates, requiring division for point 
addition and doubling. Each includes an extended Euclidean 
algorithm divider, which requires a large number of gates.  

References [16] and [17] are compared for combinatorial 
area. They do not report memory area. [16], [17] and [18] pro-
duce projective coordinate results that require transmitting an 

Fig. 8: 250 nm Processor, DFFs, Area (mm)2 vs. Degree, m 

Fig. 9: 130 nm Processor, DFFs, Area (mm)2 vs. Degree, m 

Fig. 10: 90 nm Processor, DFFs, Area (mm)2 vs. Degree, m 
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Fig. 11: 250 nm Energy per Encryption (µJ) vs. Degree, m 

Fig. 12: 130 nm Energy per Encryption (µJ) vs. Degree, m 

Fig. 13: 90 nm Energy per Encryption (µJ) vs. Degree, m 
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extra m bits to the tag reader. [18] has limited datapaths which 
may allow side-channel attacks depending on implementation. 

Comparing energy, [18] reported that using a low leakage 
power, 130 nm UMC library for a 163-bit processor, in word 
sizes 1, 2 and 4, required 8.94, 5.29 and 2.94 µJ, respectively. 
In the low-power 130 nm IBM process, our R6 processor uses 
4.14, 2.22 and 1.22 µJ, and R5 requires 4.19, 2.26 and 1.26 µJ. 

VII. CONCLUSION 

Efficient elliptic curve processors have been presented, 
which are especially useful for RFID applications. The designs 
use resources well while resisting side-channel attacks. 
Synthesis results were discussed and compared. 

One of the proposed processors, the R6, requires only six 
Galois field multiplies per key bit. For large key size, m, each 
additional field multiply represents a 17% increase in delay. 
No processor in the literature that requires as few multiply 
operations requires as few flip-flops as the R6 design. 
Whereas the R6 requires six flip-flops per key bit, the R5 
design requires only five. For large key size, as flip-flop area 
reaches 50% of processor area in the R5, each additional m-bit 
register represents a 10% increase in circuit area. No processor 
in the literature that requires as few flip-flops as the R5 needs 
as few Galois field multiply operations to complete an elliptic 
curve point multiplication. 
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Fig. 14: Register, Multiply Comparison with Other Works
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Table 3: Area and Time Comparison with Other Works 
   Area (Gate Equiv.) Time (Cycles) 
Ref. m w Ref. R6 R5 Ref. R6 R5 

[20] 192 1 16,847 11,191 10,199 296,383 226,593 264,219

[21] 251 1 56,000 14,414 13,149 550,000 384,815 448,814

[16]* 131 1 6,718 4,295 4,193 210,600 106,007 123,686

[16]* 131 4 8,104 5,487 5,378 57,720 28,097 32,938

[16]* 163 1 8,214 5,261 5,097 353,710 163,355 190,570

[16]* 163 4 9,926 6,897 6,621 95,159 42,819 50,148

[17]* 131 1 8,582 4,295 4,193 159,250 106,007 123,686

[17]* 131 2 8,603 4,722 4,543 84,000 54,332 63,496

[17]* 163 1 10,122 5,261 5,097 241,500 163,355 190,570

[17]* 163 2 10,933 5,729 5,601 124,250 83,327 97,339

[18] 163 1 10,106 9,613 8,756 275,816 163,355 190,570

[18] 163 4 12,863 11,240 10,271 78,544 42,819 50,148

*Area comparison does not include memory devices. 
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