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Abstract— There has been much work on the next generation
of memory technologies such as MRAM, RRAM and PRAM.
Most of these are non-volatile in nature, and compared to
SRAM, they are often denser, just as fast, and have much lower
energy consumption. Using 3-D stacking technology, it has been
proposed that they can be used instead of SRAM in large level
2 caches prevalent in today’s microprocessors. However, one
of the key challenges in the use of these technologies, such
as MRAM, is their higher fault probabilities arising from the
larger process variation, defects in its fabrication, and the fact
that the cache is much larger. This seriously affect yield. In
this paper, we propose a fault resilient set associative cache
architecture which we called the salvage cache. In the salvage
cache, a faulty cache block is sacrificed and used to repair
faults found in other blocks. We will describe in detail the
architecture of the salvage cache as well as provide results of
yield simulations that show that a much higher yield can be
achieved viz-a-viz other fault tolerant techniques. We will also
show the performance savings that arise from the use of a large
next-generation L2 cache.

I. INTRODUCTION

There is much ongoing research for alternative memory
technologies. Many of the proposals, such as magnetore-
sistive RAM (MRAM), phase-change RAM (PRAM), and
resistive RAM (RRAM) are non-volatile memory. Their high
access speed, high density and low energy consumption make
them replacement candidates for SRAM, especially in view
of advances made in 3-D stacking technology [6].1

One of the issues that continue to be a challenge for using
these next-generation memory technologies is their yield.
Due to the material and manufacturing process involved,
there is greater amount of defects and process variations.
Coupled with sheer size and miniaturization involved, this
can lead to poorer yields. The probability of a fault in
a MRAM cell, for example, can be 2 to 10× that of an
equivalent SRAM cell [13]. On the other hand, MRAM has
much higher density. Using the same technology node, in
the same area occupied by an SRAM cache, the capacity
of the cache can be quadrupled if we use MRAM cells [6],
[21]. This higher density allows for the use of architectural
means to recover yield losses. In this paper, we introduce the
salvage cache, a micro-architectural technique for tolerating

1Some of our references refer specifically to a variant of the MRAM
called the spin torque transfer RAM (STT-RAM). We make no such
distinction and shall refer to both as ‘MRAM’.
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Fig. 1. 1T1J structure of STT-RAM cell.

faults in large, set associative caches. In a nutshell, a small
number of faulty blocks in a cache set is sacrificed to repair
other faulty blocks in the same set.

Earlier works on fault-tolerant cache design generally took
advantage of the inherent ability of especially set-associative
caches to tolerate faults. In [14], [2], a cache block is turned
off when they are found to be faulty. Other cache blocks in
different ways of the same set of the disabled cache block
are still functional. We call techniques such as these together
as down-sizing by discarding faulty blocks (DDFB). There
have been a number of variations of this theme including
one for direct-mapped caches [1], the PADded cache [20],
the ‘Yield Aware Power Down’ cache [17], and Intel
Itanium’s ‘Pellston’ technology [18]. Recently, two schemes
called Word-disable (WDIS) and Bit-fix (BFIX) have been
proposed [23]. The WDIS scheme combines two consecutive
cache blocks into a single cache block, thereby reducing
the capacity by 50%, whereas the BFIX scheme sacrifices a
(functional) cache block to repair defects in three other cache
blocks, thereby reducing the capacity by 25%. In contrast,
because of the higher fault probabilities, we are likely to find
more than one faulty blocks in a set. This is especially so in
modern L2 and L3 caches that have a large number of ways.
The salvage cache exploits this fact and sacrifices an already
faulty block to repair other faulty blocks in the same set.

II. MAGNETORESISTIVE RAM

One of the more promising next generation memory
technologies is the Magnetoresistive RAM (MRAM). The
key component of MRAM is the magnetic tunnel junction



(MTJ) [9], as shown in Fig. 1. A single MTJ is composed
of a reference layer, a free layer and an oxide barrier
layer (e.g. MgO). The magnetic direction of reference layer
is fixed while the one of free layer can be changed by
either a magnetic field or a polarized current. When the
magnetization directions of reference layer and free layer
is parallel (anti-parallel), the MTJ resistance is in low (high)
resistance state. The high and low resistance states of MTJ,
Rmax and Rmin, are used to store information.

In spin transfer torque RAM (STT-RAM) [9], the magnetic
direction of the free layer is changed by directly passing spin-
polarized currents through MTJ, using the “1T1J” structure,
where one NMOS transistor is connected to one MTJ, as
shown in Fig. 1. The NMOS transistor is controlled by the
word line (WL) signal. When reading data from a STT-RAM
cell, a read current is injected to the selected memory cell,
generating a voltage level Vb at the bit line. At the same time,
the same amount of current is injected to a dummy memory
cell to generate a reference voltage level between the levels
that can be generated by the memory cell with a MTJ of Rmin
or Rmax. One common practice for generating the reference
voltage is to let the read current go through two connected
memory cell with a MTJ of Rmin and Rmax, respectively.
Then the generated voltage level is divided by two as the
reference voltage level (Vref). We note that the resistance of
MTJ is mainly determined by the thickness of MgO layer
and the shape of MTJ, which are significantly affected by
manufacturing variations. As a result, the Vb generated by a
MTJ Rmin (Rmax) may be even higher (lower) than the Vref.
A read error may then occur. Such errors are permanent and
necessitate correction mechanisms such as the salvage cache.

III. RELATED WORKS

There is a large body of literature dealing with process
variations and yield especially at the circuit level [4], [3],
[22], [5]. The yield of SRAM storage cells has also been
the subject of several studies [15], [11]. We found three
patents [14], [2], [7] that proposed circuits to bypass faulty
cache blocks in a set-associative cache. More recently, Lee
et al. [12] described a faulty cache simulation tool, CAFÉ as
well as a variety of DDFB strategies to deal with faults. They
also made a good case for the need to ‘gracefully degrade’
the cache in the presence of faults.

The Word-disable (WDIS) scheme and Bit-fix (BFIX)
scheme proposed in a recent study [23] come close to being
comparable with our proposal. In the WDIS scheme, two
consecutive cache blocks are combined into a single cache
block. A 64-byte cache block, for example, is divided into
16 32-bit words. With one bit to record whether a 32-bit
word is functional, a 16-bit fault map is stored alongside the
tag. In a read operation, two consecutive cache blocks are
accessed simultaneously. Then, a four-stage shifter removes
the defective word from a cache block based on the fault map
to reconstruct one half of a full cache block. Consequently,
the capacity of the cache is reduced by 50%.

Whereas the WDIS scheme performs the necessary repairs
at the (32-bit) word level and within a cache block, the BFIX

scheme performs the necessary patching for pairs of bits and
stores the patches of 3 cache blocks in a cache block residing
in another bank. A cache block that stores the patches is
called a fix line, and it stores 10 patches for a cache block
that it is paired with. Each patch contains the address of the
faulty 2-bit group and the correct repair patterns. To protect
against defects in a patch, a single-bit error correction code is
used. In a read operation, the cache block that corresponds to
a tag match and its fix line are accessed simultaneously. The
patches are decoded and a 10-stage shifter removes defective
2-bit groups out of the tag-matched cache block. As a cache
block can be used as a fix line for three other cache blocks,
the BFIX scheme reduces the cache capacity by 25%. As
we shall see, not only does the salvage cache produce better
yield than WDIS and BFIX, it also results in caches with
significantly higher average associativities.

Earlier, we had proposed the buddy cache [10] that pairs
up two non-functional blocks to yield one functional block. A
similar idea was proposed independently in [19]. The salvage
cache significantly improves on this by using a single non-
functional block to repair several others. Therefore, we did
not compare the salvage cache against these proposals.

IV. THE SALVAGE CACHE

Consider an n-way set-associative cache with m sets. Let
the n blocks within a set be labeled B0, B1, ..., Bn−1. We
divide each cache block, say Bp, into k divisions, with each
division guarded by a fault bit in a fault map. In other words,
if a division is faulty, the corresponding fault bit for that
division is set to 1. The fault bit of an operational division
is set to 0. The tag field of a block is guarded by a separate
bit. Therefore, there are k + 1 fault bits for a block. In an
n-way set-associative cache with m sets, there are a total of
(k +1)nm bits in a fault map.

Let fp0 fp1... fp(k−1) fpk, fq0 fq1... fqk, and fr0 fr1... frk denote
the k +1 fault bits of cache blocks Bp, Bq, and Br and their
tags, respectively. Suppose some of the k divisions in the
three blocks are faulty. Suppose that fpi1 = fqi2 = fri3 = 1.
In other words, divisions i1 of Bp, i2 of Bq, and i3 of Br are
faulty. If i1 6= i2, i1 6= i3, and i2 6= i3, there is a combination
of the divisions of the blocks that will result in functional
blocks. In particular, if we select Br to be the victim block,
then we can use division i1 and i2 of Br in place of the
respective faulty divisions in Bp and Bq. Br will be disabled
by setting frk to 1.

A victim map is required to store the index of the victim
block from whom replacement divisions are obtained. Given
that there are n blocks within a set, logn bits are required
to encode the index of a block. Therefore, n logn bits are
required to store the pairing information within a set. For
simplicity, we assume that each set of the cache has a
corresponding row in the fault map and victim map. We shall
also assume that these two maps are placed adjacent to one
another in a combined fault and victim map. We shall further
assume that these maps are perfect. Assuming perfect maps
also simplifies our exposition. Faulty maps can be dealt with
in a way similar to the buddy cache. [10].
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Fig. 2. A conventional 4-way set-associative cache.

For a fully operational cache block, its victim map entry
simply points to itself. For a faulty block, if a victim block
can be found within the set, the index of the victim block is
stored in the victim map. If a victim block cannot be found,
we assign ones to all the fault bits for that block in the fault
map. In addition, the victim map entry is again pointed to
itself. The initialization of the fault and victim map is done
during the processor initialization using traditional built-in
self test (BIST). This is a common assumption among fault
tolerant cache architectures [1]. Details of how the victim
map is configured is found in Section IV-A.

Figure 2 shows a conventional 4-way cache design. The
signals from the decoder select the corresponding tag value
and data block from four different ways in the same set. The
result of comparing the stored tags with the incoming address
tag together with the validity bit generate the selection signal
Seli, i∈ {0,1,2,3}. All four Seli signals are sent into a 4-to-
1 MUX to select the final output from the four data blocks.
Also, if any Seli signal is high, a ‘hit’ signal is asserted.

To implement a k division salvage cache, we will make
the following changes to an n-way, l bytes per block set-
associative cache (see Figure 3 – parts of the diagram has
been omitted for clarity). In place of the n-to-1 l-byte MUX,
k n-to-1 (l/k)-byte MUXs are needed. Therefore, for every
(l/k)-byte division, we have n selection inputs seli j to select
Di j, the jth division of block (way) Bi, i∈ {0, . . . ,n−1}, j ∈
{0, . . . ,k−1}. Let Seli, i ∈ {0, . . . ,n−1}, be asserted when
the incoming tag matches a valid stored tag Ti. To ensure
that the matched tag is from an operational tag, we define
Ŝeli as (Seli · fik), where fik is the fault bit of the tag. If any
Ŝeli signal in a set is high, a ‘hit’ signal is asserted.

Without loss of generality, we shall use the example of
Way 0 in Figure 3 to explain the working of the salvage
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Fig. 3. Way 0 of a 4-division, 4-way set-associative, 64 bytes per block
salvage cache.

cache. Suppose selected cache set at Way 0 is not a victim.
In addition, it has a functional division 0. Then f00 = 1.
When there is a hit on this set and way, Ŝel0 = 1. This in
turn makes sel00 = 1, thereby making the Division 0 MUX
select D00.

Suppose that the selected cache set’s Way 0 division 0 is
faulty, i.e., f00 = 1. This, in addition to the fact that f10 =
f20 = f30 = 0 by the way victims are selected, will ensure
that sel00 is not asserted. Suppose further that Way 1 contains
the victim block. Then the victim map entry will decode to
bSel01. Together with Ŝel0 = 1, sel10 will be asserted. In
other words, D10 will be selected to take the place of D00.

If the selected cache set’s Way 0 is the victim, then f04 = 1,
and Ŝel0 can never be asserted. In this case, D00 will be used
if some other way needs it. Note that if D00 is faulty, the
assignment makes sure that all other blocks that use this
victim block has functional division 0’s, and so sel00 will
never be asserted.

When the cache is faultless, we do not want to incur the
overheads (especially the energy overhead) of this mecha-
nism. We achieve that by using a single bit Z as an enabling
signal for the combined fault and victim map.

In our implementation of the salvage cache, we assume
that like a conventional cache, it is protected from transient
faults by ECC. In other words, the combined fault and victim
map handles faults in next-generation memory cells due to
defects in materials, lithography-based failures, etc. ECC
deals only with soft errors.

Based on the PTM 45nm technology, the additional delay
introduced by the remapping logic is 60ps, which is around
20% of a clock period for 3GHz frequency. In another
word, the latency is increased by 1 cycle in the worst case,
when compared to the baseline. The additional dynamic
access energy is 0.024%, which is partly due to the 20,000
transistors in the remapping logic for a 8MB cache. In
contrast, WDIS and BFIX incurred an additional 1 and
3 cycle latency, respectively. We do not have the energy



Block Divisions Tag Fault Map
0 D00D01D02D03 T0 0 0 1 0 1
1 D10D11D12D13 T1 1 0 0 0 0
2 D20D21D22D23 T2 0 0 0 1 0
3 D30D31D32D33 T3 0 1 0 0 0

TABLE I
A CACHE SET IN A 4-WAY SALVAGE CACHE.

overhead of WDIS and BFIX, but the BFIX scheme requires
around 26,000 transistors for a 2MB cache.

A. Configuring the combined fault and victim map

Now, the remaining question is how the combined fault
and victim map can be configured properly. As mentioned,
the testing of memory cells in the cache (tag and data) is car-
ried out during processor initialization using the traditional
built-in self test (BIST) approach for memory as in [1]. First,
the fault map stores the results of the BIST of each set of
cache blocks (and tags). We will configure the victim map
one cache set at a time.

The configuration of the victim map of a cache set can
actually be formulated as a graph problem. Here, we form a
compatibility graph for each cache set, where each vertex in
the graph corresponds to a faulty block in the cache set. If the
union of the functional data divisions of two faulty blocks
results in a functional cache block (i.e., k functional data
divisions and a functional tag), we connect the corresponding
two vertices in the graph, indicating that they are compatible
and that they could be paired to form a functional cache
block. If there exists a clique of s ≤ k + 1 vertices in the
graph, these s vertices can actually be partnered together to
form s−1 functional blocks.

Consider a set in a 4-way cache, which has four faulty
blocks as shown in the column labeled “Fault Map” in
Table I. It is obvious that the union of any two of the faulty
blocks results in a functional block (i.e., the bit-wise AND
of the fault bits in fault map results in a sequence of all
zero bits). These 4 blocks will form a clique of 4 vertices in
the compatibility graph. It should be clear that we could use
the functional data divisions D00, D01, and D03 to replace
the faulty data divisions D10, D31, and D23, respectively, to
produce 3 functional blocks. In this example, because block
B0 has a faulty tag, it is natural to victimize it. When every
faulty block in a clique has a functional tag, it would be
necessary to sacrifice one of them, say Bi, and turn it into a
victim by disabling its tag, i.e., we set the fault bit fik in the
fault map to 1.

Before we formally state the problem of optimally iden-
tifying appropriate victims in a cache set, we first define
the following: Let c denote a clique, we define v(c) to be
the set of vertices in c. Note that the number of functional
blocks that we can obtained from c is |c|−1. Now, consider
the corresponding compatibility graph G = (V,E) of a cache
set. If we partition the graph into a set of disjoint cliques,
denoted as C, such that V = ∪c∈Cv(c), the number of

functional blocks we can obtained from this partitioning is
|V |−|C|. Here, we assume that the disjoint partitioning may
have one-vertex cliques. Therefore, the problem of optimally
identifying appropriate victims in a cache set is equivalent
to that of minimizing |C|. This is known as the minimum
clique partitioning problem [8], which is difficult to solve.

Here, we propose a heuristic that could be implemented
in hardware easily. First, we start with all faulty blocks that
have a faulty tag. For each such victim block Bi, we find the
lowest-indexed compatible imperfect cache block, i.e., the
lowest-indexed beneficiary, as follows: We use bit-wise AND
to determine whether Bi and another faulty cache block B j,
j 6= i, can be combined to make B j functional. The k+1-bit
output of the bit-wise AND go through a NOR gate, whose
output is asserted if Bi and B j are compatible. The output of
the NOR gate is supplied to a priority encoder, which also
takes in the output signals of other NOR gates performing
compatibility check of other imperfect cache blocks with Bi.
The priority encoder will select the lowest-indexed imperfect
cache block that is compatible to Bi. Now that the lowest-
indexed beneficiary has consumed some of the functional
data divisions of victim block i, we set the corresponding
fault bits of Bi in the fault map to 1, and the beneficiary will
no longer participate in the pairing process. We iteratively
identify the next lowest-indexed compatible imperfect cache
block for victim Bi until we have set all fault bits of Bi to 1
or a imperfect cache block compatible to Bi cannot be found.
At this point, we set all fault bits of Bi to 1.

After we have considered all faulty blocks that have a
faulty tag, we are left with faulty blocks that have functional
tags. Start with the lowest-indexed imperfect cache block Bi,
we disable its tag, i.e., we set the fault bit fik to 1. We now
repeat the procedure outlined in the preceding paragraph to
identify all beneficiaries of Bi. We iteratively consider all
other faulty blocks in the cache set until we have exhausted
all faulty blocks that have functional tags.

V. YIELD STUDY

In this section, we will study a limiting case of perfor-
mance degradation, namely the catastrophic failure of the
chip due to the failure of the cache. This is closely related
to the ‘yield’ of the chip. Without loss of generality, we will
use the following definition of yield: A set in a cache is
functional if it has at least one functional way. (Even though
this may appear to be too optimistic, we shall show in the
next section the average associativity of functional caches,
in particular, that of salvage cache, is much higher than 1.)
A cache with m sets is functional if after using part or all of
its redundant resources, it has m functional sets. The yield of
a cache is the probability that it is functional. For this study,
we targeted MRAM. However, the methodology presented
here can also be applied to other memory technologies.

A. Yield of MRAM

To investigate the probability of a MRAM read error, we
considered the variation of the MTJ resistance. The variation



of MTJ resistance is assumed to be of a normal distribu-
tion. The TMR (Tunneling Magneto Resistance Ratio), i.e.,
(Rmax −Rmin)/Rmin is set to 100%. The difference between
the means of Rmax and Rmin is set to 14.1× the deviation
of Rmin at 45nm [16]. The read error rate due to the MTJ
resistance is computed to be about 0.11%. By taking into
account the manufacturing defects, which is assumed to be
the same level as the resistance-variation-induced read error
rate, the total read error rate of STT-RAM is about 0.25%.
This rate may increase as technology scales. Consequently,
we considered fault probabilities of between 0 to 0.003.

B. Yield comparison
Here, we present yield results obtained both analytical

yield model as well as Monte Carlo simulations for the
following four types of caches: Salvage cache, DDFB cache,
WDIS cache, BFIX cache. The purpose is to cross-validate
the yield results obtained from both methods. The Monte
Carlo simulations were performed for fault probabilities pb
ranging from 0.000 to 0.003, with increments of 0.0005.
For each fault probability pb, we assume that occurrences
of faults in the caches are uniformly random. We randomly
inject faults (with probability pb) into four hundred instances
of 8 Mbyte 32-way set-associative caches and then evaluate
whether a cache is functional based on the four fault-tolerant
schemes. In the case of salvage cache and DDFB cache, we
also inject faults into both tag array and data array. For WDIS
and BFIX caches, we only injected faults into the data arrays.

Due to space constraint, however, we shall present only
the details of the analytical yield model for the salvage
cache; analytical yield models for other types of caches can
be derived in a similar fashion. We shall use the following
notation: An n-way set-associative cache with m sets, with
tag size t and k data divisions, each of which has d data bits.

The probability that a cache block (both tag and data) is
faulty is Pblock-faulty = (1−(1− pb)t+dk). For two cache blocks
to be paired in the salvage cache, at least one of the two
corresponding tags must be operational. Moreover, the data
divisions at the same position in the two cache blocks cannot
be both faulty. Therefore, the probability that the pairing of
two cache data blocks in a set produces an operational block
is Ppaired-block = (1− (1− (1− pb)t)2)(1− (1− (1− pb)d)2)k.
Within a set, there are altogether

(n
2

)
possible pairs of

cache blocks. As defined, a set is non-functional only if all
blocks are faulty and none of these pairings can produce an
operational cache block. Hence, the probability that a set is
functional is Pset = 1−Pn

block-faulty(1−Ppaired-block)
n(n−1)

2 . For a
cache with R redundant sets, at most R sets can be faulty for
the cache to be operational. The probability that the salvage
cache is operational is therefore

PSC =
R

∑
i=0

(
m+R

i

)
Pm+R−i

set (1−Pset)i.

For a 32-way 8 Mbyte salvage cache with a block size of
64 bytes divided into 8 data divisions, PSC is effectively 1.00
even when the fault probability is as high as 0.003 and R = 0
as shown in Figure 4. In other words, the salvage cache is
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Fig. 4. Yield results of various caches obtained from analytical yield
models and Monte Carlo simulations.

extremely robust because of the abundance of pairing options
available. It is also evident from Figure 4 that the analytical
model tracks the results from Monte Carlo simulations of
8 Mbyte salvage cache with 8 data divisions very well,
thereby cross-validating each other.

As we can see from Figure 4, with 0 redundant cache
set, the yield of DDFB cache is not competitive. However,
the yield can be improved significantly when 104 redundant
cache sets are added. Note that we use 104 redundant sets in
the DDFB cache so that the total number of memory cells
in the fault map, tag array, and data array of a DDFB cache
is similar to that in the fault map, victim map, tag array, and
data array of a salvage cache. In other words, they have the
same memory cell count.

In Figure 4, we also show the yield of 8 Mbyte 32-way
set-associative caches implemented with the WDIS and BFIX
schemes. The WDIS scheme has almost perfect yield even
with 0 redundant cache set. Note that we do not have to add
redundant cache sets to WDIS cache because the fault map of
WDIS has more memory cells than the fault map and victim
map of a salvage cache combined and than the fault map
of a DDFB cache. With 0 redundant cache set, the yield of
the BFIX scheme drops quickly to 0 as the fault probability
increases. As shown in Figure 4, the yield of the BFIX
scheme can be improved with 112 redundant cache sets,
which are added to maintain the same memory cell count
as a salvage cache. However, the yield still drops to 0 as
the fault probability increases beyond 0.001. Therefore, even
though the BFIX scheme in theory may have an effective
associativity of 24 for a 32-way set-associative cache, we
may not have a functional BFIX cache in practice. We believe
that the yield of the BFIX scheme can be improved with
triple modular replication of the patches. However, that is
beyond the scope of this work. It is important to keep in
mind in both WDIS and BFIX caches, we assume that the
tag array is perfect, as did [23].

In summary, the salvage cache has better yield than
the DDFB cache and the BFIX cache, and similar yield
compared to the WDIS cache, even though the WDIS cache



4MB L2 8MB L2
Conv. Salv. Conv. Salv.

Read lat. (ns) 2.59 2.65 3.28 3.34
Remap. lat. (ns) N/A 0.06 N/A 0.06
Write lat. (ns) 2.59 10.83 3.28 11.10
Read en.(nJ) 0.49 0.50 0.73 0.73
Remap. en. (nJ) N/A 0.0064 N/A 0.0064
Write en. (nJ) 1.72 1.73 1.98 1.99
Leak. pow. (mW) 104.23 104.24 126.66 126.68

TABLE II
LATENCIES AND ENERGIES OF OUR CONVENTIONAL AND SALVAGE

CACHE MODELS.
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Fig. 5. Average associativity of salvage cache vs. DDFB cache, WDIS
cache, and BFIX cache.

has an advantage of having a perfect tag array. In the next
section, we will demonstrate the advantage of the salvage
cache in terms of average associativity, which translates into
better throughput performance of the salvage cache over
other types of caches.

VI. ENERGY CONSUMPTION

In our work, we modified the CACTI based on the param-
eters of the MRAM based cache design in [21] and [6] by
carefully scaling the technology node to 45nm. The energy
and latency parameters of 4MB and 8MB, 32-way, 64-byte
block size sequential access cache are shown in Table II.
Here we assume the write pulse duration of MRAM cell
is 10ns. The increase in write latency is handled easily
by mechanisms such as write buffering in the processor.
Otherwise, the overhead of the salvage cache, both in terms
of latencies and energies, are minimal.

VII. PERFORMANCE STUDY

The key advantage of salvaging is that more functional
blocks are made available. Figure 5 shows the average
associativity (i.e., the average number of functioning blocks
per set) of the 8 Mbyte salvage cache for various fault
probabilities, ranging from 0 to 0.003, obtained through
Monte Carlo simulations. The average associativities of the
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Fig. 6. Normalized slowdown for 22 SPEC2006 benchmarks.

DDFB cache with 0 and 104 redundant cache sets are
also plotted. We can observe that increasing the number of
redundant cache sets improves the average associativity only
marginally, although it improves the yield substantially.

Recall that a cache implemented with WDIS and BFIX
schemes have 50% and 75% of associativity, respectively,
when the cache is functional. As the WDIS cache has 100%
yield over the range of fault probabilities 0 to 0.003, the
average associativity is 16 for all non-zero fault probabilities,
as shown in Figure 5. For the BFIX cache, the average
associativities are shown to be zero for fault probabilities
that are too high for the BFIX cache to be functional.

As can be seen in Figure 5 the salvage cache config-
urations are better able to ameliorate the negative impact
of increasing fault rates. At higher fault probabilities, the
salvage cache significantly outperforms DDFB. At a bit fault
probability of 0.003, DDFB (WDIS) can achieve only about
29% (69%, respectively) of the associativity attained by
salvaging. While the salvage cache in theory has lower as-
sociativity than the BFIX scheme at high fault probabilities,
the BFIX scheme does not produce a functional cache when
the fault probability is higher than 0.001 (see Figure 4).

We evaluated the performance degradation under the
DDFB and our salvage cache using the cycle accurate x86
simulator PTLsim [24]. The experiments were configured to
simulate a 4-wide issue, dispatch, writeback, and commit
out-of-order Intel Core processor with 128-entry reorder
buffer, 256 physical registers, 2 load units, 4 integer ALU,
1 floating point adder, 1 floating multiplier and 1 floating
point conversion unit. The fetch, load and store queues have
32, 32, and 48 entries, respectively. There are 5 pipeline
stages for the front-end and 16 branches in flight can be
accomodated.. All the configurations in our experiments had
a 32KB, 8-way, 64-byte block size L1 data cache, and a
32KB, 8-way, 64-byte block L1 instruction cache. The load
hit latency is 2 cycles. The L2 of our baseline configuration
is a 8MB, 32-way, 64-byte block size sequential access cache
with a 13 cycle hit latency. The other configurations used for
comparison were a DDFB, WDIS and a salvage cache with
8 divisions, all with a fault probability of 0.003 in a 8MB L2



cache. BFIX has zero yield at this probability and so is not
considered. In these, all cache parameters were the same as
those of the baseline except that the hit latency is 14 cycles -
one extra to account for the overhead of the various schemes.

We used 22 of the 29 SPEC2006 benchmarks. For some
unknown reasons, the remaining benchmarks failed to run
correctly on the ‘vanilla’ version of PTLsim. In all 22
benchmarks, we instrumented the code such that PTLsim
full simulation is started only after data initialization. Simu-
lation is stopped after simulating 2 billion x86 instructions.
Depending on the instruction mixes of the benchmarks this
can mean anywhere from less than 2 billion (due to out-
of-order integer execution) to nearly 30 billion cycles (for
floating point intensive code).

Figure 6 shows the results of our processor simulation in
terms of performance slowdown. Due to the very large design
space and the high cost of simulating each design point
(averaging 12 wall-clock hours per run), we can only sim-
ulate certain design points. We have chosen the worst fault
probabilities, namely 0.03% fault, for DDFB and the salvage
cache (with 8 divisions). From Figure 6 we see that for many
of the benchmarks there is little performance impact: even
the reduced L2 caches are sufficient to accommodate the
working set of the benchmarks. For large caches, ideally
one should perform full system SMP simulator. However,
the cost of each run is too high for us to get try out even a
reasonable section of the design space. Besides, there are yet
to be widely accepted benchmarks for a SMP setting. Even
so, we see that for benchmarks with large working sets such
as 400.perlbench, 401.bzip2, 403.gcc, 429.mcf,
450.soplex, and 483.xalancbmk, we see significant
performance degradation for DDFB. For 429.mcf, DDFB
showed a 160% slowdown relative to the baseline, WDIS
showed a 95% slowdown while the salvage cache’s slow-
down was 48%. This is evidence that the salvage cache,
besides having better yield, also performs better than DDFB
and WDIS because of its higher effective associativities.

VIII. CONCLUSIONS

In this paper we introduce the salvage cache. It is a cache
architecture that tolerate faults by recycling faulty blocks to
patch one another in a set. Although the idea is generally
applicable to all types of caches, it is particularly attractive
when the fault probabilities are high. Otherwise, the chance
of finding more than one faulty block to form the victim-
beneficiary relationship would be low. Ideally, we would
want every functional division of the victim to be used to
patch some other faulty block. High fault probabilities have
been observed in MRAM, thus making the salvage cache a
promising structure for implementing large MRAM caches.

We evaluated the salvage cache against other alternatives
of introducing fault tolerance. Our results show that the
salvage cache gives significantly higher yields as well as
higher effective associativity. The latter results in better
performance. We therefore conclude that the salvage cache
structure is ideal for implementing a large set-associative L2
cache with next-generation memory technologies.
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