\

Insertion Policy Selection Using Decision Tree Analysis

Samira Khan, Daniel A. Jimenez

» To cite this version:

Samira Khan, Daniel A. Jimenez. Insertion Policy Selection Using Decision Tree Analysis. JWAC
2010 - 1st JILP Worshop on Computer Architecture Competitions: cache replacement Championship,
Jun 2010, Saint Malo, France. inria-00492972

HAL 1d: inria-00492972
https://inria.hal.science/inria-00492972

Submitted on 17 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00492972
https://hal.archives-ouvertes.fr

Insertion Policy Selection Using Decision Tree Analysis

Samira Khan, Daniel A. Jiménez
Department of Computer Science
The University of Texas at San Antonio

{skhan, dj }@s. utsa. edu

Abstract the last level cache.However, this policy causes misses for
blocks that were evicted but otherwise would have been
The last-level cache (LLC) mitigates the impact of longccessed in some position nearer to the LRU position. Our
memory access latencies in today’s microarchitecturgssertion policy selects the appropriate insertion positi
The insertion policy in the LLC can have a significant imyhere the workload can reduce dead time of zero reuse
pact on cache efficiency. However, a fixed insertion patocks, i.e., blocks that are never used again. It also re-
icy can allow useless blocks to remain in the cache longgins the hits of non-zero reuse blocks by keeping a block
than necessary, resulting in inefficiency. We introdugeng enough so that it is not evicted before its second ac-
insertion policy selection using Decision Tree Analysisess. We use decision tree analysis of multi-set-dueling to
(DTA). The technique requires minimal hardware mo@etermine the optimal insertion position dynamically. In-
ification over the least-recently-used (LRU) replacemestead of having one leader set for each insertion position,
policy. This policy uses the fact that the LLC filters temour multi-set-dueling uses an adaptive insertion policy in
poral locality. Many of the lines brought to the cache atge leader sets. Leader sets dynamically choose the inser-
never accessed again. Even if they are reaccessed HigY position based on the decision taken in the previous
do not experience bursts, but rather they are reused wi@f| of the decision tree. Thus, one leader set can imple-
they are near to the LRU position in the LRU stack. Wgient many insertion policies which makes the number of
use decision tree analysis of multi-set-dueling to choogelicies that can be used in multi-set-dueling scalable.
the optimal insertion position in the LRU stack. Inserting
in this position, zero reuse lines minimize their dead time
while the non-zero reuse lines remain in the cache 1o | nsertion Policy Sealection Usi ng
enough to be reused and avoid a miss. FO¥I&8 16 way .. .
set-associative last level cache in a single core processor Decision Tree Anal ysis
our entry uses only 2069 bits over the LRU replacement
policy. 2.1 Motivation

The motivation behind this work is the filtered temporal
1 Introduction locality in the last level cache. Due to hits in the L1 and

L2 caches, the access stream in the LLC does not have
We introduce insertion policy selection using Decisiomuch temporal locality. A large portion of the blocks
Tree Analysis (DTA). Our policy requires little changérought to the cache are never accessed again. Even if
in the least-recently-used (LRU) replacement policy hartiese blocks are reused they do not experience bursts and
ware. For a single core 1MB last-level cache (LLC), th@re accessed when they are nearer to the LRU position.
scheme requires only 2,069 additional bits over LRU r&ig 1 shows that only a small percentage of the hits oc-
placement. We use LRU eviction for choosing the victimur when the blocks are near the MRU position. Most of
block. However, we insert incoming blocks at a speciftbe hits occur while the blocks move toward the end of
position in the LRU stack learned by decision tree analysiee LRU stack. Without using any storage-intensive al-
from multi-set-dueling. The LRU replacement policy ingorithm to accurately identify the zero reuse blocks, we
serts an incoming block in the MRU position. Because o&n eliminate these blocks just by inserting them in the
temporal locality this block might be accessed again whil&kU position [1]. However, this will also evict blocks that
it moves from the MRU position towards the LRU posiare reused when they travel down the LRU stack. There
tion. However, since the access stream is filtered by Islan optimal position in the LRU stack where inserting
and L2 caches, the LLC might not see this temporal loc#ie blocks, zero reuse blocks will be evicted earlier while
ity. This is why LRU insertion has been proposed [1] faton-zero reuse blocks will remain in the cache avoiding

near LRU pos near MRU pos
= middlepos + assoc/4 = middlepos — assoc/4

| |
I1I|I*|II|TI|II*|III1I

LRU pos middle pos MRU pos
= assoc/2

set dueling betwedn
middle and MRU pgs

middle pos winner MRU pos winner

set dueling between set dueling between
LRU and middle pos near MRU and MRU fgos

LRU pos middle pos near MRU po.
winner winner winner

insert pos [set dueling between insert pog
LRU near LRU and middle pps near MRU

near LRU pos middle pos
winner winner

insert pos insert pos
near LRU middle

Figure 2: Decision Tree Analysis

a miss. We propose to use decision tree analysis to di¢ions from the middle position. These two positions are
termine this optimal insertion position. This analysis isamednear LRU position and near MRU position. Fig-
based on multiple set dueling [3]. However, we proposee 2 shows these five positions in the LRU stack. It also
to use adaptive insertion policy for the leader sets. TriBows how the appropriate insertion position is selected
reduces the number of sets in each leader set groupudliing the decision tree. The insertion position is chosen
also minimizes the negative effect of leader sets that imfter a few rounds of competition as illustrated in Figure 2.
plement losing insertion policies.

100 2.3 Insertion Policy Selection

80 H HAH Multi-set-dueling was proposed for multi-threaded work-
]] i mpos 12-15 |oads [2]. Each application has its own counter and it de-
|| 2222 i:%l cides to insert in either LRU position or MRU position
= pos 0-3 depending on that counter value. Multi-core multi-policy
set-dueling was subsequently proposed [3]. In each core
there are leader sets for each of the competing policies
grouped into two. In the first round two policies in one
group duel with each other. The winner policy of the first
round are deployed in the partial follower sets gets).
& ‘70@ % The second level winner is then determined from the duel
of thesep sets. Thus, the policy selection becomes a tour-
Figure 1: Hit Position({ is MRU and15 is LRU) nament where at each round half of the policies are elim-
inated. In the final round there are only two policies left
and the winner policy is followed by all the other follower
sets.
2.2 Decision Tree Analysis The problem _with this approach is_ n_umber of Ieadgr
sets goes up with the number of policies being consid-
Our scheme considers five different insertion positionséned for multi set dueling. When many policies are du-
the LRU stack. It divides the LRU stack into four equadling in a tournament manner, even if we can choose the
segments. The default placementis MRU. DIP [1] consilest performing policy for the rest of the follower sets, all
ers LRU as an insertion position. We consider the middbeit one leader set continue using the wrong policy, poten-
position of the LRU stack and other two equidistant paially hurting performance significantly when the number

60—

Hits

40

[
NN\ N\ \ Y\

20

0-

—1

,,’ Py _1
7 Pab T ! -
"’ De — pseled =
. o —! + =g
\ Py -+l)
s\\ ¢ef —1 8 2
S p — sel 2 %
/\ . pi §‘;°,
L dgn 4 o
+1
A 3
NN 1 —1,if po Wins %a
~ ~
N 23 +1 Q=
* sel S w
all sets in LLC N Zb +1, if pp, wins Cpecta) e
23
oW
oQ
oo
+1 3T
=2
Figure 3: Reduction in Leader sets with adaptive policy
"2 Insert in middle position Parameter Sto_rage
D Insert in MRU position tSet type pter S(et | gé)gst
) . WO counters (pse IS
N Insert in LRU position one counter (S) 1 blt
D Insert in near MRU position Total 2069 bits

Insert in near LRU position

psel2 (10 bits)

Table 1: Extra storage faMMB 16 way cache

psell (10 bits) s (1 bit)

Figure 4: Selecting insertion policy policy p, andp,. The last set implements,. Depend-
ing on which set is winning, we can dynamically choose
among the policiep., pq4, pe, pf, prn andpy. In the next

_) section we describe how we use this idea in our insertion
of leader set increases. Another problem is the presencs&éition selection

partial follower sets. These sets are redundant as there are
leader sets already present in the cache using that specifigccording to previous work [3] we should have five
winner policy. leader sets for five insertion positions and two partial fol-
We have used the idea of multi set dueling in a singlewer sets for 1st round winner. Instead we use only three
core context. But the problems of this scheme is solvedleyader sets. The first round duel is between the MRU
using leader set that can dynamically select specific insposition and middle position. Countgsell determines
tion policy. We also remove the partial follower sets. Fighe winner in this round. If MRU position is the winner,
ure 3 shows the difference in two schemes. The first groiing last leader set inserts in the near MRU position. The
of leader set is defined according to previous work [3ounterpsel2 is responsible for the second level winner.
First round is between poligy,, p, andp., ps andp., py But if middle position was the winner in the first round,
andpy, pg. The winner is deployed in partial follower setsast leader set inserts in the LRU position. So the second
Gabs Ped, bey aNdgy,. These sets duel in pairs and thievel duel takes place between middle position and LRU
tournament goes to semi-final and final round (not showosition. If middle position is still the winner, the last
in the figure). leader set starts inserting in near LRU position. We use a
We show our leader set with adaptive policy in the seane bit countes to keep track of the policy used in this set
ond group of the leader sets. Here we have only three that follower sets know which policy to use. Figure 4
kinds of leader sets. The first two leader sets implemesttows how follower sets decide which policy is winning.

1.10
-5 1.08
™ 106
S 104
R 1.02
o .
-]
B 100 [1
B 0.98
06— T
YN YN YN Ty %y Wy W ¥ ¥ ¥ %y %y %oy T\ T T Tin Vn Ve T T T TN TN YN Yo Yo Yo
B, 30 e 0 8 oy O O g g O O g s B O 1 3 o, 8 e
O 8500 0t Oy 20200, S0, O o, 8 25 O %S0, G 8 S G 28,8540, Oy RS, 1t
S Co Q/,) (A LN ‘5‘/90)06 95,26, P %28, Qv’@ 1 Dy oS, 7 U2
G U T O i G 0l 2y R, %, 0 0 R Tl e Yy
n RO DS AT LS R 9, W %
% 9 %
1, o7 *
Figure 5: Speedup over LRU replacement policy
‘312 An adaptive insertion policy has also been proposed for
% 20 multi-threaded workloads [2]. Depending on the charac-
E 25 teristic of the workloads, one thread may insert at the LRU
g 20 position while some other thread may insert in the MRU
j'; 15 position of the shared cache. Multi-set-dueling and dif-
e 0 ferent insertion positions for multithreaded workloads ha

been proposed by [4, 3].

5 Conclusion

Figure 6: Benchmarks at each insertion position
The selection of insertion policy with decision tree analy-

sis of multi-set dueling is a simple efficient technique that
o4 & R . t can be implemented in hardware with minimal change and
: Orage requiremen minimal additional hardware cost. Nevertheless, thistech

We have four kind of sets in our scheme; leader set inséidue captures the distinct behavior of last level cache.
ing at MRU position and middle position, adaptive lead&ur scalable multi-set dueling ensures that we can use
set and follower set. This requires exttebits per set. Only a few leader sets but still can choose the best pol-
Then we need two counterssel1 andpsel2) and one ex- i€y from a pool of options.

tra bit for s to keep track of policies in adaptive leader set.

Table 2.3 shows the space requirement fokaB 16-way Refer ences

last level cache.
[1] Moinuddin K.Qureshi, Aamer Jaleel, Yale N. Patt, Simon
C. Steely Jr and and Joel Emer. Adaptive Insertion Policies
3 Result for High-Performance Caching. In the International Sym-
posium on Computer Architecture (ISCA), 2007
. . [nZA Aamer Jaleel, William Hasenplaugh, Moinuddin K.
Figure 2.4 shows the speedup of our policy over baseli Qureshi, Julien Sebot, Simon Stelly Jr. and Joel Emer.
LRU. It achieves 1.7% IPC improvement over the base- Adaptive Insertion Policies for Managing Shared Caches. In
line. Fig 6 shows the percentage of benchmarks choosing tge Inglern%';l_tioga! Conf?ngécf) ggogara”ﬂ Architecturess an
; ; P ; ; ; ; ompiler Techniques
each insertion position when using our insertion p0|I(.‘[§] Gabriel H. Loh. Extending the Effectiveness of 3D-Stacked

selection through decision tree analysis. DRAM Caches with an Adaptive Multi-Queue Policy. In
the International Symposium on Microarchitecture (MI-
CRO), 2009

4 Redated Work [4] Yuejian Xie, Gabriel H. Loh. PIPP: Promotion/Insertion

Pseudo-Partitioning of Multi-Core Shared Caches. In
. . . . the International Symposium on Computer Architecture
Dynamic Insertion Policy (DIP) was proposed in by (ISCA), 2009 ymp P

Qureshiet al. [1]. This work also proposed set-dueling.

