
In Proceedings of the 2010 International Conference on Computer Design

Inter-socket Victim Cacheing for Platform Power Reduction

Subhra Mazumdar
University of California, San Diego

smazumdar@cs.ucsd.edu

Dean M. Tullsen
University of California, San Diego

tullsen@cs.ucsd.edu

Justin Song
Intel Corporation

justin.j.song@intel.com

Abstract— On a multi-socket architecture with load below
peak, as is often the case in a server installation, it is common
to consolidate load onto fewer sockets to save processor power.
However, this can increase main memory power consumption
due to the decreased total cache space. This paper describes
inter-socket victim cacheing, a technique that enables such a
system to do both load consolidation and cache aggregation at
the same time. It uses the last level cache of an idle processor
in a connected socket as a victim cache, holding evicted data
from the active processor. This enables expensive main memory
accesses to be replaced by cheaper cache hits. This work
examines both static and dynamic victim cache management
policies. Energy savings is as high as 32.5%, and averages 5.8%.

I. INTRODUCTION

Current high-performance processor architectures com-
monly feature four or more cores on a single processor
die, with multiple levels of the cache hierarchy on-chip,
sometimes private per core, sometimes shared. Typically,
however, all cores share a large last level cache (LLC) to min-
imize the data traffic that must go off chip. Servers typically
replicate this architecture with multiple interconnected chips,
or sockets. These systems are often configured to handle
some expected peak load, but spend the majority of the time
at a load level below that peak. Barroso and Hölzle [1]
show that servers operate most of the time between 10
and 50 percent of maximum utilization. Unfortunately this
common operating mode corresponds to the lowest energy
efficient region. Virtualization and consolidation techniques
often migrate workloads to a few active sockets while putting
the others in a low power mode to save energy. However,
consolidation typically increases the last level cache miss
rate [2] and (as a result) main memory power consumption,
due to decreased total cache space. This paper seeks to
achieve energy efficiency at those times by using the LLCs
of idle sockets to reduce the energy consumption of the
system, thus enabling both core consolidation and cache
aggregation at the same time. While many energy-saving
techniques employed in this situation (consolidation, low-
power memory states, DVFS, etc.) trade off performance
for energy, this architecture saves energy while improving
performance in most cases.

We propose small changes to the memory controllers of
modern multicore processors that allow them to use the LLC
of a neighboring socket as a victim cache. When successful,
a read from the LLC of a connected chip completes with
lower latency and consumes less power than a DRAM access.
This is due to the high-bandwidth point-to-point interconnect
available between sockets, for example, Intel’s Quick Path
Interconnect (QPI) or AMD’s Hyper Transport (HTT). By

doing this, unused cores need no longer be an energy liability.
Not only are they available for performance boost in times of
heavy load, but now they can also be used to reduce energy
consumption in periods of light load. Reducing memory
traffic has a 2-fold impact on power consumption. We save
costly accesses to DRAM, but also allow the system to put
memory into low-power states more often.

To enable victim cacheing on another socket, the inter-
socket communication protocol must be extended with extra
commands that will move the evicted lines from the local
socket to the remote socket. Future server platforms are
expected to have 4 to 32 tightly connected sockets with
large on-chip caches per socket. To show the effectiveness
of this policy, we use a dual socket configuration in which
one of the sockets is active, running some workload, while
the other socket is in an idle state. This assumes we can
power the LLC without unnecessarily powering the attached
cores, which is possible in newer processors. For example,
the Intel Nehalem processors have the LLC on a different
uncore voltage/frequency domain, thus enabling the cores to
be powered off while the uncore is active.

We show two different policies for maintaining a cross-
socket victim cache. The first is a static victim cache policy,
where the idle socket LLC is always on and used as a victim
cache by the active socket. This policy shows improvement
in energy for many benchmarks, but consumes more energy
for some others. When the victim cache is not effective,
we add extra messages and an extra cache access to the
latency and energy of the original DRAM access. Therefore,
we also demonstrate a dynamic policy to filter out the
benchmarks that are not using the victim cache effectively.
In this case, the memory controller dynamically decides
whether to switch on the victim cache and use it based on
simple heuristics. The latter policy sacrifices little of the
energy gains where the victim cache is working well, but
significantly reduces the energy loss in the other cases.

The rest of the paper is organized as follows. Section II
provides an overview of the related work. Section III ex-
plains the cache and DRAM power models and the dynamic
policy to control the victim cache. Section IV describes the
experimental methodology and results. Section V concludes.

II. RELATED WORK

This work strives to exploit the integration of different
levels of the cache/memory hierarchy as they exist in current
architectures. Most previous work on power and energy
management techniques focus on a particular system compo-
nent. Lebeck, et al. [3] propose power-aware page allocation



algorithms for DRAM power management. Using support
from the memory controller for fine-grained bank level
power control, they show increased opportunities for placing
the memory in the low power mode. Delaluz, et al. [4]
and Huang, et al. [5] propose OS level approaches which
maintain page tables that map processes to the memory banks
with allocated memory. This allows the OS to dynamically
switch off unutilized banks. Recent studies [1] show that in
modern systems, the CPU is no longer the primary energy
consumer. Main memory has become a significant consumer,
contributing 30-40% of the total energy on modern server
systems. Hence the trade off between power consumption
of the different components of a system is key to achieving
optimum balance. Using the caches of idle cores to reduce
the number of main memory accesses presents this opportu-
nity.

Several research works seek to exploit victim cacheing to
improve CPU performance by holding evicted data for future
access. Jouppi [6] originally proposed the victim cache as a
small, associative buffer that captures evicted data from a
direct-mapped L1 cache. Chang and Sohi [7] propose using
the unused cache of other on-chip cores to store globally
active data, which they refer to as aggregate cache. This
reduces the number of off-chip requests through cache-to-
cache data transfers. Feeley, et al. [8] use the concept of
victim cacheing to keep active pages in the memory of
remote nodes in an internetwork, instead of evicting them
to the disk. Leveraging such network-wide global memory
improves both performance and energy efficiency. Kim, et
al. [9] propose an adaptive block management scheme for
a victim cache to reduce the number of accesses to more
power-consuming memory structures such as L2 caches.
They use the victim cache efficiently by selecting the blocks
to be loaded into it based on L1 history information. Memik,
et al. [10] attack the same problem with modified victim
cache structures and miss prediction to selectively bypass
the victim cache access, thus avoiding energy waste for data
search in the victim cache.

This paper proposes the use of existing cache capacity off-
chip to significantly reduce the energy consumption of main
memory.

III. DESIGN

This section provides some background material on
DRAM design and introduces our inter-socket victim cache
architecture.

A. DRAM functionality Background

The effectiveness of trading off-chip LLC accesses for
DRAM accesses depends on the complex interplay between
levels of the memory hierarchy, the communication links,
etc. In this section, we discuss our model of DRAM access,
as we have found that it is critical to accurately model the
complex power states of these components over time in order
to reach the right conclusions and properly evaluate tradeoffs.

DRAM is generally organized as a hierarchy of ranks, with
each rank made up of multiple chips, each with a certain data

Rank 1 Rank 2 Rank 3 Rank 4 

DDR 
SDRAM 
Controller 

DRAM 
Chips 

Address & cmd 
Data bus 
Chip (DIMM) Select 

Fig. 1. DRAM organized as ranks.

Control 
Logic 

Clk 
CKE 
Cmd 

v 

Addr 
Register 

Addr 

Row 
Addr 
Mux 

Bank 
Control 
Logic 

Column 
Addr 
Decode 

Row 
Addr 
Dec- 
oder 

Column 
decoder 

I/O Gating 

Bank 
Memory 
Array 

Row Buffer 

Read 
Latch 

Write 
Driver 

M 
U 
X 

D0-D7 
Input Regs 64 

Fig. 2. A single DRAM chip.

output width as shown in Figure 1. Each chip is internally
organized as multiple banks with a sense amplifier or row
buffer for each bank, as shown in Figure 2. Data from an
entire row of a bank can be read from the memory array into
the row buffer and then bytes can be read from or written to
the row buffer. For example, a 4GB DRAM can be organized
as 4 ranks, each 1GB in capacity and organized as eight 1Gb
memory chips. To deliver a cache line, only one rank need
be active and every chip in that rank will deliver 64 bits (64
bits will be delivered in transfers of 8 bits) in parallel thus
forming a 64 Byte cache line in four cycles (dual data rate).
There are four basic DRAM commands that are used: ACT,
READ, WRITE and PRE. The ACT command is used to
load data from a row of a device bank into the row buffer.
READ and WRITE commands can be used to perform the
actual reads and writes of the data once in the row buffer.
Finally a PRE command is used to store the row back to
the array. A PRE command needs to be used for every ACT
command since the ACT discharges the data in the array.

The above commands can only be applied when the clock
enable (CKE) of the chip is high. If the CKE is high it is
said to be in standby mode (STBY); otherwise, it is in power



PRE_PDN 
(power-down) 

ACT_STBY 
(active) 

PRE_STBY 

ACT_STBY 
(active) 

PRE_STBY 

timeout 

transition transition 

Power 
increases 

Fig. 3. DRAM power states.

down mode (PDN). Also if any of the banks in a device are
open (i.e. data is present in the row buffer) it is said to be
in active state (ACT). If all the banks are pre-charged, it
is in the pre-charged state (PRE). Thus the DRAM can be
in one of the following combination of states: ACT STBY,
PRE STBY, ACT PDN and PRE PDN. We assume a mem-
ory transaction transitions through 3 states only. First, CKE
is made high and data is loaded from the memory array to
the row buffer. At this time the device is in ACT STBY
state. After completion of the read/write the row is pre-
charged and the bank is closed, with the device going into the
PRE STBY state. Finally if no further request comes, after
a timeout period the CKE is lowered and the device enters
the PRE PDN state. In a multi-rank module, ranks are often
driven with the same CKE signal, thus requiring all other
ranks to be in standby mode while one rank is active. The
state transitions of the DRAM device are shown in Figure 3.
We assume a closed page policy which is essentially a fast
exit from ACT STBY to PRE STBY for both our baseline
and victim cache architecture. Memory controller policies
for DRAM power management [11] show that this simple
policy of immediately transitioning the DRAM chip to a
lower power state performs better than sophisticated policies.

B. Inter-Socket Victim Cache Architecture

We examine two management policies, a static policy that
always uses the victim cache, if available, and another that
may ignore the victim cache when the application does not
benefit.

a) Static Policy: In multi-socket systems, the sockets
are generally interconnected through point-to-point links,
which have low delay and high bandwidth, such as Intel’s
Quick Path Interconnect (QPI) or AMD’s Hyper Transport
(HTT). These links maintain cache coherence across sockets
by sending snoop traffic, invalidation requests, and cache-to-
cache data transfers.

To enable victim cacheing, we need to make only minor
changes to the memory controller and the transport proto-
col. The inter-socket communication protocol needs to be
extended with extra commands that will send the address of a
cache line to search in the remote cache and also store evicted
data from the local socket to the remote socket. No extra
logic overhead is incurred since such requests already exist
as part of the snooping coherence protocol. These transfers

can be fast, as the links typically support high bandwidth,
for example up to 25GB/s on Intel’s Nehalem processors.

The memory controller only has to be aware of whether
we are in victim cache mode, and which socket or sockets
can be used. We assume the OS saves this information in a
special register. In a multi-socket platform, any idle socket
can be chosen by an active socket to evict its data, but we’d
prefer one which is directly connected.

With our victim cache policy, on a local LLC miss data is
searched in the remote socket LLC by sending the address
over the inter-socket link. If the cache line is found, the data
is sent to and stored in the local socket cache. At the same
time, the LRU cache line from the local cache is evicted to
replace the line being read from the victim cache – resulting
in a swap between the two caches. In case of a miss in the
victim cache, data needs to be brought from main memory.
The cache line evicted from the local LLC is written back to
the victim LLC. This may cause an eviction of a dirty line
from the victim LLC which will be written back to main
memory.

It is important to note that we assume the DRAM access
is serialized with the remote socket snoop. When the mem-
ory controller is in normal coherence mode, it is common
practice to do both the snoop and initiate the DRAM access
in parallel for performance reasons. Thus, the memory con-
troller follows a slightly different (serial) access pattern when
we are in victim cache mode. Accessing the remote cache
and DRAM in parallel makes sense when the likelihood of
a snoop hit is assumed to be low. However, when the victim
cache is enabled, we expect the frequency of remote hits
to be much higher, making serial access significantly more
energy efficient. The result of this policy is that we increase
DRAM latency in the case of a victim cache miss. Therefore,
an application that gets no benefit at all from the victim cache
will likely see an overall decrease in performance, as well
as a loss of energy (both due to the increased runtime and
the extra, ineffective remote LLC accesses). For this reason
we also examine a dynamic policy that attempts to identify
workloads or workload phases for which the victim cache is
ineffective.

b) Dynamic Policy: Not all applications will take ad-
vantage of the victim cache. For example, streaming appli-
cations which touch large amounts of data with little re-
use will not see many hits in the victim cache. For those
applications our architecture can have an adverse effect on
energy efficiency. To counter this, we propose a dynamic
cache policy which can intelligently turn on the victim
cache and use it when profitable, while switching it off
otherwise. We want to minimize changes and additions to
the memory controller, so we seek to do this with simple
heuristics based on easily-gathered data. We assume that
the memory controller is able to keep count of the number
of hits in the victim cache over some time period. This
is easily implemented by using a counter which can be
incremented by the controller every time there is a victim hit.
The memory controller samples the victim cache policy in a
small time window by switching it on (if it is not already).



At the end of the interval, it compares the counter with
a threshold (threshold hit). If the number of victim hits is
equal to or below threshold hit, the victim cache is turned
off until the next sampling interval, otherwise it is kept on.
We continue to sample at regular intervals to dynamically
adapt to application phases. The threshold hit value can be
stored in a register and set by the controller. In this way, the
threshold can be changed based on operating conditions that
the OS might be aware of (load, time-varying power rates,
etc.) – we assume a single threshold.

When sampled behavior is near threshold, oscillating
between on and off can be expensive, especially due to the
extra writebacks of dirty data in the victim cache to memory.
Therefore, we also account for the cost of turning the victim
cache off by tracking the number of dirty lines in the victim
cache. If this is more than threshold dirty at the end of the
sampling interval, we leave the victim cache on. This does
not mean the victim cache stays on forever once it acquires
dirty data, even in the presence of unfriendly access patterns
– for example, a streaming read will clear the cache of dirty
data and allow it to be turned off. The count of dirty lines
is not just an indicator of the cost of switching, but also a
second indicator of the utility of the victim cache. This is
because eviction of dirty lines to the victim cache saves more
energy than eviction of clean lines. This is for two reasons:
(1) memory writes take more power, and (2) the eviction
(read and transfer the line from the local LLC) would have
been necessary even without the victim cache if the line was
dirty.

Therefore, we switch the victim cache off only if both
these conditions fail. This policy makes the controller more
stable and reduces the energy wasted due to frequent bursts
of write-backs. Hardware counters similar to those mentioned
above are already common in commercial processors.

IV. EVALUATION

In this section we describe the cache and memory sim-
ulator used for evaluating our policy and give the results
of those simulations. Detailed simulation of core pipelines
is not necessary since we are only interested in cache and
memory power tradeoffs.

A. Methodology

For our experimental evaluation we use a cycle accurate
memory trace based simulator that models the power and
delay for the last level cache, the victim cache, and main
memory. The memory traces are obtained using the SMT-
SIM [12] simulator with the timing (clock cycle), address,
and read/write information. The timing data is used to
establish inter-arrival times for memory accesses from the
same thread. The traces are used as input to our cache-
memory simulator, which reports the total energy, miss ratio,
DRAM state residencies and other statistics. The L2 cache
is modeled as private with a capacity of 256 KB per core.
We do not capture the L1 cache traces since we assume an
inclusive cache hierarchy – data access requests filtered by

TABLE I
LAST LEVEL CACHE (L3) CHARACTERISTICS (8MB)

Parameter Value
Dynamic read energy 0.67 nJ
Dynamic write energy 0.60 nJ
Static leakage power 154 mW
Read access latency 8.2 ns
Write access latency 8.2 ns

TABLE II
DRAM CHARACTERISTICS (1GB CHIP)

Parameter Value
Active + Precharge energy 3.18 nJ
Read power 228 mW
Write power 260 mW
ACT STBY power 118 mW
PRE STBY power 102 mW
PRE PDN power 39 mW
Self-refresh power 4 mW
Read latency (from row buffer) 15 ns
Write latency (to row buffer) 15 ns

the L2 cache will be the same in both cases as seen by the
LLC.

Delay and power for the cache sub-system is modeled
using CACTI [13]. The last level cache (the L3 cache) has
8MB capacity with 16 ways and organized into 4 banks,
based on 45nm technology. The cache line is 64 Bytes.
Table I shows the delays, dynamic energy per access, and
the static leakage power consumed by the cache. All these
configurations are based on the Intel Nehalem processor used
on dual socket server platforms.

The main memory is modeled using timing and power of
a state of the art DDR3 SDRAM based on the data sheet of
a Micron x8 1Gb memory chip, running at 667 MHz. The
parameters used for DRAM are listed in Table II. From the
table we find that the power-down mode power of DRAM
is much less than that in the active or standby mode. This
indicates that by extending the residency of the DRAM in the
low power state, substantial energy saving can be achieved.
We extended the simulator for the victim cache policy by
incorporating a victim cache along with the inter-socket
communication delay. The characteristics of the victim cache
are the same as that of the local cache. We further extended
the simulator to implement a dynamic cacheing policy based
on victim hits and dirty lines as described in Section III.

For our experiments, we assume a baseline system with
4GB of DDR3 SDRAM consisting of four 1GB ranks,
where each rank is made up of eight x8 1Gb chips. The
power for the entire DRAM module is calculated based on
the state residencies, reads and writes of each rank, and
number of chips per rank. We assume a dual socket quad
core configuration in which one socket is busy running a
(possibly) consolidated load while the other is idle.

We evaluate both the static and dynamic inter-socket
victim cache policies described in Section III. For the dy-
namic policy, we determine good values for threshold hit and
threshold dirty experimentally and use those in all results. In-



0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

as
tar

 
bz

ip gc
c 

go
bm

k 

hm
mer 

hre
f 

mcf 

om
ne

tp

p 
pe

rl 

sje
ng

 
lib

q 

av
g 1

 

thr
ea

d av
g 2

 

thr
ea

d av
g 3

 

thr
ea

d av
g 4

 

thr
ea

d mix1
 
mix2

 
mix3

 
mix4

 

R
el

at
iv

e 
E

ne
rg

y 
D

is
tr

ib
ut

io
n 

DDR_DYN DDR_STAT 

LLC_DYN LLC_STAT 
ba

se
lin

e 
st

at
ic

 
dy

na
m

ic
 

Fig. 4. Relative energy normalized to the baseline.

terestingly, a threshold hit value of zero and a threshold dirty
value of 100 gave the best results. The threshold hit of zero
means that we would only shut down the victim cache if there
were no victim hits in an interval, but that was actually a
fairly frequent occurrence. The low value for threshold dirty
was due in part to our small sample interval size (10000
memory transactions).

We calculate the total power of the caches plus the mem-
ory system as the metric, since although DRAM energy is
saved from lesser memory activity, extra power is consumed
due to increased victim cache activity. Overall power is
improved if more energy is saved in the DRAM than lost
in the victim cache.

For our workload we use the SPECCPU 2006 benchmark
suite. A memory trace for each benchmark was obtained
by fast-forwarding execution to the SIMPOINT [14] and
then generating the trace for the next 200 million executing
instructions. Our simulator models a 4-core processor per
socket. A multi-program workload was generated by running
multiple traces (4 in this case) of benchmarks in multiple
cores. We examine both homogeneous and heterogeneous
workloads. We used only the integer benchmarks for our
evaluation since this set of applications have diverse memory
characteristics with respect to number of read/writes per
instruction, cache behavior, and memory footprints.

B. Results

Figure 4 shows the overall energy saving for both the
static and the dynamic victim cache policies broken down by
different energy components. The energy measured includes
both the local and victim caches (shown by LLC STAT
and LLC DYN) and the main memory power (shown by
DDR STAT and DDR DYN). We run 1 to 4 threads in
the four CPUs of the first socket. Results on the left are
for one core active, but we show the average results for
more cores active. The static policy is able to save up
to 33.5% of the energy over the baseline system with no
victim cache for a single thread (astar). The energy savings
comes from a combination of reduced DRAM accesses and
increased DRAM idleness. We find that the dynamic energy
of the cache is small compared to the dynamic energy of the

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

as
ta

r 
bz

ip
 

gc
c 

go
bm

k 
hm

m
er

 
hr

ef
 

m
cf

 
om

ne
tp

p 
pe

rl 
sje

ng
 

lib
qu

an
tu

m
 

av
g 

1 
th

re
ad

 
av

g 
2 

th
re

ad
 

av
g 

3 
th

re
ad

 
av

g 
4 

th
re

ad
 

m
ix1

 
m

ix2
 

m
ix3

 
m

ix4
 

Re
la

tiv
e 

DR
AM

 R
eq

ue
st

s 

static 
dynamic 

Fig. 5. Relative DRAM requests normalized to the baseline.

0 

20 

40 

60 

80 

100 

120 

as
ta

r 
bz

ip
 

gc
c 

go
bm

k 
hm

m
er

 
hr

ef
 

m
cf

 
om

ne
tp

p 
pe

rl 
sje

ng
 

lib
qu

an
tu

m
 

av
g 

1 
th

re
ad

 
av

g 
2 

th
re

ad
 

av
g 

3 
th

re
ad

 
av

g 
4 

th
re

ad
 

m
ix1

 
m

ix2
 

m
ix3

 
m

ix4
 

M
is

s 
Ra

te
 

baseline 

static 

dynamic 

Fig. 6. Overall miss rate.

DRAM since the latter populates the large row buffer (the
size of a page). This results in high energy savings when
we convert main memory accesses into victim cache hits.
Figure 5 shows the number of DRAM requests, normalized
to the baseline, while Figure 6 shows the impact on overall
miss rate (counting victim cache hits). We find that the
number of DRAM requests has reduced dramatically for
many benchmarks, 15% on average.

Not surprisingly, we see from these two figures that energy
savings is highly correlated with the reduction in DRAM
accesses. astar, gcc, mcf and omnetpp all make excellent
use of the extra socket as a victim cache. However, several
benchmarks get no significant gain from the larger effective
cache size afforded by the extra socket. In those cases, we see
that the ineffective use of the victim cache results in wasted
energy, primarily in the form of static power dissipation of
the remote socket LLC. These benchmarks either have very
low miss ratio like hmmer, where addition of extra cache
is unnecessary, or have extremely large memory footprints
and little locality like sjeng and libquantum. For more than
2 threads, even non memory-intensive applications like bzip
and href show significant improvement due to the increased
pressure on the shared last level cache, as indicated by a 9%
overall energy saving for 4 threads with the dynamic policy.



0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

as
tar

 
bz

ip gc
c 

go
bm

k 

hm
mer hre

f 
mcf 

om
ne

tp

p 
pe

rl 

sje
ng

 
lib

q 

av
g 1

 

thr
ea

d av
g 2

 

thr
ea

d av
g 3

 

thr
ea

d av
g 4

 

thr
ea

d mix1
 

mix2
 

mix3
 

mix4
 

D
is

tr
ib

ut
io

n 
of

 D
R

A
M

 s
ta

te
s 

ACT_STBY PRE_STBY PRE_PDN 

ba
se

lin
e 

st
at

ic
 

dy
na

m
ic

 

Fig. 7. DRAM state distribution.

bzip shows 9.2% and 18.8% energy savings while href shows
5.2% and 32.9% savings for 3 and 4 threads, respectively (not
shown individually in the graph). We also investigate four
heterogeneous workloads mix1 (astar, gcc, mcf, omnetpp),
mix2 (astar, gcc, gobmk, hmmer), mix3 (mcf, omnetpp, perl,
sjeng) and mix4 (hmmer, href, perl, sjeng) created by mixing
benefiting and non-benefiting benchmarks. For mix1 we find
that all the benefiting benchmarks are competing for the vic-
tim cache, resulting in a low overall energy improvement. For
mix2 and mix3 only half of the benchmarks are utilizing the
victim cache — lower competition results in more effective
use of the victim cache. For mix4 all the benchmarks were
non-benefiting and together still show energy degradation
with the victim cache policy.

For those workloads where the victim cache was of
little use, our dynamic victim cache policy was much more
effective at limiting wasted energy on unprofitable victim
cache usage. As a result, the negative results are minimal
when the victim cache is not effective (below 0.5% in most
cases), and we still achieve most of the benefit when it is
– resulting in an overall decrease in energy to the memory
subsystem. What negative effects remain are chiefly due to
the occasional re-sampling to confirm that the victim cache
should remain off. Identifying more sophisticated victim
effectiveness prediction is a topic for future work.

We save power every time we avoid an access to the
DRAM. But this is often more than just the power incurred
for the access. In many cases, avoiding an access also
prevents a powered-down DRAM from becoming active, or
avoids resetting the timer on an active device, which prevents
it from powering down at a later point. Figure 7 shows the
distribution of power states in all DRAM devices. In those
applications where the DRAM access rate decreased, we
find that the percentage of time spent in the power-down
mode is increased, in many cases dramatically. Even with
four threads, when the power-down mode is least used, the
victim cache is still able to increase its use.

V. CONCLUSION

This paper describes inter-socket victim-cacheing, which
uses idle processors in a multi-socket machine to enable

significant increase in energy efficiency. This research uses
the shared last-level cache of idle cores as a victim cache,
holding data evicted from the LLC of the active processor. In
this way, power-hungry DRAM reads and writes are replaced
by cache hits on the idle socket. This requires minor changes
to the memory controller.

We demonstrate both static and dynamic victim cache
management policies. The dynamic policy is able to disable
victim cache operation for those applications that do not
benefit, without significant loss of the efficiency gains in the
majority of cases where the victim cache is effective. Inter-
socket victim cacheing typically improves both performance
and energy consumption. Overall energy consumption of the
caches and memory is reduced by as much as 32.5%, and
averages 5.8%.

VI. ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their
helpful suggestions. This work was funded by support from
Intel and NSF grant CCF-0702349.

REFERENCES

[1] L. A. Barroso and U. Hölzle, “The case for energy-proportional
computing,” IEEE Computer, January 2007.

[2] P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. G. Shin, “Performance
evaluation of virtualization technologies for server consolidation,” HP
Laboratories, Tech. Rep., April 2007.

[3] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis, “Power aware page
allocation,” in Proceedings of the 9th international conference on Ar-
chitectural support for programming languages and operating systems,
November 2000.

[4] V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vijaykrishnan, and
M. J. Irwin, “Schedular based dram energy management,” in 39th
Design Automation Conference, June 2002.

[5] H. Huang, P. Pillai, and K. G. Shin, “Design and implementation of
power aware virtual memory,” in USENIX Annual Technical Confer-
ence, June 2003.

[6] N. P. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache prefetch buffers,” in 17th
International Symposium on Computer Architecture, May 1990.

[7] J. Chang and G. S. Sohi, “Cooperative cacheing for chip multiproces-
sors,” in Proceedings of the 33rd annual international symposium on
Computer Architecture, June 2006.

[8] M. Feeley, W. E. Morgan, F. H. Pighin, A. R. Karlin, H. M. Levy,
and C. A. Thekkath, “Implementing global memory management in a
workstation cluster,” in Proceedings of the fifteenth ACM symposium
on Operating systems principles, December 1995.

[9] C. H. Kim, J. W. Kwak, S. T. Jhang, and C. S. Jhon, “Adaptive
block management for victim cache by exploiting l1 cache history
information,” in International conference on embedded and ubiquitous
computing, August 2004.

[10] G. Memik, G. Reinman, and W. H. Mangione-Smith, “Reducing
energy and delay using efficient victim caches,” in Proceedings of
international symposium on Low power electronics and design, August
2003.

[11] X. Fan, C. S. Ellis, and A. R. Lebeck, “Memory controller policies
for dram power management,” in Proceedings of the International
Symposium on Low Power Electronics and Design, August 2001.

[12] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous mul-
tithreading: maximizing on-chip parallelism,” in 22nd International
Symposium on Computer Architecture, June 1995.

[13] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “Cacti
5.1,” HP Laboratories, Tech. Rep., 2008.

[14] T. Sherwood, E. Perelman, and G. Hamerly, “Automatically charac-
terizing large scale program behavior,” in Proceedings of the 10th
international conference on Architectural support for programming
languages and operating systems, October 2002.


