FIMSIM: A Fault Injection Infrastructure for
Microarchitectural Simulators

Abstract—Fault injection is a widely used approach for
experiment-based dependability evaluation in which faults can be
injected to the hardware, to the simulator or to the software. Sim-
ulation based fault injection is more appealing for researchers,
since it can be utilized at the early design stage of the processor.
As such, it enables a preliminary analysis of the correlation
between the criticality of circuit level faults and their impact
on applications. However, the lack of publicly available fault in-
jectors for microarchitecture level simulators brings extra burden
of designing and implementing fault injectors to the researchers
who evaluate microarchitecture dependability. In this study, we
present FIMSIM, to the best of our knowledge, the first publicly
available fault injection simulator at the microarchitecture level.
FIMSIM is a compact tool which is capable of injecting transient,
permanent, intermittent and multi-bit faults. Therefore, FIMSIM
provides the opportunity to comprehensively evaluate the vulner-
ability of different microarchitectural structures against different
fault models.

I. INTRODUCTION

Dependability against hardware faults (tran-
sient/intermittent/permanent faults) has become a first
class design constraint for computer designers due to scaling
technology trends (e.g. smaller feature size). Hence, several
fault tolerance techniques have been proposed to produce
robust and reliable computer systems [17], [20], [21], [22],
[23], [29]. However, fault tolerance techniques introduce
penalties in performance, in power, in die size or in design
time. Therefore, it is essential to carefully evaluate the level
of dependability that the fault tolerance approach provides.

Fault injection is a widely used experiment-based depend-
ability evaluation approach in which faults are injected either
(1) to the real hardware, (2) to the simulator or (3) to the
software (operating system or application). While hardware
fault injection requires at least the physical prototype of the
system, software fault injection is limited in the sense that they
cannot inject faults into locations that are inaccessible to the
software. On the other hand, simulation based fault injection is
applicable early in the design time and it can inject faults to the
processor structures that cannot be excited by injecting faults
at the software level. Nevertheless, it provides the correlation
between the criticality of circuit level faults and their impact
on the application level. Consequently, simulation based fault
injection is more appealing for researchers than software and
hardware based fault injections.

Several simulation based fault injectors model the Register
Transfer Level (RTL) of microprocessors [9], [27]. These mod-
els are incapable of modelling a wide range of systems (e.g.
multi core multi threaded architectures) due to their design

complexity and their high simulation time. Moreover, they are
impractical for the researchers who design fault tolerance in
the microarchitecture level since they use microarchitectural
simulators for their design. However, the lack of publicly
available microarchitecture level fault injector simulators leads
each researcher to implement his/her own fault injector [14],
[26] to test fault tolerant schemes. However, this brings extra
design and implementation burden to the researchers.

In this study, we present FIMSIM, to the best of our knowl-
edge, the first publicly available fault injection infrastructure
for microarchitectural simulators. Therefore FIMSIM takes the
burden of designing and implementing a fault injection tool
from the researchers.

Fault tolerant schemes generally targets particular fault
models. FIMSIM is capable of injecting transient, permanent
and intermittent faults either as single-bit fault or multi-bit
faults as combination of several fault models. Hence, FIMSIM
is convenient for the evaluation of many dependable system.
On the other hand, faults in small-sized structures (bypass
logic, PC) may lead to drastic errors despite the fact that the
likelihood of the fault occurrence in a bigger-sized structure
(e.g. register file) is higher. FIMSIM, apart from the prior
fault injectors, injects faults to critical small sized structures
besides other large buffered structures. Inevitably, the sizes
of structures are taken into account by FIMSIM for the
calculation of the dependability of the entire microarchitec-
ture. Consequently, the compact characteristic of FIMSIM
provides opportunity to make a comprehensive evaluation
of the vulnerability of different microarchitectural structures
against different fault models. In this work, we present the
detailed analysis of the vulnerability of the in-order Alpha [1]
microarchitecture by utilizing spec cpu2006 [11] benchmark
suit.

Besides performance impacts in the fault free cases and
dependability level that a fault tolerance scheme presents,
recovery time is also a crucial constraint for fault tolerance
which has not been measured by many prior fault tolerance
proposal. FIMSIM supplies recovery time measurement as
well as dependability evaluation. In this study we evaluate the
recovery time of FaulTM [29], a transactional memory based
fault tolerance technique by utilizing FIMSIM, as a case study.

Simulation time is a prominent limitation for the fault
injection technique. FIMSIM, reduces the simulation time
due to two reasons. First, FIMSIM is on microarchitecture
level simulation which keeps the simulation time shorter
compared to RTL level simulations. Second, we utilize M5 [4],
a microarchitecture simulator that provides a checkpointing

mechanism for the implementation of FIMSIM. Therefore,
numerous fault injections, especially in the late phase of
the applications, are achieved in shorter amount of time by
restoring the checkpoints in the later phase without the need
to run the application from the beginning.

Repeatability of fault injection experiments (injecting the
exact fault again) is also an essential issue for validation of
dependability since, compelling test cases can be determined
and prepared. FIMSIM is able to repeat a fault injection
experiment easily. In FIMSIM, the user can define the fault
injection point explicitly instead of injecting faults to randomly
generated points.

The contributions of this study are:

o We present FIMSIM, a publicly-available microarchitec-
tural simulation fault injection infrastructure.

« FIMSIM is a compact tool which is capable of injecting
transient, permanent, intermittent and multi-bit faults.

o We present a comprehensive evaluation of the vulnera-
bility of different microarchitectural structures in Alpha
microarchitecture against different fault models.

e Through a case study, we demonstrate how FIM-
SIM facilitate detailed reliability analyses. In particular,
we examine the fault recovery time overheads of the
FaulTM [29] fault tolerance mechanism.

In the next section, we present the fault model that FIMSIM
supports. In Section III, we explain the design principles of
FIMSIM. In Section IV, we present our fault injection result.
We will discuss the prior studies in Section V.

II. FAULT MODEL

Faults experienced by semiconductor devices fall into three
main categories: transient, intermittent and permanent. More-
over, when these faults affect more than a bit at a time, multi-
bit faults occur. In this section we will explain these faults.

A. Transient Faults

A transient fault (also known as Soft Error) is a bit flip due
to some radiation event or power supply noise. Since the data
bit stored in a device is corrupted until new data is written to
that device, these errors are temporal (transient) [2]. Despite
the fact that transient faults are nondestructive functional errors
and they can be fixed by re-setting or re-writing of the device,
they may cause dramatic impact on computer systems unless
they are mitigated [3]. As transistor dimensions and operating
voltages shrink, sensitivity to radiation increases dramatically.
Thus, it is foreseen that future systems will be more prone
to transient faults. In FIMSIM, we simulate transient faults
by flipping (changing O to 1 or vice versa) the value of the
randomally selected bit in a randomly selected cycle.

B. Permanent Faults

Irreversible physical changes in the semiconductor devices
are called permanent faults. Fault tolerance mechanisms usu-
ally disconnect the faulty structures hit by permanent faults,
and replace them with fault-free spare structures. Systems
having these mechanisms tolerate permanent faults well. In

fact, the lifetime reliability of a system is defined by its
ability to tolerate these faults. Permanent faults tend to occur
early in the processor lifetime due to manufacturing faults
(called “infant mortality”), or late in the lifetime due to
thermal and process related stress (typically faults in this epoch
are manifested first as intermittent faults, then progress to
permanent faults). In FIMSIM, we use stuck-at-0 and stuck-
at-1 fault models to simulate the permanent faults in which a
randomly selected value becomes stuck from the fault injection
cycle until simulation ends.

C. Intermittent Faults

Process variation or in-progress wear-out, combined with
voltage and temperature fluctuations cause burst of frequent
faults, called intermittent faults, that last from several cycles to
several seconds. An intermittent fault occurs repeatedly at the
same location, it tends to occur in bursts for a period of time
when the fault is activated while replacement of the offending
circuit removes the intermittent fault [6], [28]. It has been
suggested that intermittent faults have the potential to impact
program execution to a greater extent when compared with
transient faults [19]. Moreover, it is hard to diagnose by post
facto using hardware/software tests because intermittent faults
do not persist and the conditions that caused the fault are hard
to regenerate.

Continued device scaling results in increased Process, Volt-
age and Temperature (PVT) variations, increased cross-talk
and decreased noise margins all of which lead to increased
susceptibility to intermittent faults. Moreover, wear-out fail-
ures are expected to become much more frequent but de-
vices typically do not fail suddenly, they display intermittent
behaviour for a period of time beforehand. Therefore, it is
prevised that the rate of occurrence of the intermittent faults
will increase [5], [7].

In FIMSIM, we simulate intermittent faults by utilizing
stuck-at fault models for a predefined number of cycles.

D. Multi-bit Faults

Multi-bit faults occur when hardware faults affect multiple
bits at a time. In this section we will explain several of them.

Spatial multi-bit upsets of transient faults occur when a
single particle strike causes more than one bit-flip in the
neighbourhood. Results of irradiation tests on 90nm commer-
cial processes reveal that multi-bit upsets as large as 13 bits
can occur in sub-100nm technologies [18]. These faults are
expected to increase in the future processors due to shrinking
size of the transistors. A two-bit spatial multi-bit upset can
manifest in two ways: horizontal or vertical [8]. Horizontal
means two adjacent bits on the same word are upset. Vertical,
on the other hand, means that the same bit in two adjacent
words are upset.

Temporal multi-bit upsets happen when multiple indepen-
dent particles strike distinct locations of the structure causing
upsets on multiple bits. Since the likelihood of particle strike is
high in the high altitudes, the probability of temporal multi-bit
upsets increases in higher altitudes [16].

System FaultList
-cpuList[] -faults[] : Fault
-faultList : Faultlist | __ __________________ S+readFaultsFromFile()
-L2cache +addFault()
-sharedMemory +deleteFault()
+nextCycle() +injectFaults()

1 1

BaseCPU)

-intRegisterFile
-fapRegisterFile
-miscRegisterFile

Fault
-processorID : int

-alu) -faultType : string
-bypassLogic -injectionCycle : long
-pc -faultyStructure : string
-opcode -faultyEntry : int

-data_tlb

-neighbour : bool
-instruction_tlb

+injectFault()

Fig. 1. Class Diagram of FIMSIM. Shaded classes are the extensions for
the fault injection purpose.

Bridging permanent faults are caused by shorts between
normally unconnected signal lines. There are two types of
bridging faults (1) dominant-1 is modelled assuming that there
is an AND gate between bits and (2) dominant-0 is modelled
by using an OR-gate. Note that, if there is a short between two
bits, only the value of one bit changes. However, we classify
these bridging faults under multiple faults since it is related
to multiple bits.

III. IMPLEMENTATION

In this section, we describe the infrastructure of the FIMSIM
tool and its capabilities. First, we define the simulator that
we enhanced with fault injection capability. After that, we
describe the aspects of a golden run. Then, we explain the fault
injection implementation. Finally, we present the calculation
of the processor dependability according to the fault injection
results.

A. Simulator

We enhance the M5 full system simulator [4] with fault
injection capability. We select M5 for our base simulator due
to its several properties that are convenient for a fault injection
tool. First, M5 is a full system simulator that we can observe
the effects of hardware faults on the operating system and user
applications. Second, M5 has a checkpointing mechanism that
dump the whole inner-state of the architecture to a checkpoint
file whenever it is desired. In FIMSIM, we can trace the
effect of a fault by comparing checkpoints easily. Moreover,
we can accelerate repetitive fault injections to the late phase
in applications by restoring the checkpoints without having
to execute until that point. Note that M5 is a deterministic
simulator that the results do not vary at all between two
identical runs at different times. Third, in M5, we can add
command line options easily by modifying Python scripts.
This is beneficial because we can define the fault injection
and the golden run options without modifying the simulation
fundamentals. Fourth, the M5 is implemented in an object

Start_rAppIication
|

Golden Ru%nl

End_Application
I

|
«—N cycles—«—N cycles—<«—N cycles—«N cycles—«—N cycles—\'\

CP1 CP2 j}{i inject/ CP4 CP5 CP6
fault’
If (CP4 = CP4_faulty)
Benign_fault
Fault Injection;
CP3 CP4_\auIty

Fig. 2. Checkpoint generation in golden run

oriented programming manner so that we can enhance the
simulator with fault injection capabilities without modifying
the rest of the simulation dramatically. Fifth, M5 is a popular
open-source simulator with a large user-base, therefore it is a
good substrate for FIMSIM; especially with a view towards
releasing FIMSIM to the reliability research community.

Figure 1 presents the fault injection classes that we added to
the M5 simulator and how these fault injection classes interact
with the existing classes in MS5. The white area was already
implemented by M5, we add the shaded classes: FaultList and
Fault.

B. Golden Run

In the golden run which is executed only once for each
application, FIMSIM produces error free checkpoints peri-
odically during the execution of the entire application. For
example, in Figure 2, FIMSIM generates checkpoints at every
N cycles (e.g. N = 10M), so that 6 checkpoints are generated
for the whole application. For instance, to inject faults to the
4th chunk of the application, CP3 is loaded to the FIMSIM
simulator without having to execute the application from the
beginning. After the fault injection, CP4 of the golden run
and the faulty run are compared without waiting until the
end of the application in order to see whether the fault
has completely disappeared (masked) or it still stays in the
architecture. We argue that instead of comparing the final
results of the application, comparing the architectural states
is essential, because a fault may stay in the system or worse
propagate to the operating system although it does not affect
the final output of the application.

C. Fault Injection

In FIMSIM, the user defines the list of fault(s) in the
input file (e.g. a single permanent fault and/or spatial multi-bit
transient faults). In this file, the user defines each fault with
the following properties:

« the processor id where the fault will be injected (0..(num-
ber of processor-1)),

« fault type (transient, stuckatO, stuckatl, dominantO, dom-
inantl, intermittent0O, intermittentl),

o fast-forward cycle before fault injection

« the cycle of the fault injection (0..(total Execution Cycle
-1)),

o the faulty structure (intRF, specialRF, ALU, ITB, DTB,
Bypass, PC),

o the faulty entry (e.g. register number),

o the faulty bit number (0..31 for 32 bit machine).

e persisting time of the intermittent faults,

o neighbour fault id for multi-bit fault injections (0..(num-
ber of faults-1)).

o direction of neighbourhood for spatial faults (vertical,
horizontal)

These parameters explicitly define a fault so that the user
can repeat a fault injection experiment for debugging the effect
of a particular fault definition. Note that, the user can prefer
any/all of these parameters to be random so that multiple
fault injection campaigns could be conducted and their results
processed to calculate overall processor reliability.

At the beginning of the simulation, FIMSIM reads the list
of faults from an input file and it sets the list defined by the
FaultList data structure. Making a list of faults gives an
opportunity to add multiple bit faults at a time. Some of these
multi-bit faults affect the neighbour bits as well. In FIMSIM,
these faults are described with the neighbour attribute to define
the place of the second bit. For example, a spatial multi bit
fault is defined as two faults that are neighbours to each other.
In this case, the second fault takes the place of the fault from
the first fault’s options and it is located just next to it.

After starting the simulation, at every cycle (e.g. in
nextCycle () method), M5 calls the FaultList’s
injectFaults () method which also «calls the
injectFault () method of each fault. injectFault ()
method first compares the injection cycle of the fault and
the executing cycle of the simulator. If the executing cycle
is late enough, FIMSIM modifies the corresponding value in
the pertinent structure according to the fault type of the fault.
For instance, for a transient fault injection to the register file,
FIMSIM flips the corresponding bit in the register file. After
the injection, if the injected fault is transient, it is deleted
from the fault list. Otherwise (permanent and intermittent), it
keeps being injected in the following cycles either until the
end of the simulation (permanent) or until the persisting time
of the fault (intermittent).

In each fault injection, the checkpoint is created in the
following checkpoint creation cycle unless the fault causes the
application to crash. This faulty checkpoint is compared with
the one produced in the golden run to see whether the fault is
masked or it has changed the state of the microarchitecture.
Thus, there are three possible outputs of the fault injection:

o Crash: The application crashes before the simulation
reaches to the checkpoint creation cycle therefore it does
not generate a checkpoint. This crash might be due to a
segmentation fault or a fatal trap exception (e.g. incorrect
program counter).

o Benign: If the checkpoints of the faulty run and the
golden run are identical, that means that the injected fault
was masked (e.g. a faulty register is written before it is
read by any instruction)

e Error: If the faulty checkpoint is different from the
golden one, that means that the fault led to a different

architectural state. This error group also includes the
silent data corruptions (SDC).

D. Processor Dependability

When calculating the vulnerability of whole architecture,
there are two essential points that need to be focused.

(1) the results of the faults (e.g. system crash or SDC)

(2) the likelihood of the fault occurrence in the structure
(e.g. size of the structure)

We classify the faults into three groups according to the way
they manifest themselves: benign faults, catastrophic failures
and errors (including SDCs). In result critical applications
(e.g. financial applications), SDCs are the most critical faults
for reliability in which the user must completely trust the
result computed by the application (e.g. transferring the correct
amount of money). On the other hand, some other applications
are required to operate continuously (e.g. web servers). In
these applications, catastrophic failures are more critical than
SDCs. Thus, when FIMSIM calculates the vulnerability of
the entire architecture, it multiplies the error rate and the
catastrophic failure rate with C, , C.. coefficients respectively.
The weight of these coefficients are application dependent and
defined by the user.

There are several aspects that affect the likelihood of the
fault occurrence (LF) in a structure such as size, temperature,
age, environmental conditions etc. In this study we consider
two aspects. First, we give the higher weight to bigger
structures according to the number of wires in the structures.
Second, for the combinational logic (e.g. ALU) we multiply
the likelihood with the probability that a fault injected to the
inner state of the structure propagates to the output of the
combinational logic without being masked inside the structure.
We adopt these probabilities from a previous study of RTL
analysis of the processor structures [13]. Note that, for more
accurate LF calculation, other aspects can be considered as
well.

We calculate the processor vulnerability (V) with the fol-
lowing formula:

V= thructures ((Oe x ER; + C, x CRy) XLFZ‘)

ER. = Number of Errors

© ™ Number of Injected Faults
CR: = Number of Crashes

© ™ Number of Injected Faults
SRz — Size of theStructure

Size of the Entire Processor

OR; = The probability of fault propagation to the output
C. = Error Coef ficient
C. = Crash Coef ficient

Note that FIMSIM is flexible enough so that users can also
generate their own processor dependability models.

Structure l SR l OR ‘
Program Counter 0,003 1
Special Register File 0.4 1
Integer Register File 0.4 1
Instruction TLB 0,05 1
Data TLB 0,05 1
Arithmetic Logic Unit 0,08 0,7
ByPass Logic 0,003 1
Ce Ce
1,0 1,0

TABLE I
NUMBER OF BITS IN MICROARCHITECTURE STRUCTURES AND THEIR
AVERAGE TEMPERATURE.

1V. EVALUATION

In this section, we evaluate the vulnerability of in-order Al-
pha 21264 microarchitecture by utilizing our FIMSIM fault in-
jection infrastructure and spec cpu2006 benchmark suite with
test data set. We inject the faults to five different structures
in the core; bypass logic, data TLB (DTB), instruction TLB
(ITB), arithmetic logic unit (ALU), integer register file (int-
RF), special purposed register file (RF-special) and program
counter (PC). Note that, in-order cores do not have some
complex structures required for out-of-order execution such as
the reorder buffer, issue queue and rename logic. We inject 100
faults per structure in each application to a random location in
the structure (e.g a random bit of a randomly chosen register
in the int-RF). For each fault model, we injected 14000 faults
which is similar or very higher than prior fault injection
analysis [12], [13], [14], [25].

Each of experimental results presented in this work repre-
sent the result of 20 applications from spec cpu2006 2000 fault
injection per structure (20 application)

First, we generate checkpoints of the golden run at every
100M cycles after warming up 70M cycles. Then we inject
faults at a random time (within 100M cycles) by loading
the checkpoints by performing one injection per simulation.
We injected faults to the first chunk since some applications
in the spec cpu2006 benchmark suite does not have more
than 200M instructions with test dataset. We calculate the
vulnerability of the processor (V) by utilizing the formula that
we explain in Section III-D. The size values of each structure
and other related coefficients that we utilized in the formula,
are presented in Table L.

Figure 3 presents the single fault injection results. Unsur-
prisingly, processors are vulnerable to permanent faults at
most, as it is seen in the graph. The interesting result is that
stuck-at-1 faults are more harmful for the applications than
stuck-at-0 faults. This is because bit values are mostly zero
(e.g. more than 70% of bits in PC and more than 90% of
bits in special register file are zero). Thus, stuck-at-0 faults
(permanent or intermittent) are generally benign.

When we compare the effects of the faults on ALU and
Bypass logic, the bypass logic is slightly more vulnerable to
the faults. This is because the fault affects the next instruction
in the bypass logic. In TLBs (ITB or DTB), short term faults

1000
900
800
700
600
500 1
400 1
300 1
200
100

cycle

P
s
f
c
s
d

777777
g

md
mk
lex
m
ef

m
etpp
ar
inx 3
bk
rage

:::::
& =5 ©

64

=
mmmmm

401bzi
410bwav
429m
433mi
m;
437lesli
444n,
44590l
450s0)
453povray
456hmmer
458sjeng
464h
4
om
473asf
482sp
483xalal
av

459GemsFDTD
482libgu;

benchmark

Fig. 5. Recovery time of FaulTM, a fault tolerance schema based on
transactional memory

(transient or intermittent) are compensated. However, when
there is a permanent fault in TLB, it is harmful for the whole
architecture. Finally, the PC is the most vulnerable structure
in these structure that any fault in the PC result in either error
or system crash.

In Figure 4, we present the effects of multiple faults on the
processor. Note that we can inject the vertical multi-bit faults
only to the buffer structures (i.e. register files and TLBs).
In the graph it is seen that the multi-bit transient faults in
the horizontal direction are not more harmful than a single
bit transient fault. However, in the vertical direction, multi-
bit transient faults become significantly more harmful in the
register files since it affects more than one entry in the buffer.
Bridging faults (dominant-0 and dominant-1) affecting the
vulnerability in the similar way. Because the final result of
the bit values changes if two bits are different from each other
meaning they are effective in the same conditions.

Besides vulnerability reduction, recovery time of a fault
tolerance schema is one of the essential criteria as well. In
FIMSIM enables researchers to measure the recovery time as
well. In Figure 5 we present the recovery time of FaulTM,
a transactional memory based fault tolerance schema, as a
case study. The recovery time of an error is based on the
transaction size in FaulTM. For instance, if a fault affects a
large transaction, the recovery time increases (i.e. astar, bzip,
bwaves, hmmer).

V. RELATED WORK

Fault injection has been utilized to measure the dependabil-
ity of the systems. Since simulation based fault injection pro-
vides the correlation between circuit level fault and its effects
in hardware, it is very appealing for computer architecture
designers.

Many simulation based fault injection simulates the models
in Very high speed integrated circuits Hardware Description
Language (VHDL). Gil et. al. [9] studied and compared these
fault injection methods.

Nicholas J. Wang et. al. [27] implemented The Illinois
Verilog Model (IVM) for injecting transient faults and charac-
terizing the effects on a high performance processor pipeline.

100% A

90%

80%

T0%

60%

50%

40%

30%

20%
10%

0%

O benign
I error
W crash

ransien

stuck-at-
ransien

stuck-at-0 |
ransien

SLLCH-l-

fransient
stuck-at-1

Fig. 3.

100%

ransien
StUCK-at-
SLLCK-a1-

Single Fault Injection to Spec2006 Benchmark.

90%
50%
70%
G0%
0%
40%
30%
20%
10%

0%

ITB
speciaRF
PC

DTB

intRF

ITB
speciaRF
Bypass

ALY

Transient
vertical

Transient
horizontal

O benign
m error
W exception

N O O
1N N O I
1N I A O
1B 1N N I I

L]
]
i

B
B

PC
PC

w
x

oT
intRF
ITB
Bypass

oT
intRF

speciaRF —
|

o
O
o
o
w
0

dominant- dominant-1

Fig. 4. Multi-bit Fault Injection to spec2006 benchmark.

They created a highly detailed RTL model of microprocessor.
The results are traced by using uniform sampling.

Michail Maniatakos et. al. [15] pinpointed some limitations
of IVM (e.g. can not implement the floating point instructions,
inefficient to inject permanent or intermittent faults). They
developed an extensive fault simulation infrastructure by inter-
acting IVM with a functional simulator (simplescalar). Also,
Man Lap Li et. al. [13] combined microarchitecture simulation
with RTL level fault injectors to inject permanent faults to
ALU, Decoder and Address Generation Unit (AGEN) to gain

accurate fault injection results. However, these schemes are
complex and slow for microarchitecture designers since they
include RTL model.

Nishant J. George et. al. [8] injected single and double
transient faults due to single particle strike. They injected
faults to the register file and to the reorder buffer by using
a functional simulator (PtlSim). The effects of the injected
faults are classified according to the final results of the
applications. Therefore, they could make their experiments
only on short applications due to time constraints. Also, they

can not distinguish whether a fault is benign or hidden in the
architecture.

Man-Lap Li et. al. [14] injected permanent faults to a
microarchitectur level full system simulation environment
(GEMS+Virtutech Simics). They injected both single (stuck-
at) and double (bridging) faults. Also, they pointed out the
advantages of fault injection into microarchitecture level sim-
ulator (e.g. presenting a trade-off in speed and the ability to
model long running workloads with OS activity).

So far, very few tries have been done in order to study
the effects of intermittent faults by fault injection. Layali
Rashid [19] injected intermittent faults in software level to
understand their affects on the software. However, they made
their experiments only on two applications (matrix multiply
and insertion sort). Gracia et. al. injected intermittent faults in
a VHDL based simulator [10]. To the best of our knowledge,
there is no study about intermittent fault injection to the
functional simulator.

In this study, we provide a complete fault injection tool on
a functional full system simulator that can (1) inject transient,
permanent and intermittent faults, (2) analyse the affects of the
faults on the software since it is on full-system simulator, (3)
inject single and multiple faults such as multiple bit flips due
single or double particle strike, bridging or any combinations
of different faults.

VI. CONCLUSION

In this study, we presented FIMSIM, a fault injection
simulator in the microarchitecture level which takes the burden
of designing and implementing of a fault injector from the re-
searchers. FIMSIM is a compact tool that can inject transient,
permanent or intermittent faults either as a single bit fault
or as multi-bit faults. Therefore, it provides opportunity to
comprehensively evaluate the vulnerability of microarchitec-
tural structures. We also evaluate the vulnerability of in-order
Alpha microarchitecture. We will publicly release FIMSIM at
the same time with the presentation of the paper.

REFERENCES

[11 Alpha 21264 Microprocessor Hardware Reference Manual.
Computer Corparation, 1999.

[2] R. Baumann. Soft errors in advanced computer systems. /[EEE Design
and Test, 22:258-266, May 2005.

[3] N. Bidokhti. SEU Concept to Reality (Allocation, Prediction, Mitiga-
tion). In Reliability and Maintainability Symposium (RAMS), 2010.

[4] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and
S. K. Reinhardt. The m5 simulator: Modeling networked systems. /EEE
Micro, 26:52-60, July 2006.

[5] C. Constantinescu. Impact of deep submicron technology on dependabil-
ity of vlsi circuits. In Proceedings of the 2002 International Conference
on Dependable Systems and Networks, pages 205-209, 2002.

[6] C. Constantinescu. Trends and challenges in vlsi circuit reliability. JEEE
Micro, 23:14-19, July 2003.

[7] C. Constantinescu. Intermittent faults in vlsi circuits. In Proceedings of
the IEEE Workshop on Silicon Errors in Logic System Effects, 2006.

[8] N.J. George, C. R. Elks, B. W. Johnson, and J. Lach. Transient fault
models and avf estimation revisited. Dependable Systems and Networks,
0:477-486, 2010.

[9] D. Gil, J. Gracia, J. C. Baraza, and P. J. Gil. Study, comparison
and application of different vhdl-based fault injection techniques for
the experimental validation of a fault-tolerant system. Microelectronics
Journal, 34(1):41-51, 2003.

Compaq

[10]

(11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(271

[28]

[29]

J. Gracia, L. J. Saiz, J. C. Baraza, D. Gil, and P. J. Gil. Analysis of
the influence of intermittent faults in a microcontroller. In Proceedings
of the 11th IEEE Workshop on Design and Diagnostics of Electronic
Circuits and Systems, pages 1-6, 2008.

J. L. Henning. Spec cpu2006 benchmark descriptions.
Computer Architecture News, 34:1-17, 2006.

N. Karimi, M. Maniatakos, A. Jas, and Y. Makris. On the Correlation
Between Controller Faults and Instruction Level Errors in Modern
Microprocessors. In International Test Conference, 2008.

M. lap Li, P. Ramach, U. R. Karpuzcu, S. Kumar, S. Hari, and S. V.
Adve. Accurate microarchitecture-level fault modeling for studying
hardware faults *. In International Symposium of High-Performance
Computer Architecture, 2009.

M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and
Y. Zhou. Understanding the propagation of hard errors to software and
implications for resilient system design. In Proceedings of the 13th
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 265-276, 2008.

M. Maniatakos, N. Karimi, C. Tirumurti, A. Jas, and Y. Makris.
Instruction-level impact analysis of low-level faults in a modern mi-
croprocessor controller. IEEE Transactions on Computers, 99, 2010.
S. S. Mukherjee, J. Emer, T. Fossum, and S. K. Reinhardt. Cache
scrubbing in microprocessors: Myth or necessity. In IEEE Pacific
Rim International Symposium on Dependable Computing, pages 37-42,
2004.

S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed design and
evaluation of redundant multithreading alternatives. In Proceedings of
the International Symposium on Computer Architecture, pages 99—110,
2002.

R. Naseer and J. Draper. Parallel double error correcting code design to
mitigate multi-bit upsets in srams. In 34th European Solid-State Circuits
Conference, pages 222-225, 2008.

L. Rashid, K. Pattabiraman, and S. Gopalakrishnan. Towards understand-
ing the effects of intermittent hardware faults on programs. Dependable
Systems and Networks Workshops, 0:101-106, 2010.

G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August.
SWIFT: Software implemented fault tolerance. In Proceedings of the
International Symposium on Code Generation and Optimization, pages
243-254, 2005.

E. Rotenberg. AR-SMT: A microarchitectural approach to fault tolerance
in microprocessors. In Proceedings of the International Symposium on
Fault-Tolerant Computing, page 84, 1999.

J. C. Smolens, B. T. Gold, B. Falsafi, and J. C. Hoe. Reunion:
Complexity-effective multicore redundancy. In Proceedings of the
IEEE/ACM International Symposium on Microarchitecture, pages 223—
234, 2006.

J. C. Smolens, B. T. Gold, J. Kim, B. Falsafi, J. C. Hoe, and
A. Nowatzyk. Fingerprinting: Bounding soft-error detection latency and
bandwidth. In International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 224-234, 2004.
J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The impact of
technology scaling on lifetime reliability. In Proceedings of International
Conference on Dependable Systems and Networks, pages 177-186,
2004.

N. J. Wang, A. Mahesri, and S. J. Patel. Examining ace analysis
reliability estimates using fault-injection. In 34th Annual International
Symposium on Computer Architecture, pages 460-469, 2007.

N. J. Wang, S. Member, and S. J. Patel. Restore: Symptom-based soft
error detection in microprocessors. IEEE Transactions on Dependable
Secure Computing, 3:188-201, 2006.

N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel. Characterizing the
effects of transient faults on a high-performance processor pipeline. In
Proceedings of International Conference on Dependable Systems and
Networks, pages 61-70, 2004.

P. M. Wells, K. Chakraborty, and G. S. Sohi. Adapting to intermittent
faults in multicore systems. In Proceedings of the 13th international
conference on Architectural support for programming languages and
operating systems, pages 255-264, 2008.

G. Yalcin, O. Unsal, A. Cristal, I. Hur, and M. Valero. Faultm: Fault
tolerance using hardware transactional memory. In Workshop on Parallel
Execution of Sequential Programs on Multi-core Architecture, 2010.

SIGARCH

