
1

Flash Correct-and-Refresh: Retention-Aware Error

Management for Increased Flash Memory Lifetime
Yu Cai

1
, Gulay Yalcin

2
, Onur Mutlu

1
, Erich F. Haratsch

3
, Adrian Cristal

2
, Osman S. Unsal

2
 and Ken Mai

1

1
DSSC, Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA

2
Barcelona Supercomputing Center, C/Jordi Girona 29, Barcelona, Spain

3
LSI Corporation, 1110 American Parkway NE, Allentown, PA

1
{yucai, omutlu, kenmai}@ece.cmu.edu,

2
{gulay.yalcin, adrian.cristal, osman.unsal}@bsc.es,

3
erich.haratsch@lsi.com

Abstract— With the continued scaling of NAND flash and multi-level cell

technology, flash-based storage has gained widespread use in systems

ranging from mobile platforms to enterprise servers. However, the

robustness of NAND flash cells is an increasing concern, especially at

nanometer-regime process geometries. NAND flash memory bit error rate

increases exponentially with the number of program/erase cycles.

Stronger error correcting codes (ECC) can be used to tolerate higher

error rates, but these have diminishing returns with increasing P/E cycles

and can have prohibitively high power, area, and latency overheads. The

goal of this paper is to develop new techniques that can tolerate high bit

error rates without requiring prohibitively strong ECC. Our techniques,

called Flash Correct-and-Refresh (FCR) exploit the observation that the

dominant error source in NAND flash memory is retention errors, caused

by flash cells losing charge over time. The key idea is to periodically read,

correct, and reprogram (in-place) or remap the stored data before it

accumulates more retention errors than can be corrected by simple ECC.

Detailed simulations of a solid-state drive (SSD) storage system driven by

measured experimental data from error characterization on real flash

memory chips show that our techniques provide 46x average lifetime

improvement on a variety of workloads at no additional hardware cost.

We also find that our techniques achieve lifetime improvements that

cannot feasibly be achieved with stronger ECC.

Keywords-NAND Flash, reliability, error correction, multi-level cell (MLC)

I. INTRODUCTION

In the past decade, NAND flash memory has evolved from being used
in only specialized consumer electronics (i.e., cell phones, digital
cameras) to widespread use in the primary data storage systems of
general-purpose computers, due to its high performance, large storage
capacity, and non-volatility. This trend is primarily enabled by the
steady per-bit cost reduction from manufacturing process technology
scaling and the use of multi-level cell (MLC) technology. Thus, solid-
state drives (SSDs) are now economically viable and have supplanted
or enhanced spinning magnetic media in a number of high
performance computing applications.

However, NAND flash based storage suffers from low endurance as
each flash memory cell can tolerate only a limited number of
program/erase (P/E) cycles. A 3x-nm (i.e., 30-39nm) generation MLC
(2-bit per cell) NAND flash cell can be programmed only ~3k times
[1]. Continued process scaling and storage of 3 or 4 bits per cell will
likely further reduce the number of P/E cycles each cell can tolerate,
resulting in even shorter lifetimes for NAND flash based storage
systems, especially for write-intensive applications. Enterprise data
storage systems typically require storage endurance capable of
sustaining continuous 10 full disk writes per day for 3-5 years, which
would require each flash cell to tolerate more than 50k P/E cycles,
assuming ideal wear leveling algorithms and write amplification [2].
Thus, there is a significant gap between the available (~3k P/E cycles)
and desired (>50k P/E cycles) endurance of flash cells.

One way to improve flash lifetime is to use stronger error correction
codes (ECC) [3][4]. Stronger ECC detects and corrects raw bit errors
that happen over the lifetime of a flash cell, thereby increasing the
number of P/E cycles each cell can tolerate without exposing the raw
bit errors to the user. Unfortunately, stronger ECC has two major

shortcomings: (1) high implementation overhead and (2) diminishing
returns on flash lifetime improvement. The latter is because the raw
bit error rate increases exponentially with P/E cycles while ECC error
correction capability increases less than linearly, as detailed in later
sections. As such, techniques that tolerate raw bit errors in flash cells
without relying on stronger ECC are desirable. In this paper, we
present new techniques that achieve this and thereby allow us to
utilize unreliable flash media in a reliable way at high numbers of P/E
cycles.

To achieve the low bit error rate (BER) required by enterprise systems
without strong ECC, the raw BER of flash memory must be greatly
reduced. To this end, we propose methods to control and reduce the
raw BER even when flash memory has already endured very high P/E
cycles, which is far beyond current nominal endurance of flash. Our
techniques are based on the following three empirical observations:
(1) the total raw errors of flash memory consist of retention errors and
erase/program/read errors [5][6]; (2) the most dominant errors in flash
memory are retention errors [5][8]; and (3) retention errors increase
with retention time and can be reduced by issuing periodic refresh
operations [5][6]. Based on these three observations, we propose a
suite of techniques called Flash Correct-and-Refresh (FCR): the key
idea is to periodically read each page in flash memory, correct its
errors using simple ECC, and either remap (copy/move) the page to a
different location or re-program it in its original location by
recharging the floating gates, before the page accumulates more errors
than can be corrected with simple ECC.

We present three versions of FCR: (1) remapping-based FCR, which
periodically and selectively corrects and remaps a page to control
retention errors; (2) hybrid reprogramming/remapping-based
FCR, which periodically and selectively corrects and re-programs
data in- place and less frequently remaps the data to avoid errors that
could accumulate due to continuous reprogramming; (3) adaptive-
rate FCR, which adaptively adjusts the rate at which
remapping/reprogramming is done based on the P/E cycles a page has
already endured. These techniques can be implemented in device
driver software or the firmware of the NAND flash controller (Figure
1), by having the controller issue flash data refresh requests. Since
refresh requests can be initiated by software, leveraging the read,
write, and remapping functionalities that already exist in flash-based
SSDs, FCR does not require any additional hardware.

The major contributions of this paper are as follows:

1. We evaluate the relationship between raw bit error rate, strength

of ECC, and lifetime of NAND flash memory. We show that

increasing the strength of ECC provides diminishing returns on

flash memory lifetime at significant additional cost.

2. Based on the observation that retention errors are the dominant

errors in flash memory and can be corrected by periodically

remapping each flash page to a different location, we propose our

remapping-based FCR technique. We find that remapping-based

FCR improves average flash memory lifetime by 9x, but

performs considerable data movement and unnecessary refreshes,

especially detrimental to read-intensive workloads.

2

3. To reduce the overhead of data movement caused by

reprogramming, we propose hybrid FCR. The key idea is that a

page can be refreshed by reprogramming it in-place instead of by

remapping it to another location. This is based on the insight that

retention errors are caused by charge loss and cells with retention

errors are reprogrammable without first erasing them.

4. To further reduce unnecessary refreshes, we propose adaptive-

rate FCR, which has a low refresh rate for a flash block when its

retention error rate is low (i.e., early in its lifetime).

5. We evaluate all our techniques using real I/O workload traces

and a high-fidelity simulation infrastructure that is driven by data

obtained by performing error characterization on a real

experimental flash platform. Our evaluations show that hybrid

and adaptive-rate FCR respectively provide 31x and 46x lifetime

improvement at only 5.5% and 1.5% energy overhead.

II. BACKGROUND

A modern flash-based solid-state drive (SSD) is organized as shown in
Figure 1 [9]. It contains host interface logic to support a physical
connection to the computer. A processing engine (SSD Controller) is
required to process the requests from the host machine and schedule
access to flash memory chips. Flash translation layer (FTL), including
address mapping, wear leveling, and garbage collection, is
implemented as firmware running on SSD controller to manage the
SSD. A multiplexer emits commands and handles transport of data to
the flash packages for each channel. A channel contains a set of flash
chips. To overcome errors of noisy flash memory, each channel has its
own error correction engine. The most widely used ECC algorithms for
contemporary flash SSDs are binary BCH codes [11], which can
correct multiple errors.

Figure 1. Flash-based SSD system architecture with proposed flash error

management implemented in flash translation layer

III. ERRORS AND ECC ANALYSIS IN NAND FLASH

A. Errors in NAND Flash

NAND flash memory has three main operations: read, program (write),
and erase. Various errors can occur during these operations; they are
classified as read errors, program errors, and erase errors. In addition,
while data is stored in flash memory, an already-programmed flash cell
gradually loses charge from its floating gate, which can eventually alter
the stored value, causing an error, called a retention error. Cai et al.
used a real experimental test platform [10], to characterize errors that
occur in 3x-nm MLC flash memory [5]. They observed the following
main error characteristics: (1) All types of errors are highly correlated
with the number of P/E cycles the flash cell endured. Raw BER
increases exponentially as P/E cycles increase; (2) Retention errors are
most dominant, and program errors are the second most dominant
types of errors; (3) Retention error rates are highly correlated with
retention time. These experimental findings are also supported by
Tanakamaru et al. who report that retention error rate is >100x higher
than program error rate [8].

In error analysis, raw data refers to the data read immediately out of
NAND flash memory without any error correction. Raw BER (RBER)
is the fraction of erroneous bits over all raw data bits read. After error
correction, which happens in the SSD controller, the corrected data is

sent to the host computer. However, error-corrected data might still
contain some uncorrectable errors, as the ECC might not be strong
enough to correct all errors in the raw data. The fraction of erroneous
bits after error correction over all read data bits is called uncorrectable
BER (UBER).

B. ECC Power, Area, and BER Analysis

Generally, a given ECC can be described by the 3-tuple <n, k, t>,
where n is the codeword length, k is the length of data that the code
protects and t is the maximum number of errors that the ECC can
correct. To select a suitable ECC for NAND flash memory, three
factors need to be considered. First, the coding rate R = k/n, which
determines the storage efficiency, should be as high as possible (e.g.
>8/9 is typical for storage) to maintain high storage efficiency and low
cost per bit. Second, the error correction capability t should be large
enough to guarantee UBER to be below 10-15, which is a common
reliability requirement in data storage. Third, the code length n should
be a factor of flash page length.

Table 1. Characterization of various error correction codes

Table 1 summarizes the characteristics of a series of applicable BCH
codes, which are widely used for flash-based storage with various code
lengths but all with the same coding rate. We keep the coding rate
constant as it critically determines cost per bit. We list the acceptable
raw BER each code provides to achieve an UBER of 10-15, which
would satisfy common storage industry reliability requirements, as
well as the normalized power and area consumption to implement the
required circuitry for each code, which all depend on the relative
strength of each code. To evaluate power and area consumption, we
synthesized the RTL design of each code with industrial 65nm bulk
CMOS standard cell and memory libraries using the Synopsys Design
Compiler. The power and area are normalized to the baseline 512-bit
BCH code that consumes 1.76 mW and occupies 0.013 mm2. Table 1
shows that as the code length of ECC increases given the same coding
rate, the acceptable raw BER increases. However, the increase in
power and area consumption is much larger than the increase in
acceptable raw BER, especially for the strongest codes. This is because
the implementation complexity is highly correlated with the code
length (n) and the number of errors (t) that can be corrected. To
achieve an endurance of a few thousand P/E cycles, up to 40 bit errors
are expected to be corrected per 1k byte data for 2x-nm MLC flash [7].
Based on this analysis, we conclude that the power and area overheads
of a strong ECC that can tolerate an acceptable raw bit error rate are
likely to be prohibitive. As such, techniques that can tolerate high raw
bit error rates without requiring strong ECC are very desirable.

C. P/E Cycle Lifetime Analysis

We define the lifetime of flash block as the maximum number of P/E
cycles after which the ECC in the SSD controller can no longer
guarantee the commonly required storage reliability (less than 10-15
UBER) within a certain guaranteed data storage time. The guaranteed
storage time indicates how long the data is expected to be present in
flash memory. We first analyze the effect of stronger ECC on the
lifetime of flash memory for a fixed guaranteed storage time, and next
provide insights into the results by characterizing raw bit error rate of
flash memory at different lifetimes. To gather the data we present, we
have used an FPGA-based experimental flash testing platform [10] to
test a large number of 3x-nm NAND flash memory chips [5].

Code

length(n)

Correctable

Errors (t)

Acceptable

Raw BER

Norm.

Power

Norm.

Area

512 7 1.0x10-4 (1x) 1 1

1024 12 4.0x10-4 (4x) 2 2.1

2048 22 1.0x10-3 (10x) 4.1 3.9

4096 40 1.7x10-3 (17x) 8.6 10.3

8192 74 2.2x10-3 (22x) 17.8 21.3

32768 259 2.6x10-3 (26x) 71 85

3

0

2000

4000

6000

8000

10000

12000

Li
fe

ti
m

e
 (P

/E
 C

yc
le

s)
(a)

Acceptable raw BER for 512b-BCH

Acceptable raw BER for 32k-BCH

50x Higher Endurance
(Relax required storage time)

4x Higher Endurance
(Stronger ECC)

(b)

Figure 2. (a) The number of program/erase cycles that can guarantee 10-15 UBER given 3-year storage time with various error correction codes; (b) Raw BER for all
errors at different number of P/E cycles; each line shows the raw BER observed after different required data storage times (3 days/weeks/months/years)

Figure 2(a) shows the maximum lifetime (in P/E cycles) different-
strength BCH codes provide for the 3x-nm flash chips examined,
assuming a guaranteed storage time of 3 years. Recall that lifetime
indicates the maximum number of P/E cycles that are achievable to
guarantee a UBER of <10-15. We observe that increasing the strength
(code length) of BCH codes results in diminishing returns in lifetime.
To provide insight into why stronger ECC provides diminishing returns
in number of P/E cycles, we show how the raw bit error rate changes
with changes in P/E cycles in Figure 2(b). This figure plots the
relationship between raw bit error rate and P/E cycles for different
guaranteed/required data storage times. The raw BER data is obtained
by writing data to the entire flash memory chip and observing the bit
errors after the required data storage times [5]. The key observation is
that as P/E cycles increase, the raw bit error rate observed in flash
memory increases exponentially. In contrast, the error correction
capability of BCH codes increases much more slowly (usually less than
linearly) with increased code length, as shown in the Acceptable Raw
BER column of Table I. Thus, increasing strength of BCH codes would
provide diminishing returns.

As a concrete example, when we increase the code length from 512
bits to 32k bits, the acceptable raw BER increases by ~26x (see Table
I), but the provided lifetime increases by only 4x (see Figure 2 (b)),
under a 3-year data storage time requirement. The 4x increase in
lifetime is much lower than the ~17x increase required by enterprise
applications to achieve ~50k P/E cycles (not shown). Furthermore,
increasing code length from 512 to 32k bits comes at 71x the power
consumption and 85x the area overhead, which is likely prohibitive.

We also observe from Figure 2 (b) that: if the ECC strength, and thus
the acceptable raw BER, is fixed, we can achieve a larger lifetime by
relaxing the required storage time. For example, if the required storage
time is 3 years, the lifetime provided by a 512-bit BCH code is only
~3k P/E cycles. On the other hand, if the required storage time is 3
days, the lifetime provided by the same code is ~150k P/E cycles.
Hence, if we would like to achieve a lifetime of ~150k P/E cycles
while still having the ability to store data for 3 years (or longer), we
can relax the data storage time to 3 days, and refresh each flash cell
every 3 days to retain the data integrity. Our techniques we described
below are based on this basic observation, which we validate
experimentally with extensive evaluations.

IV. PROPOSED TECHNIQUES

We propose a set of new techniques called Flash Correct-and-Refresh
(FCR) that exploit the dominance and characteristics of retention errors
to significantly increase NAND flash lifetime while incurring minimal
overheads. The basic idea of the FCR schemes is to periodically read,
correct, and refresh (i.e., reprogram or remap) the stored data before it
accumulates more retention errors than can be handled by ECC. Thus,
we can achieve a low UBER while still using a simple, low-overhead
ECC. Two key questions central to designing a system that uses FCR
techniques are: (1) how to refresh the data in flash memory? and (2)
when to refresh the data? We address the first question with two
techniques for how to refresh the data: remapping (Section IV.A) and

reprogramming in-place (Section IV.B). We then tackle the second
question with two techniques for when to refresh: periodically and
adaptively based on the number of P/E cycles (Section IV.C).

A. Remapping Based FCR Mechanism

Unlike DRAM cells, which can be refreshed in-place, flash cells
generally must first be erased before they can be programmed. To
remove the slow erase operation from the critical path of write
operations, current wear leveling algorithms remap the data to another
physical location rather than erasing the data and then programming in-
place. The flash controller maintains a list of free blocks that have been
erased in background through garbage collection and are ready for
programming. Whenever a write operation is requested, the controller’s
wear leveling algorithm selects a free block and programs it directly,
remapping the logical block address to the new physical block.

The key idea of remapping based FCR is to leverage the existing wear-
leveling mechanisms to periodically read, correct, and remap to a
different physical location each valid flash block in order to prevent it
from accumulating too many retention errors. Figure 3 shows the
operational flow of remapping-based FCR: (1) During each refresh
interval, a block with valid data that needs to be refreshed is selected;
(2) The valid data in the selected block is read out page by page and
moved to the SSD controller; (3) The ECC engine in the SSD
controller corrects all the errors in the read data, including retention
errors that have accumulated since the last refresh. After ECC, the data
are error free; (4) A new free block is selected and the error free data
are programmed to the new location, and the logical address is
remapped. Note that the proposed address remapping techniques
leverage existing hardware and software of contemporary wear
leveling and garbage collection algorithms.

Figure 3. Operation of a remapping-based flash data refresh scheme.

Error Rate Model. We now provide an intuitive model for the
benefits of remapping based FCR. As discussed in Section III.A, flash
memory errors can be classified as retention, program, read, and erase
errors. Given a remapping-based refresh period T and the number of
refresh periods elapsed during the required storage time N, the total
error count with remapping based FCR can be modeled as:

erasereadprogramretentiontotal EEETEE )(

Here the number of retention errors is determined by the refresh period
T, as refresh operations can eliminate retention errors that accumulate
since the last refresh. On the other hand, if the data are not periodically

4

corrected and remapped, retention errors accumulate throughout the
data storage time, and the total error count can be modeled as:

erasereadprogramretentiontotal EEETNEE )(

Here, the retention error count correlates with the total storage time.
Since retention errors increase almost linearly with retention time and
the retention errors are the most dominant errors, the overall error rate
ratio with remapping based FCR as opposed to without is:

NTNE

TE

E

E

retention

retention

norefresh

refresh 1

)(

)(





Thus, overall error rate can be almost linearly decreased by increasing
the refresh rate (i.e., the number of refresh intervals, N). The benefits
of remapping based FCR can be leveraged in two ways: (1) Given a
fixed P/E cycle lifetime requirement, ECC on the flash controller can
be greatly simplified. (2) Given a fixed ECC on the controller, FCR
can increase the maximum number of P/E cycles that flash memory
can tolerate to achieve a particular storage reliability requirement.

Unfortunately, periodic remapping of every block introduces additional
erase cycles. This is because after the flash data are corrected and
remapped to the new location, the original block is marked as outdated.
Thus, the block will eventually be erased and reclaimed by garbage
collection. The more frequent the remap operations, the more the
additional erase operations, which wears out flash memory faster. As
such, there might be an inflection point beyond which increasing the
refresh rate in remapping-based FCR can lead to reduced lifetime. To
avoid this potential problem, we next introduce enhanced FCR
methods, which minimize unnecessary remap operations.

B. In-Place Reprogramming Based FCR Mechanisms

To reduce the overhead associated with periodic remapping, we
propose a technique for periodic in-place reprogramming of the block
most of the time, without a preceding erase operation, which can
greatly reduce the overhead of periodic remapping. This in-place
reprogramming takes advantage of the key observation that retention
errors arise from the loss of electrons on the floating gate over time and
the flash cell with retention errors can be reprogrammed to its original
correct value without an erase operation using the incremental step
pulse programming (ISPP) scheme used to program flash memory. We
first provide background on ISPP.

ISPP. Before a flash cell can be programmed, the cell must be erased
(i.e., all charge is removed from the floating gate, setting the threshold
voltage to the lowest value). When a NAND flash memory cell is
programmed, a high positive voltage applied to the control gate causes
electrons to be injected into the floating gate. The threshold voltage of
a NAND flash cell is programmed by injecting a precise amount of
charge onto the floating gate through ISPP [21]. During ISPP, floating
gates are programmed iteratively using a step-by-step program-and-
verify approach. After each programming step, the flash cell threshold
voltage is boosted up. Then, the threshold voltage of the programmed
cells are sensed and compared to the target values. If the cell’s
threshold voltage level is higher than the target value, the program-
and-verify iteration will stop. Otherwise the flash cells are programmed
once again and more electrons are added to the floating gates to boost
the threshold voltage. This program-and-verify cycle continues
iteratively until all the cells’ threshold voltages reach the target values.
Using ISPP programming, flash memory cells can only be
programmed from a state with fewer electrons to a state with more
electrons and cannot be programmed in the opposite direction.

Retention Error Mechanisms. Retention errors are caused by the loss
of electrons from the floating gate overtime. As such, a cell with
retention errors moves from a state with more electrons to a state with
fewer electrons. Figure 4(a) shows the relative relationship between the
stored data value and its corresponding threshold voltage distribution
for a typical MLC flash storing 2-bits per cell. The leftmost state is the
erased state (i.e. state 11) with the smallest threshold voltage and there
is no charge on the floating gate. The states located on the right in
Figure 4(a) are programmed with more electrons and have higher

threshold voltages than the states located relatively to the left. Over
time, as the electrons on the floating gate leak away, the threshold
voltage of a cell shifts to the left, as shown in Figure 4(b). If the
threshold voltage of a cell shifts too far to the left (i.e., it loses too
many electrons from the floating gate), it will cross the read reference
voltage between adjacent states and can be misinterpreted during a read
as the wrong value.

In-Place Reprogramming can Fix Retention Errors. A cell with a
retention error can be reprogrammed to the value it had before the
floating gate lost charge by re-charging additional electrons onto the
floating gate through ISPP, as shown in Figure 4(c). Note that this does
not require an erase operation because the only objective is to add more
electrons (not to remove them), which can be accomplished by simple
programming.

Figure 4. Retention errors are caused by threshold voltage shift to the left and

can be fixed by programming in-place using ISPP.

Basic In-Place Reprogramming Based FCR Mechanism. A basic
FCR mechanism that uses in-place reprogramming works as follows.
Periodically, a block is selected to be refreshed and read page by page
into the flash controller. By selecting a suitable refresh interval, we can
ensure that the total error number is below the correction capability of
the ECC. Then we can re-program the flash cells in the same location
with the error-corrected data, without erasing the whole block. If the
new corrected value corresponds to a state with more charge than the
old value, then the cell can be in-place reprogrammed to the correct
value. If the corrected value is exactly the same as the original value,
in-place reprogramming will not change the stored data value, as ISPP
will stop programming the cell as soon as it detects that the target value
has already been reached. Note that most of the cells are reprogrammed
with exactly the same data value as error rates are generally
significantly below 1%.

Problem: Accumulated Program Errors. While this basic
mechanism can effectively fix retention errors, it introduces a problem
because there is another error mechanism in flash cells that is caused
by program operations, which are required to perform in-place
reprogramming. When a flash cell is being programmed, additional
electrons may be injected into the floating gates of its neighbor cells
due to coupling capacitance [13]. The threshold voltage distribution of
the neighbor cells will shift right as they gain more electrons, as shown
in Figure 5(a). If the threshold voltage shifts right by too much, it will
be misread as an error value that represents a state located to the right.
This is called a program interference error (or simply a program error).
Although it is a less common error mechanism than retention errors,
periodic reprogramming can exacerbate the effects of program errors.

Two potential issues are: (1) As ISPP cannot remove electrons from
the floating gate, program errors cannot be fixed by in-place
reprogramming; (2) Reprogramming of a page can introduce additional
program errors due to the additional program operations. Figure 5(b)
illustrates both issues in the context of in-place programming. First, the
original data is programmed into the page. This initial programming

5

can cause some program errors (e.g., value 11 is programmed as 10 on
the second cell from the left). After some time, retention errors start to
appear in the stored data (e.g., first cell changes from state 00 to 01).
Note that there are generally many more retention errors than the
program errors. When the page is reprogrammed in-place, it is first
read out and corrected using ECC. The error-corrected data (which is
the same as the original data) is then written back (programmed) into
the page. This corrects all the retention errors by recharging the cells
that lost charge. However, this reprogramming does not correct the
program error (in the second cell) because this correction requires the
removal of charge from the second cell’s floating gate, which is not
possible without an erase operation. Furthermore, additional program
errors can appear (e.g., in the sixth cell) because the in-place program
operation can cause additional disturbance.

(a) Program interference causes threshold voltage shift to the right

011011 00
VT

REF1 REF2 REF3

… …11 01 00 10 11 0000
Original data to
be programmed

… …10 01 00 10 11 0000
Program errors after
initial programming

… …Retention errors
after some time

… …Errors after in-place
reprogramming

10 10 00 11 11 0101

10 01 00 10 10 0000

(b) Example of reprogramming a page with retention and program errors

Figure 5. In-place reprograming can correct retention errors but not program
errors because in-place programming can only add more electrons into the

floating gate and cannot remove them. Note that red values with dotted circles

are retention errors and blue ones with solid circles are program errors.

Error Rate Model. Given a reprogramming period T and the number
of refresh periods during the required storage time N, the total error
count with the basic in-place reprogramming can be modeled as:

erasereadprogramreprogramretention

reprogram

total EEEENTEE )(

As the number of refresh operations increases, the program errors due
to reprogramming of the same block over and over accumulate. This is
because program interference errors are mainly right shift errors
(unlike retention errors), and cannot be corrected by in-place
reprogramming. The program error rate increases linearly with the
number of reprogram operations. For relatively small N, the
accumulated error count introduced by reprogramming is still much
smaller than retention error rate, and periodic reprogramming can still
greatly reduce the raw BER. So, only in cases of where reprogramming
frequency is high (large N), will the programming error rate become
comparable to that of the retention errors. If the program error counts
reach the error correction capability of ECC, it is highly probable that
the data read in the next refresh interval can no longer be recovered as
the sum of accumulated program errors and newly produced retention
errors may exceed the error correction capability of ECC.

Hybrid FCR. To mitigate the errors accumulated due to periodic
reprogramming, we propose a hybrid reprogramming/remapping based
FCR technique to control the number of reprogram errors. The key idea
is to monitor the right-shift error count present in each block. If this
count is below a certain threshold (likely most of the time) then in-
place reprogramming is used to correct retention errors. If the count
exceeds the threshold, indicating that the block has too many
accumulated program errors, then the block is remapped to another
location, which corrects both retention and program errors. In our
evaluation, we set the threshold to 30% of the maximum number of
errors that could be corrected by ECC, which is conservative. Figure 6
provides a flowchart of this hybrid FCR mechanism. Note that this

hybrid FCR mechanism greatly reduces the additional erase operations
present in remapping based FCR because it remaps a block (i.e.,
requires an erase operation) only when the number of accumulated re-
program errors is high, which is rare due to the low program error rate.

Choose a block to
be refreshed

Read LSB and
MSB page pair

Error
Correction

Cell threshold
voltage comparison

Right shift errors
< Threshold

LSB/MSB
page pair num++

Reprogram
in-place

Last LSB/MSB
page pair?

No Re-map to the
new block

Yes

No
Yes

Figure 6. Hybrid FCR workflow: if re-program error count is less than a

threshold, in-place reprogram the block; otherwise, remap to a new block

C. Adaptive-Rate FCR

So far we assumed that FCR mechanisms, be it based on in-place
reprogramming or remapping, are invoked periodically. However, this
need not be the case. In fact, we observe that the rate of (retention)
errors is very low during the beginning of flash lifetime, as shown in
Figure 2(b) and as also observed by others [5]. Until more than 1000
P/E cycles, the retention error rate is lower than the acceptable raw

BER that can be corrected by the simplest BCH code (Figure 2 (b)).
Hence, at the beginning of its lifetime, flash memory does not need to
be refreshed. Retention error rate increases as the number of P/E cycles
increases. We leverage this key observation to reduce the number of
unnecessary refresh operations.

The main idea of adaptive-rate FCR is to adapt the refresh rate to the
number of P/E cycles a block has incurred. Initially, refresh rate for a
block starts out at zero (no refresh). Once ECC becomes incapable of
correcting retention errors, the block’s refresh rate increases to tolerate
the increased retention error rate. Hence, refresh rate is gradually
increased over each flash block’s lifetime to adapt to the increased P/E
cycles. The whole lifetime of a flash block can be divided into intervals
with different refresh rates ranging, for example, from no refresh
(initially), yearly refresh, monthly refresh, weekly refresh, to daily
refresh. The frequency of refresh operations at a given P/E cycle count
is determined by the acceptable raw BER provided by the used ECC
and the BER that corresponds to the P/E cycle count, as shown in
Figure 2(b). Note that this mechanism requires keeping track of P/E
cycles incurred for each block, but this information is already
maintained to implement current wear-leveling algorithms.

D. Additional Considerations for FCR

Implementation cost. The FCR mechanisms do not require hardware
changes. They require changes in FTL software/firmware to implement

the flowcharts shown in Figure 3 and Figure 6. FCR can leverage the
per-block validity and P/E cycle information that is already maintained
in existing flash systems to implement wear leveling.

Power supply continuity. To perform a refresh, the flash memory
must be powered. As FCR is proposed for enterprise storage
applications, these systems are typically continuously powered on. Our
proposed techniques use daily, weekly or monthly refresh and it is rare
for a server to be powered off for such long periods.

Response time impact. Refresh may interfere with normal flash
operations and degrade the response time. To reduce this penalty, we
can decrease the refresh priority making it run in background. SSD can
issue refresh operations whenever it is idle, and refresh operations can
be interrupted to avoid the impact on the response time of normal
operations. Unlike DRAM, where refresh is triggered frequently (e.g.,
every 64ms), the refresh period of FCR is at least a

6

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

5
1

2
b-

B
C

H

1
k-

B
C

H

2
k-

B
C

H

4
k-

B
C

H

8
k-

B
C

H

3
2

k-
B

C
H

5
1

2
b-

B
C

H

1
k-

B
C

H

2
k-

B
C

H

4
k-

B
C

H

8
k-

B
C

H

3
2

k-
B

C
H

5
1

2
b-

B
C

H

1
k-

B
C

H

2
k-

B
C

H

4
k-

B
C

H

8
k-

B
C

H

3
2

k-
B

C
H

5
1

2
b-

B
C

H

1
k-

B
C

H

2
k-

B
C

H

4
k-

B
C

H

8
k-

B
C

H

3
2

k-
B

C
H

5
1

2
b-

B
C

H

1
k-

B
C

H

2
k-

B
C

H

4
k-

B
C

H

8
k-

B
C

H

3
2

k-
B

C
H

5
1

2
b-

B
C

H

1
k-

B
C

H

2
k-

B
C

H

4
k-

B
C

H

8
k-

B
C

H

3
2

k-
B

C
H

IO-ZONE
(20 P/E per Day)

CELLO99
(5.5 P/E per Day)

POSTMARK
(2.8 P/E per Day)

OLTP
(0.14 P/E per Day)

MSR-Cambridge
(0.005 P/E per Day)

WEB-SEARCH
(0.001 P/E per Day)

Li
fe

ti
m

e
 (d

ay
s)

Baseline(No Refresh) 1 Year 3 Months 3 Weeks 3 Days 1 Day

Figure 7. Flash lifetime (in days) provided by remapping based FCR. The baseline represents the lifetime without any refresh. Y-axis is in log scale.

day, and the SSD can finish refresh operations within the refresh
period. Recent work has shown that the response time overhead is
within a few percent for daily refresh [14]. Note that our hybrid and
adaptive FCR techniques have much lower overhead for refresh
operations than periodic remapping based FCR.

Additional erase cycles. FCR introduces additional erase operations.
We will evaluate the impact of additional erase operations on effective
lifetime and energy in Section VI.

Adapting to variations in retention error rate. Note that retention
error rate is usually constant for a given refresh rate and P/E cycle
combination. However, there are environmental factors, such as
temperature, that can change this rate. For example, retention error rate
would be dependent on temperature. To adapt to dynamic fluctuations
in retention error rate, our hybrid FCR and adaptive-rate FCR
mechanisms monitor the changes in the retention error rate at periodic
intervals, and increase/decrease the refresh (i.e. FCR) rate if the error
rate in the previous interval is greater/less than a threshold. These
mechanisms are similar in principle to what is employed in DRAM to
adapt refresh rate to temperature changes [22].

V. EVALUATION METHODOLOGY

We use Disksim [15] with SSD extensions [9] to quantitatively
evaluate the proposed techniques. All proposed techniques are
simulated using various real workload traces: iozone [16], cello99 [20],
oltp, postmark [17], MSR-Cambridge [19] and a web search engine
[18]. These workload traces are chosen to cover diverse read ratios out
of all SSD operations, which are 0%, 38%, 52%, 83%, 80% and 99%
respectively. Iozone and postmark are file system benchmarks. oltp is a
database application running on a financial institution. web search
contains the I/O traces from a popular engine. Cello99 contains a set of
traces taken from cello [20] over the period January 14 and December
31 in 1999. MSR-Cambridge contains 1-week-long block I/O traces of
servers at Microsoft Research Cambridge.

We configure the simulated flash-based SSD with four channels. Each
channel has 8 flash chips. Each flash chip has 8192 blocks containing
128 pages. The page size is 8KB. The total storage capacity is 256GB.
We select a group of candidate ECCs for NAND flash memory
controller as listed in Table 1. The energy of flash read, program, and
erase operations are collected from an experimental flash memory
platform [10], and are used in the simulation infrastructure to obtain
the overall energy consumption. To evaluate flash lifetime provided by
a given error correction and FCR mechanism, we first obtain the
maximum number of P/E cycles per block based on the experimental
data we obtain on the relationship between P/E cycles and acceptable
raw BER of a given ECC mechanism, as shown in Figure 2(b). We
then obtain the P/E cycles of each block after simulating a trace to
completion. Dividing the simulated P/E cycles for the trace with the
maximum possible P/E cycles provides us with the fraction of
maximum possible flash lifetime (P/E cycles) that is exhausted by the
trace. Since we know the real length of the trace (e.g., cello99’s length
is 11.5 months), we know how long in real time the trace runs to

exhaust that fraction of maximum lifetime. We use linear extrapolation
to determine how long the trace would have been to exhaust the full
maximum lifetime. Note that we use this methodology since it was
impossible to obtain or simulate multiple-year-long traces that can
actually exhaust the lifetime of flash memories we evaluate.

VI. RESULTS AND ANALYSIS

A. Flash Lifetime with Remapping-Based FCR

Figure 7 compares the lifetime provided by remapping-based FCR
(with refresh interval ranging from daily to yearly) to the baseline with
no refresh. Flash lifetime is evaluated under various ECC
configurations (ranging from weak 512b to strong 32k-bit BCH codes)
with five refresh periods for all workloads. All P/E cycle overheads
introduced by remapping are taken into account in these evaluations.

First, given the same workload and the same refresh interval (or no-
refresh), stronger ECC always provides a longer lifetime than weaker
ECC. For example, given a refresh interval of 3 days and the IO-zone
trace, lifetime can be increased by 3.5 times if 32k-bit BCH codes are
used instead of 512b codes. This is because strong ECC can tolerate
high raw BER at high P/E cycles and thus improves lifetime.

Second, remapping based FCR provides significant lifetime
improvements, especially for write-intensive applications, such as io-
zone and cello99. Using FCR in conjunction with weak ECC provides
higher lifetime than using strong ECC alone (with no refresh). For
example, flash lifetime with 512b BCH codes and daily refresh is 24
times longer than with 32kb-BCH but no refresh, for the iozone
workload. We conclude that using FCR can avoid the need for
implementing high-cost strong ECC techniques while providing much
higher lifetimes than such techniques.

Analysis. Refresh period impacts lifetime in different ways depending
on the characteristics of the workloads. For write-intensive applications
(i.e. iozone, cell099 and postmark), lifetime always increases as refresh
period decreases. These workloads require a high number of P/E cycles
due to frequent writes and a short refresh interval increases the
maximum P/E cycles each flash block can tolerate. For read-write-
balanced workloads, such as oltp, which has an approximately equal
frequency of read and write operations from the host computer to SSD,
lifetime first increases with reduced refresh period until a point (3-day
refresh period). Lifetime decreases with reduced refresh period after
that point, indicating that the additional P/E cycles introduced due to
remapping outweighs the P/E cycle increase due to refresh. For
example, for the oltp workload, the additional P/E operations increase
from ~2x to ~7x when the refresh period changes from 3 days to daily,
while the maximum P/E cycles a flash block can tolerate only increases
by 50%. For heavily read-intensive applications (i.e., web search,
MSR-Cambridge), remapping-based FCR reduces lifetime. This is
because these applications do not require a high number of P/E cycles
to begin with so there is little benefit to FCR. The additional erase
cycles introduced by remapping leads to decreased lifetime even with a
large refresh period of one year.

7

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1
 y

ea
r

3
m

on
th

s

3
 w

ee
ks

3
da

ys

1
da

y

1
ye

ar

3
 m

o
n

th
s

3
 w

ee
ks

3
da

ys

1
 d

ay

1
 y

ea
r

3
 m

o
n

th
s

3
w

ee
ks

3
 d

ay
s

1
 d

ay

1
 y

ea
r

3
m

on
th

s

3
 w

ee
ks

3
 d

ay
s

1
da

y

1
 y

ea
r

3
m

on
th

s

3
 w

ee
ks

3
da

ys

1
 d

ay

1
ye

ar

3
 m

o
n

th
s

3
w

ee
ks

3
da

ys

1
 d

ay

IO-ZONE CELLO99 POSTMARK OLTP MSR-Cambridge WEB-SEARCH

Li
fe

ti
m

e
 (D

ay
s)

Base (no refresh) Remapping-based FCR Hybrid FCR

Figure 8. Flash lifetime (in days) provided by remapping based FCR versus hybrid FCR. Y-axis is in log scale.

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

5
1

2
b

-B
C

H

1
k-

B
C

H

2
k-

B
C

H

4k
-B

C
H

8
k-

B
C

H

32
k-

B
C

H

5
1

2
b

-B
C

H

1
k-

B
C

H

2
k-

B
C

H

4k
-B

C
H

8
k-

B
C

H

32
k-

B
C

H

5
1

2
b

-B
C

H

1k
-B

C
H

2
k-

B
C

H

4k
-B

C
H

8
k-

B
C

H

32
k-

B
C

H

5
1

2
b

-B
C

H

1k
-B

C
H

2
k-

B
C

H

4k
-B

C
H

8
k-

B
C

H

32
k-

B
C

H

5
1

2
b

-B
C

H

1k
-B

C
H

2
k-

B
C

H

4k
-B

C
H

8
k-

B
C

H

32
k-

B
C

H

5
1

2
b

-B
C

H

1k
-B

C
H

2
k-

B
C

H

4k
-B

C
H

8
k-

B
C

H

3
2

k-
B

C
H

IO-ZONE CELLO99 POSTMARK OLTP MSR-Cambridge WEB-SEARCH

Li
fe

ti
m

e
 (D

ay
s)

Base (no refresh) Remapping-based FCR Hybrid FCR Adaptive-rate FCR

Figure 9. Lifetime comparison of no refresh, remapping-based FCR, hybrid FCR and adaptive-rate FCR. Remapping-based FCR and hybrid FCR use the refresh

interval that provides the highest lifetime for each trace. Y-axis is in log scale.

B. Flash Lifetime with Hybrid FCR

Figure 8 compares the lifetime of hybrid FCR and remapping-based
FCR at various refresh intervals, assuming both are implemented over
a baseline with 512b BCH codes. Hybrid FCR remaps the block if the
program errors affect more than 30% of the number of bits that ECC
can correct. We make several major observations. First, hybrid FCR
always improves lifetime compared to both remapping-based FCR and
the baseline with no refresh for all workloads. This is because hybrid
refresh greatly reduces the erase cycles by largely replacing the remap
operations with in-place reprogramming operations. On average,
hybrid FCR provides 3x higher lifetime than remapping based FCR
and 31x higher lifetime than the baseline with no refresh. Second,
hybrid FCR provides more lifetime benefit over remapping-based FCR
for read-intensive applications than for write-intensive applications.
Although hybrid FCR can greatly reduce additional P/E cycles, the
relative P/E cycle overhead decrease in write-intensive workloads is
much smaller, as these workloads have a very high number of P/E
cycles to begin with. Third, hybrid FCR improves lifetime of read-
intensive applications even when refreshes are infrequent (e.g., yearly)
by greatly reducing the need to remap data. For balanced workloads,
such as MSR-Cambridge, hybrid FCR increases lifetime over
remapping-based refresh especially with short refresh periods. Note
that remapping based FCR decreases lifetime for both web search and
MSR-Cambridge workloads. Hybrid FCR fixes this problem and
improves lifetime on all workloads. We conclude that hybrid FCR is a
superior technique than remapping based FCR.

C. Flash Lifetime with Adaptive-Rate FCR

Figure 9 compares the lifetime improvement of adaptive-rate FCR
(implemented over the hybrid FCR mechanism) to periodic remapping-
based FCR and periodic hybrid FCR. The refresh period of each
periodic mechanism is chosen on a per-workload basis such that the
lifetime provided for a workload by the mechanism is maximized.
Adaptive-rate FCR improves lifetime over both periodic FCR
mechanisms for all workloads as it avoids unnecessary refreshes. The
improvements are especially significant in read-intensive workloads
since these workloads do not have high P/E cycles, causing the
adaptive-rate FCR to keep the refresh rate very low. On average,
adaptive-rate FCR provides 46.7x, 4.8x, and 1.5x higher flash lifetime

compared to no-refresh, remapping-based FCR, and hybrid FCR,
respectively. We conclude that adaptive-rate FCR implemented over
the hybrid FCR mechanism is a promising mechanism for significant
and consistent lifetime enhancement of flash memory.

D. P/E and Energy Overheads

FCR techniques can introduce two main overheads: (1) additional P/E
cycles due to remapping, which might outweigh the increase in lifetime
due to reduced retention errors; (2) additional energy consumed by
refresh operations. Figure 10 shows the ratio of additional P/E cycles
due to remapping-based and hybrid FCR over the number of P/E
operations intrinsic to each workload. First, the P/E cycle overhead of
hybrid FCR is lower than that of remapping-based FCR. Second, the
P/E cycle overhead for write-intensive applications is low. On average,
write intensive workloads (i.e. iozone, cell099, postmark) only have
20% and 2% P/E cycle overhead for remapping-based FCR and hybrid
FCR respectively. Read-intensive applications have higher P/E cycle
overhead since the workload itself has low P/E cycles to begin with.
However, hybrid FCR’s P/E cycle overhead is below 10x even for
daily refresh. Since daily refresh improves P/E cycle endurance by
nearly 100x, the P/E cycle benefit of hybrid refresh still outweighs the
P/E cycle overhead, leading to the lifetime improvements shown in the
previous sections. Note that all P/E cycle overheads have already been
accounted for in the collection of the flash lifetime results.

Figure 11 shows the additional flash energy consumption of
remapping- based FCR and hybrid FCR averaged over all workloads
compared to a system with no FCR. The refresh energy is estimated
under the worst-case scenario that all data are to be refreshed. Even if
we assume we must refresh the entire SSD each day, the energy
overhead is only 7.8% and 5.5% for remapping based FCR and hybrid
FCR respectively. When the refresh interval is 3 weeks, the energy
overhead is almost negligible (less than 0.4%). We also observe that
hybrid FCR has less energy overhead than remapping based FCR. This
is due to two reasons. First, hybrid FCR reduces the high-energy
erase/remap operations by performing in-place reprogramming most of
the time. Second, when the data are programmed in place, the
programmed data are almost the same as the data already present in the
block, as the error rate is usually less than 1%. ISPP programming
stops programming as soon as it detects that the target threshold
voltage has already been reached. Thus, charge is injected into only a

8

small number of cells during in-place reprogramming and many cells’
states do not change (which consumes little energy).

1.0E-5

1.0E-4

1.0E-3

1.0E-2

1.0E-1

1.0E+0

1.0E+1

1.0E+2

1.0E+3

1.0E+4

IO
-Z

O
N

E

C
EL

LO
99

P
O

ST
M

A
R

K

O
LT

P

M
SR

-C
am

b
ri

d
ge

W
EB

-S
EA

R
C

H

IO
-Z

O
N

E

C
EL

LO
99

P
O

ST
M

A
R

K

O
LT

P

M
SR

-C
am

b
ri

d
ge

W
EB

-S
EA

R
C

H

Remapping-based FCR Hybrid FCR

R
at

io
 o

f
ad

d
it

io
n

al
 e

ra
se

 o
p

e
ra

ti
o

n
s

w
/

FC
R

 o
ve

r a
ll

 e
ra

se
s

w
/o

 F
C

R

1 Year 3 Months 3 Weeks 3 Days 1 Day

Figure 10. P/E cycle overhead of remapping-based and hybrid FCR.

We also evaluate the energy overhead of adaptive-rate FCR and find
that it is only 1.5% (not shown in the figure). Recall that adaptive-rate
FCR starts out with no refresh and gradually increases the refresh rate
up to daily refresh as the P/E cycles accumulate. Yet its energy
overhead is significantly lower than always daily refresh. We conclude
that adaptive-rate FCR is the most superior of flash correct-and-refresh
mechanisms in terms of both lifetime and energy consumption.

0.00%

2.00%

4.00%

6.00%

8.00%

1 Year 3 Months 3 Weeks 3 Days 1 Day

En
er

gy
 O

ve
rh

ea
d

Remapping-based Refresh Hybrid Refresh

7.8%

5.5%

2.6%

1.8%

0.37%
0.26%

Figure 11. Energy increase of remapping-based and hybrid FCR v. no refresh.

VII. RELATED WORK

To our knowledge, this is the first paper that exploits three major
characteristics of retention errors in NAND flash memory to
significantly improve flash lifetime without requiring any hardware
changes. The three major characteristics are: (1) dominance of
retention errors, (2) that retention errors can be fixed with in-place
reprogramming, (3) correlation of retention error rate with P/E cycle
lifetime. No previous paper developed mechanisms to: (1) reprogram
in-place flash memory blocks to reduce retention errors; (2) adapt the
reprogramming rate to the lifetime of the block based on the
observation that retention errors increase with P/E cycle lifetime.

Flash controllers have turned to stronger ECCs to correct multiple
errors. BCH codes [11] are the most widely used due to their powerful
error-correction capability. Choi [3] and Lee [4] implemented 16-bit
and 32-bit BCH codes for flash memory respectively. We extensively
compare FCR to different-strength BCH codes in this work, showing
that FCR provides higher lifetime at much lower complexity.

Pan et al. [14] propose the quasi-nonvolatile SSD technique, which
relaxes non-volatility and uses refresh to improve P/E cycle
endurance, similarly to remapping based FCR (which is concurrently
developed). However, Pan et al. do not provide a lifetime evaluation
using real experimental flash data and real workload traces. As shown
in this work, additional P/E cycle overhead of remapping based
mechanisms is very high and such mechanisms could even decrease
the lifetime of NAND flash SSD for read-intensive applications.

Both FCR and [14] are similar to “memory scrubbing” techniques
commonly applied to volatile memories [23], which periodically read
each memory location, correct errors, and restore the corrected values
in the memory location. The goal of such mechanisms to ensure errors

are corrected before they accumulate beyond a point that ECC cannot
correct, and thus improve reliability. In contrast, FCR’s purpose is to
improve P/E cycle lifetime of flash memory even if errors are
correctable by ECC. As we show in this paper, simply applying
scrubbing techniques to flash significantly increases erase operations,
which degrades lifetime for especially read-intensive workloads. To
overcome this, we introduce the new hybrid and adaptive-rate FCR
mechanisms that exploit characteristics specific to flash memories.

Previous work [5],[6],[8] characterized the error patterns of NAND
flash memory and showed that retention errors are caused by charge
loss and are dominant failure mode. These observed error patterns
build the foundation for the FCR techniques we propose in this paper.

Finally, Wilkerson et al. [24] observe that by increasing the strength
of ECC, refresh rate in a volatile cache can be decreased, and thus the
cache power can be decreased. Our proposal is the opposite and for a
different purpose: we increase the refresh rate to reduce the need for
strong ECC in order to improve P/E cycle lifetime in non-volatile
flash memory.

VIII. CONCLUSION

We presented flash correct-and-refresh (FCR) techniques, which offer

a low-overhead mechanism to significantly improve the lifetime of

flash-based data storage systems, requiring only modifications to the

SSD controller firmware or driver software. To our knowledge, this is

the first work to improve flash reliability by leveraging the dominance

of retention errors and using in-place reprogramming to correct

retention errors. Our experimental evaluations using I/O traces from

real workloads and error rates obtained from a real experimental flash

platform show that FCR is effective in significantly improving flash

storage system lifetime with only modest P/E and energy overheads.

As flash continues to scale and the raw bit error rate and cell lifetime

degrade, we hope our proposed FCR techniques are likely to serve as

even more promising lifetime-enhancement techniques for future

flash-based storage systems.

REFERENCES

[1] Y. Koh, "NAND Flash Scaling Beyond 20nm", IMW 2009.

[2] S. Yasarapu, “Architectural Requirements for MLC based SSDs”, FMS 2011.

[3] H. Choi et al., “VLSI Implementation of BCH Error Correction for Multilevel Cell

NAND Flash Memory”, IEEE Transactions on VLSI 2010.

[4] Y. Lee et al., “6.4Gb/s Multi-Threaded BCH Encoder and Decoder for Multi-

Channel SSD Controllers”, ISSCC 2012.

[5] Y. Cai et al., “Error Patterns in MLC NAND Flash Memory: Measurement,

Characterization and Analysis”, DATE 2012.

[6] N. Mielke et al., "Bit Error Rate in NAND Flash Memories", IRPS 2008.

[7] M. Abraham et al., "NAND Flash Trends for SSD Enterprise", FMS 2010.

[8] S. Tanakamaru et.al,”95%-Lower-BER 43%-Lower-Power Intelligent Solid-State

Drive (SSD) with Asymmetric Coding and Stripe Pattern Algorithm” , ISSCC 2011.

[9] N. Agrawal et al., “Design Tradeoffs for SSD Performance”, USENIX 2008.

[10] Y. Cai et. al. “FPGA-Based Solid-State Drive Prototyping Platform”, FCCM 2011.

[11] Shu Lin and D. J. Costello, Error control coding, Prentice Hall, 2004.

[12] C. Compagnoni et al., “First evidence for injection statistics accuracy limitations in

NAND Flash constant-current Fowler-Nordheim programming,” IEDM 2007.

[13] K. Park et al., “A Zeroing Cell-to-Cell Interference Architecture with Temporary

LSB Storing and Parallel MSB Program Scheme for MLC NAND Flash

Memories”, JSSC 2008.

[14] Y. Pan et al., “Quasi-Nonvolatile SSD: Trading Flash Memory Nonvolatility to

Improve Storage System Performance for Enterprise Applications”, HPCA 2012.

[15] J. Bucy et al., “DiskSim Simulation Environment Reference Manual”, 2008.

[16] IOzone.org, “IOzone Filesystem Benchmark” , http://iozone.org.

[17] J. Katcher, “Postmark: a New File System Benchmark Technical Report”, 1997.

[18] UMass Trace: http://traces.cs.umass.edu/index.php/Storage/Storage.

[19] SNIA: IOTTA Repository, http://iotta.snia.org/tracetypes/3.

[20] Open Source software at HP Labs, http://tesla.hpl.hp.com/opensource.

[21] K.-D. Suh et al., “A 3.3 V 32 Mb NAND flash memory with incremental step pulse

programming scheme,” JSSC 1995.

[22] J. Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh”, ISCA 2012.

[23] D. Siewiorek et al., Reliable Computer Systems: Design and Evaluation, 2000.

[24] C. Wilkerson et al., “Reducing Cache Power with Low-Cost, Multi-bit Error-

Correcting Codes”, ISCA 2010.

http://iozone.org/
http://traces.cs.umass.edu/index.php/Storage/Storage
http://tesla.hpl.hp.com/opensource

