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Abstract— With the continued scaling of NAND flash and multi-level cell 

technology, flash-based storage has gained widespread use in systems 

ranging from mobile platforms to enterprise servers. However, the 

robustness of NAND flash cells is an increasing concern, especially at 

nanometer-regime process geometries. NAND flash memory bit error rate 

increases exponentially with the number of program/erase cycles. 

Stronger error correcting codes (ECC) can be used to tolerate higher 

error rates, but these have diminishing returns with increasing P/E cycles 

and can have prohibitively high power, area, and latency overheads. The 

goal of this paper is to develop new techniques that can tolerate high bit 

error rates without requiring prohibitively strong ECC. Our techniques, 

called Flash Correct-and-Refresh (FCR) exploit the observation that the 

dominant error source in NAND flash memory is retention errors, caused 

by flash cells losing charge over time. The key idea is to periodically read, 

correct, and reprogram (in-place) or remap the stored data before it 

accumulates more retention errors than can be corrected by simple ECC. 

Detailed simulations of a solid-state drive (SSD) storage system driven by 

measured experimental data from error characterization on real flash 

memory chips show that our techniques provide 46x average lifetime 

improvement on a variety of workloads at no additional hardware cost. 

We also find that our techniques achieve lifetime improvements that 

cannot feasibly be achieved with stronger ECC. 
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I.  INTRODUCTION  

In the past decade, NAND flash memory has evolved from being used 
in only specialized consumer electronics (i.e., cell phones, digital 
cameras) to widespread use in the primary data storage systems of 
general-purpose computers, due to its high performance, large storage 
capacity, and non-volatility. This trend is primarily enabled by the 
steady per-bit cost reduction from manufacturing process technology 
scaling and the use of multi-level cell (MLC) technology. Thus, solid-
state drives (SSDs) are now economically viable and have supplanted 
or enhanced spinning magnetic media in a number of high 
performance computing applications.  

However, NAND flash based storage suffers from low endurance as 
each flash memory cell can tolerate only a limited number of 
program/erase (P/E) cycles. A 3x-nm (i.e., 30-39nm) generation MLC 
(2-bit per cell) NAND flash cell can be programmed only ~3k times 
[1]. Continued process scaling and storage of 3 or 4 bits per cell will 
likely further reduce the number of P/E cycles each cell can tolerate, 
resulting in even shorter lifetimes for NAND flash based storage 
systems, especially for write-intensive applications. Enterprise data 
storage systems typically require storage endurance capable of 
sustaining continuous 10 full disk writes per day for 3-5 years, which 
would require each flash cell to tolerate more than 50k P/E cycles, 
assuming ideal wear leveling algorithms and write amplification [2]. 
Thus, there is a significant gap between the available (~3k P/E cycles) 
and desired (>50k P/E cycles) endurance of flash cells. 

One way to improve flash lifetime is to use stronger error correction 
codes (ECC) [3][4]. Stronger ECC detects and corrects raw bit errors 
that happen over the lifetime of a flash cell, thereby increasing the 
number of P/E cycles each cell can tolerate without exposing the raw 
bit errors to the user. Unfortunately, stronger ECC has two major 

shortcomings: (1) high implementation overhead and (2) diminishing 
returns on flash lifetime improvement. The latter is because the raw 
bit error rate increases exponentially with P/E cycles while ECC error 
correction capability increases less than linearly, as detailed in later 
sections. As such, techniques that tolerate raw bit errors in flash cells 
without relying on stronger ECC are desirable. In this paper, we 
present new techniques that achieve this and thereby allow us to 
utilize unreliable flash media in a reliable way at high numbers of P/E 
cycles.  

To achieve the low bit error rate (BER) required by enterprise systems 
without strong ECC, the raw BER of flash memory must be greatly 
reduced. To this end, we propose methods to control and reduce the 
raw BER even when flash memory has already endured very high P/E 
cycles, which is far beyond current nominal endurance of flash. Our 
techniques are based on the following three empirical observations: 
(1) the total raw errors of flash memory consist of retention errors and 
erase/program/read errors [5][6]; (2) the most dominant errors in flash 
memory are retention errors [5][8]; and (3) retention errors increase 
with retention time and can be reduced by issuing periodic refresh 
operations [5][6]. Based on these three observations, we propose a 
suite of techniques called Flash Correct-and-Refresh (FCR): the key 
idea is to periodically read each page in flash memory, correct its 
errors using simple ECC, and either remap (copy/move) the page to a 
different location or re-program it in its original location by 
recharging the floating gates, before the page accumulates more errors 
than can be corrected with simple ECC. 

We present three versions of FCR: (1) remapping-based FCR, which 
periodically and selectively corrects and remaps a page to control 
retention errors; (2) hybrid reprogramming/remapping-based 
FCR, which periodically and selectively corrects and re-programs 
data in- place and less frequently remaps the data to avoid errors that 
could accumulate due to continuous reprogramming; (3) adaptive-
rate FCR, which adaptively adjusts the rate at which 
remapping/reprogramming is done based on the P/E cycles a page has 
already endured. These techniques can be implemented in device 
driver software or the firmware of the NAND flash controller (Figure 
1), by having the controller issue flash data refresh requests. Since 
refresh requests can be initiated by software, leveraging the read, 
write, and remapping functionalities that already exist in flash-based 
SSDs, FCR does not require any additional hardware. 

The major contributions of this paper are as follows: 

1. We evaluate the relationship between raw bit error rate, strength 

of ECC, and lifetime of NAND flash memory. We show that 

increasing the strength of ECC provides diminishing returns on 

flash memory lifetime at significant additional cost. 

2. Based on the observation that retention errors are the dominant 

errors in flash memory and can be corrected by periodically 

remapping each flash page to a different location, we propose our 

remapping-based FCR technique. We find that remapping-based 

FCR improves average flash memory lifetime by 9x, but 

performs considerable data movement and unnecessary refreshes, 

especially detrimental to read-intensive workloads.  
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3. To reduce the overhead of data movement caused by 

reprogramming, we propose hybrid FCR. The key idea is that a 

page can be refreshed by reprogramming it in-place instead of by 

remapping it to another location. This is based on the insight that 

retention errors are caused by charge loss and cells with retention 

errors are reprogrammable without first erasing them.  

4. To further reduce unnecessary refreshes, we propose adaptive-

rate FCR, which has a low refresh rate for a flash block when its 

retention error rate is low (i.e., early in its lifetime).  

5. We evaluate all our techniques using real I/O workload traces 

and a high-fidelity simulation infrastructure that is driven by data 

obtained by performing error characterization on a real 

experimental flash platform. Our evaluations show that hybrid 

and adaptive-rate FCR respectively provide 31x and 46x lifetime 

improvement at only 5.5% and 1.5% energy overhead. 

 

II. BACKGROUND 

A modern flash-based solid-state drive (SSD) is organized as shown in 
Figure 1 [9].  It contains host interface logic to support a physical 
connection to the computer. A processing engine (SSD Controller) is 
required to process the requests from the host machine and schedule 
access to flash memory chips. Flash translation layer (FTL), including 
address mapping, wear leveling, and garbage collection, is 
implemented as firmware running on SSD controller to manage the 
SSD. A multiplexer emits commands and handles transport of data to 
the flash packages for each channel. A channel contains a set of flash 
chips. To overcome errors of noisy flash memory, each channel has its 
own error correction engine. The most widely used ECC algorithms for 
contemporary flash SSDs are binary BCH codes [11], which can 
correct multiple errors. 

 

Figure 1. Flash-based SSD system architecture with proposed flash error 

management implemented in flash translation layer  

III. ERRORS AND ECC ANALYSIS IN NAND FLASH 

A. Errors in NAND Flash 

NAND flash memory has three main operations: read, program (write), 
and erase. Various errors can occur during these operations; they are 
classified as read errors, program errors, and erase errors. In addition, 
while data is stored in flash memory, an already-programmed flash cell 
gradually loses charge from its floating gate, which can eventually alter 
the stored value, causing an error, called a retention error. Cai et al. 
used a real experimental test platform [10], to characterize errors that 
occur in 3x-nm MLC flash memory [5]. They observed the following 
main error characteristics: (1) All types of errors are highly correlated 
with the number of P/E cycles the flash cell endured. Raw BER 
increases exponentially as P/E cycles increase; (2) Retention errors are 
most dominant, and program errors are the second most dominant 
types of errors; (3) Retention error rates are highly correlated with 
retention time. These experimental findings are also supported by 
Tanakamaru et al. who report that retention error rate is >100x higher 
than program error rate [8]. 

In error analysis, raw data refers to the data read immediately out of 
NAND flash memory without any error correction. Raw BER (RBER) 
is the fraction of erroneous bits over all raw data bits read. After error 
correction, which happens in the SSD controller, the corrected data is 

sent to the host computer. However, error-corrected data might still 
contain some uncorrectable errors, as the ECC might not be strong 
enough to correct all errors in the raw data. The fraction of erroneous 
bits after error correction over all read data bits is called uncorrectable 
BER (UBER). 

B. ECC Power, Area, and BER Analysis  

Generally, a given ECC can be described by the 3-tuple <n, k, t>, 
where n is the codeword length, k is the length of data that the code 
protects and t is the maximum number of errors that the ECC can 
correct. To select a suitable ECC for NAND flash memory, three 
factors need to be considered. First, the coding rate R = k/n, which 
determines the storage efficiency, should be as high as possible (e.g. 
>8/9 is typical for storage) to maintain high storage efficiency and low 
cost per bit. Second, the error correction capability t should be large 
enough to guarantee UBER to be below 10-15, which is a common 
reliability requirement in data storage. Third, the code length n should 
be a factor of flash page length.  

Table 1.  Characterization of various error correction codes 

Table 1 summarizes the characteristics of a series of applicable BCH 
codes, which are widely used for flash-based storage with various code 
lengths but all with the same coding rate. We keep the coding rate 
constant as it critically determines cost per bit. We list the acceptable 
raw BER each code provides to achieve an UBER of 10-15, which 
would satisfy common storage industry reliability requirements, as 
well as the normalized power and area consumption to implement the 
required circuitry for each code, which all depend on the relative 
strength of each code. To evaluate power and area consumption, we 
synthesized the RTL design of each code with industrial 65nm bulk 
CMOS standard cell and memory libraries using the Synopsys Design 
Compiler. The power and area are normalized to the baseline 512-bit 
BCH code that consumes 1.76 mW and occupies 0.013 mm2. Table 1 
shows that as the code length of ECC increases given the same coding 
rate, the acceptable raw BER increases. However, the increase in 
power and area consumption is much larger than the increase in 
acceptable raw BER, especially for the strongest codes. This is because 
the implementation complexity is highly correlated with the code 
length (n) and the number of errors (t) that can be corrected. To 
achieve an endurance of a few thousand P/E cycles, up to 40 bit errors 
are expected to be corrected per 1k byte data for 2x-nm MLC flash [7]. 
Based on this analysis, we conclude that the power and area overheads 
of a strong ECC that can tolerate an acceptable raw bit error rate are 
likely to be prohibitive. As such, techniques that can tolerate high raw 
bit error rates without requiring strong ECC are very desirable. 

C. P/E Cycle Lifetime Analysis  

We define the lifetime of flash block as the maximum number of P/E 
cycles after which the ECC in the SSD controller can no longer 
guarantee the commonly required storage reliability (less than 10-15 
UBER) within a certain guaranteed data storage time. The guaranteed 
storage time indicates how long the data is expected to be present in 
flash memory. We first analyze the effect of stronger ECC on the 
lifetime of flash memory for a fixed guaranteed storage time, and next 
provide insights into the results by characterizing raw bit error rate of 
flash memory at different lifetimes. To gather the data we present, we 
have used an FPGA-based experimental flash testing platform [10] to 
test a large number of 3x-nm NAND flash memory chips [5].  

Code 

length(n) 

Correctable 

Errors (t) 

Acceptable 

Raw BER 

Norm. 

Power 

Norm. 

Area 

512 7 1.0x10-4 (1x) 1 1 

1024 12 4.0x10-4 (4x) 2 2.1 

2048 22 1.0x10-3 (10x) 4.1 3.9 

4096 40 1.7x10-3 (17x) 8.6 10.3 

8192 74 2.2x10-3 (22x) 17.8 21.3 

32768 259 2.6x10-3 (26x) 71 85 
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Figure 2. (a) The number of program/erase cycles that can guarantee 10-15 UBER given 3-year storage time with various error correction codes; (b) Raw BER for all 
errors at different number of P/E cycles; each line shows the raw BER observed after different required data storage times (3 days/weeks/months/years) 

Figure 2(a) shows the maximum lifetime (in P/E cycles) different-
strength BCH codes provide for the 3x-nm flash chips examined, 
assuming a guaranteed storage time of 3 years. Recall that lifetime 
indicates the maximum number of P/E cycles that are achievable to 
guarantee a UBER of <10-15. We observe that increasing the strength 
(code length) of BCH codes results in diminishing returns in lifetime. 
To provide insight into why stronger ECC provides diminishing returns 
in number of P/E cycles, we show how the raw bit error rate changes 
with changes in P/E cycles in Figure 2(b). This figure plots the 
relationship between raw bit error rate and P/E cycles for different 
guaranteed/required data storage times. The raw BER data is obtained 
by writing data to the entire flash memory chip and observing the bit 
errors after the required data storage times [5]. The key observation is 
that as P/E cycles increase, the raw bit error rate observed in flash 
memory increases exponentially. In contrast, the error correction 
capability of BCH codes increases much more slowly (usually less than 
linearly) with increased code length, as shown in the Acceptable Raw 
BER column of Table I. Thus, increasing strength of BCH codes would 
provide diminishing returns. 

As a concrete example, when we increase the code length from 512 
bits to 32k bits, the acceptable raw BER increases by ~26x (see Table 
I), but the provided lifetime increases by only 4x (see Figure 2 (b)), 
under a 3-year data storage time requirement. The 4x increase in 
lifetime is much lower than the ~17x increase required by enterprise 
applications to achieve ~50k P/E cycles (not shown). Furthermore, 
increasing code length from 512 to 32k bits comes at 71x the power 
consumption and 85x the area overhead, which is likely prohibitive.  

We also observe from Figure 2 (b) that: if the ECC strength, and thus 
the acceptable raw BER, is fixed, we can achieve a larger lifetime by 
relaxing the required storage time. For example, if the required storage 
time is 3 years, the lifetime provided by a 512-bit BCH code is only 
~3k P/E cycles. On the other hand, if the required storage time is 3 
days, the lifetime provided by the same code is ~150k P/E cycles. 
Hence, if we would like to achieve a lifetime of ~150k P/E cycles 
while still having the ability to store data for 3 years (or longer), we 
can relax the data storage time to 3 days, and refresh each flash cell 
every 3 days to retain the data integrity. Our techniques we described 
below are based on this basic observation, which we validate 
experimentally with extensive evaluations.   

IV. PROPOSED TECHNIQUES  

We propose a set of new techniques called Flash Correct-and-Refresh 
(FCR) that exploit the dominance and characteristics of retention errors 
to significantly increase NAND flash lifetime while incurring minimal 
overheads. The basic idea of the FCR schemes is to periodically read, 
correct, and refresh (i.e., reprogram or remap) the stored data before it 
accumulates more retention errors than can be handled by ECC. Thus, 
we can achieve a low UBER while still using a simple, low-overhead 
ECC. Two key questions central to designing a system that uses FCR 
techniques are: (1) how to refresh the data in flash memory? and (2) 
when to refresh the data? We address the first question with two 
techniques for how to refresh the data: remapping (Section IV.A) and 

reprogramming in-place (Section IV.B). We then tackle the second 
question with two techniques for when to refresh: periodically and 
adaptively based on the number of P/E cycles (Section IV.C). 

A. Remapping Based FCR Mechanism 

Unlike DRAM cells, which can be refreshed in-place, flash cells 
generally must first be erased before they can be programmed. To 
remove the slow erase operation from the critical path of write 
operations, current wear leveling algorithms remap the data to another 
physical location rather than erasing the data and then programming in-
place. The flash controller maintains a list of free blocks that have been 
erased in background through garbage collection and are ready for 
programming. Whenever a write operation is requested, the controller’s 
wear leveling algorithm selects a free block and programs it directly, 
remapping the logical block address to the new physical block. 

The key idea of remapping based FCR is to leverage the existing wear-
leveling mechanisms to periodically read, correct, and remap to a 
different physical location each valid flash block in order to prevent it 
from accumulating too many retention errors. Figure 3 shows the 
operational flow of remapping-based FCR: (1) During each refresh 
interval, a block with valid data that needs to be refreshed is selected; 
(2) The valid data in the selected block is read out page by page and 
moved to the SSD controller; (3) The ECC engine in the SSD 
controller corrects all the errors in the read data, including retention 
errors that have accumulated since the last refresh. After ECC, the data 
are error free; (4) A new free block is selected and the error free data 
are programmed to the new location, and the logical address is 
remapped. Note that the proposed address remapping techniques 
leverage existing hardware and software of contemporary wear 
leveling and garbage collection algorithms. 

 
Figure 3.  Operation of a remapping-based flash data refresh scheme.  

Error Rate Model. We now provide an intuitive model for the 
benefits of remapping based FCR. As discussed in Section III.A, flash 
memory errors can be classified as retention, program, read, and erase 
errors. Given a remapping-based refresh period T and the number of 
refresh periods elapsed during the required storage time N, the total 
error count with remapping based FCR can be modeled as: 

erasereadprogramretentiontotal EEETEE  )(  

Here the number of retention errors is determined by the refresh period 
T, as refresh operations can eliminate retention errors that accumulate 
since the last refresh. On the other hand, if the data are not periodically 
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corrected and remapped, retention errors accumulate throughout the 
data storage time, and the total error count can be modeled as: 

erasereadprogramretentiontotal EEETNEE  )(  

Here, the retention error count correlates with the total storage time. 
Since retention errors increase almost linearly with retention time and 
the retention errors are the most dominant errors, the overall error rate 
ratio with remapping based FCR as opposed to without is: 
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Thus, overall error rate can be almost linearly decreased by increasing 
the refresh rate (i.e., the number of refresh intervals, N). The benefits 
of remapping based FCR can be leveraged in two ways: (1) Given a 
fixed P/E cycle lifetime requirement, ECC on the flash controller can 
be greatly simplified. (2) Given a fixed ECC on the controller, FCR 
can increase the maximum number of P/E cycles that flash memory 
can tolerate to achieve a particular storage reliability requirement. 

Unfortunately, periodic remapping of every block introduces additional 
erase cycles. This is because after the flash data are corrected and 
remapped to the new location, the original block is marked as outdated. 
Thus, the block will eventually be erased and reclaimed by garbage 
collection. The more frequent the remap operations, the more the 
additional erase operations, which wears out flash memory faster. As 
such, there might be an inflection point beyond which increasing the 
refresh rate in remapping-based FCR can lead to reduced lifetime. To 
avoid this potential problem, we next introduce enhanced FCR 
methods, which minimize unnecessary remap operations. 

B. In-Place Reprogramming Based FCR Mechanisms 

To reduce the overhead associated with periodic remapping, we 
propose a technique for periodic in-place reprogramming of the block 
most of the time, without a preceding erase operation, which can 
greatly reduce the overhead of periodic remapping. This in-place 
reprogramming takes advantage of the key observation that retention 
errors arise from the loss of electrons on the floating gate over time and 
the flash cell with retention errors can be reprogrammed to its original 
correct value without an erase operation using the incremental step 
pulse programming (ISPP) scheme used to program flash memory. We 
first provide background on ISPP. 

ISPP. Before a flash cell can be programmed, the cell must be erased 
(i.e., all charge is removed from the floating gate, setting the threshold 
voltage to the lowest value). When a NAND flash memory cell is 
programmed, a high positive voltage applied to the control gate causes 
electrons to be injected into the floating gate. The threshold voltage of 
a NAND flash cell is programmed by injecting a precise amount of 
charge onto the floating gate through ISPP [21]. During ISPP, floating 
gates are programmed iteratively using a step-by-step program-and-
verify approach. After each programming step, the flash cell threshold 
voltage is boosted up. Then, the threshold voltage of the programmed 
cells are sensed and compared to the target values. If the cell’s 
threshold voltage level is higher than the target value, the program-
and-verify iteration will stop. Otherwise the flash cells are programmed 
once again and more electrons are added to the floating gates to boost 
the threshold voltage. This program-and-verify cycle continues 
iteratively until all the cells’ threshold voltages reach the target values. 
Using ISPP programming, flash memory cells can only be 
programmed from a state with fewer electrons to a state with more 
electrons and cannot be programmed in the opposite direction. 

Retention Error Mechanisms. Retention errors are caused by the loss 
of electrons from the floating gate overtime. As such, a cell with 
retention errors moves from a state with more electrons to a state with 
fewer electrons. Figure 4(a) shows the relative relationship between the 
stored data value and its corresponding threshold voltage distribution 
for a typical MLC flash storing 2-bits per cell. The leftmost state is the 
erased state (i.e. state 11) with the smallest threshold voltage and there 
is no charge on the floating gate. The states located on the right in 
Figure 4(a) are programmed with more electrons and have higher 

threshold voltages than the states located relatively to the left. Over 
time, as the electrons on the floating gate leak away, the threshold 
voltage of a cell shifts to the left, as shown in Figure 4(b). If the 
threshold voltage of a cell shifts too far to the left (i.e., it loses too 
many electrons from the floating gate), it will cross the read reference 
voltage between adjacent states and can be misinterpreted during a read 
as the wrong value.  

In-Place Reprogramming can Fix Retention Errors. A cell with a 
retention error can be reprogrammed to the value it had before the 
floating gate lost charge by re-charging additional electrons onto the 
floating gate through ISPP, as shown in Figure 4(c). Note that this does 
not require an erase operation because the only objective is to add more 
electrons (not to remove them), which can be accomplished by simple 
programming.  

 

Figure 4. Retention errors are caused by threshold voltage shift to the left and 

can be fixed by programming in-place using ISPP.  

Basic In-Place Reprogramming Based FCR Mechanism. A basic 
FCR mechanism that uses in-place reprogramming works as follows. 
Periodically, a block is selected to be refreshed and read page by page 
into the flash controller. By selecting a suitable refresh interval, we can 
ensure that the total error number is below the correction capability of 
the ECC. Then we can re-program the flash cells in the same location 
with the error-corrected data, without erasing the whole block. If the 
new corrected value corresponds to a state with more charge than the 
old value, then the cell can be in-place reprogrammed to the correct 
value. If the corrected value is exactly the same as the original value, 
in-place reprogramming will not change the stored data value, as ISPP 
will stop programming the cell as soon as it detects that the target value 
has already been reached. Note that most of the cells are reprogrammed 
with exactly the same data value as error rates are generally 
significantly below 1%.  

Problem: Accumulated Program Errors. While this basic 
mechanism can effectively fix retention errors, it introduces a problem 
because there is another error mechanism in flash cells that is caused 
by program operations, which are required to perform in-place 
reprogramming. When a flash cell is being programmed, additional 
electrons may be injected into the floating gates of its neighbor cells 
due to coupling capacitance [13]. The threshold voltage distribution of 
the neighbor cells will shift right as they gain more electrons, as shown 
in Figure 5(a). If the threshold voltage shifts right by too much, it will 
be misread as an error value that represents a state located to the right. 
This is called a program interference error (or simply a program error). 
Although it is a less common error mechanism than retention errors, 
periodic reprogramming can exacerbate the effects of program errors.  

Two potential issues are: (1) As ISPP cannot remove electrons from 
the floating gate, program errors cannot be fixed by in-place 
reprogramming; (2) Reprogramming of a page can introduce additional 
program errors due to the additional program operations. Figure 5(b) 
illustrates both issues in the context of in-place programming. First, the 
original data is programmed into the page. This initial programming 
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can cause some program errors (e.g., value 11 is programmed as 10 on 
the second cell from the left). After some time, retention errors start to 
appear in the stored data (e.g., first cell changes from state 00 to 01). 
Note that there are generally many more retention errors than the 
program errors. When the page is reprogrammed in-place, it is first 
read out and corrected using ECC. The error-corrected data (which is 
the same as the original data) is then written back (programmed) into 
the page. This corrects all the retention errors by recharging the cells 
that lost charge. However, this reprogramming does not correct the 
program error (in the second cell) because this correction requires the 
removal of charge from the second cell’s floating gate, which is not 
possible without an erase operation. Furthermore, additional program 
errors can appear (e.g., in the sixth cell) because the in-place program 
operation can cause additional disturbance.  

(a)  Program interference causes threshold voltage shift to the right

011011 00
VT

REF1 REF2 REF3

… …11 01 00 10 11 0000
Original data to 
be programmed 

… …10 01 00 10 11 0000
Program errors after 
initial programming

… …Retention errors 
after some time

… …Errors after in-place
reprogramming

10 10 00 11 11 0101

10 01 00 10 10 0000

(b)  Example of reprogramming a page with retention and program errors

 

Figure 5. In-place reprograming can correct retention errors but not program 
errors because in-place programming can only add more electrons into the 

floating gate and cannot remove them. Note that red values with dotted circles 

are retention errors and blue ones with solid circles are program errors.  

Error Rate Model. Given a reprogramming period T and the number 
of refresh periods during the required storage time N, the total error 
count with the basic in-place reprogramming can be modeled as: 

erasereadprogramreprogramretention

reprogram

total EEEENTEE  )(  

As the number of refresh operations increases, the program errors due 
to reprogramming of the same block over and over accumulate. This is 
because program interference errors are mainly right shift errors 
(unlike retention errors), and cannot be corrected by in-place 
reprogramming. The program error rate increases linearly with the 
number of reprogram operations. For relatively small N, the 
accumulated error count introduced by reprogramming is still much 
smaller than retention error rate, and periodic reprogramming can still 
greatly reduce the raw BER. So, only in cases of where reprogramming 
frequency is high (large N), will the programming error rate become 
comparable to that of the retention errors. If the program error counts 
reach the error correction capability of ECC, it is highly probable that 
the data read in the next refresh interval can no longer be recovered as 
the sum of accumulated program errors and newly produced retention 
errors may exceed the error correction capability of ECC.  

Hybrid FCR. To mitigate the errors accumulated due to periodic 
reprogramming, we propose a hybrid reprogramming/remapping based 
FCR technique to control the number of reprogram errors. The key idea 
is to monitor the right-shift error count present in each block. If this 
count is below a certain threshold (likely most of the time) then in-
place reprogramming is used to correct retention errors. If the count 
exceeds the threshold, indicating that the block has too many 
accumulated program errors, then the block is remapped to another 
location, which corrects both retention and program errors. In our 
evaluation, we set the threshold to 30% of the maximum number of 
errors that could be corrected by ECC, which is conservative. Figure 6 
provides a flowchart of this hybrid FCR mechanism. Note that this 

hybrid FCR mechanism greatly reduces the additional erase operations 
present in remapping based FCR because it remaps a block (i.e., 
requires an erase operation) only when the number of accumulated re-
program errors is high, which is rare due to the low program error rate.  

Choose a block to 
be refreshed

Read LSB and 
MSB page pair

Error
Correction

Cell threshold 
voltage comparison

# Right shift errors
< Threshold

LSB/MSB 
page pair num++

Reprogram 
in-place

Last LSB/MSB 
page pair?

No Re-map to the 
new block

Yes

No
Yes

 
Figure 6. Hybrid FCR workflow: if re-program error count is less than a 

threshold, in-place reprogram the block; otherwise, remap to a new block 

C. Adaptive-Rate FCR  

So far we assumed that FCR mechanisms, be it based on in-place 
reprogramming or remapping, are invoked periodically. However, this 
need not be the case. In fact, we observe that the rate of (retention) 
errors is very low during the beginning of flash lifetime, as shown in 
Figure 2(b) and as also observed by others [5]. Until more than 1000 
P/E cycles, the retention error rate is lower than the acceptable raw 

BER that can be corrected by the simplest BCH code (Figure 2 (b)). 
Hence, at the beginning of its lifetime, flash memory does not need to 
be refreshed. Retention error rate increases as the number of P/E cycles 
increases. We leverage this key observation to reduce the number of 
unnecessary refresh operations.    

The main idea of adaptive-rate FCR is to adapt the refresh rate to the 
number of P/E cycles a block has incurred. Initially, refresh rate for a 
block starts out at zero (no refresh). Once ECC becomes incapable of 
correcting retention errors, the block’s refresh rate increases to tolerate 
the increased retention error rate. Hence, refresh rate is gradually 
increased over each flash block’s lifetime to adapt to the increased P/E 
cycles. The whole lifetime of a flash block can be divided into intervals 
with different refresh rates ranging, for example, from no refresh 
(initially), yearly refresh, monthly refresh, weekly refresh, to daily 
refresh. The frequency of refresh operations at a given P/E cycle count 
is determined by the acceptable raw BER provided by the used ECC 
and the BER that corresponds to the P/E cycle count, as shown in 
Figure 2(b). Note that this mechanism requires keeping track of P/E 
cycles incurred for each block, but this information is already 
maintained to implement current wear-leveling algorithms. 

D. Additional Considerations for FCR  

Implementation cost. The FCR mechanisms do not require hardware 
changes. They require changes in FTL software/firmware to implement 

the flowcharts shown in Figure 3 and Figure 6. FCR can leverage the 
per-block validity and P/E cycle information that is already maintained 
in existing flash systems to implement wear leveling.   

Power supply continuity. To perform a refresh, the flash memory 
must be powered. As FCR is proposed for enterprise storage 
applications, these systems are typically continuously powered on. Our 
proposed techniques use daily, weekly or monthly refresh and it is rare 
for a server to be powered off for such long periods. 

Response time impact. Refresh may interfere with normal flash 
operations and degrade the response time. To reduce this penalty, we 
can decrease the refresh priority making it run in background. SSD can 
issue refresh operations whenever it is idle, and refresh operations can 
be interrupted to avoid the impact on the response time of normal 
operations. Unlike DRAM, where refresh is triggered frequently (e.g., 
every 64ms), the refresh period of FCR is at least a
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Figure 7.  Flash lifetime (in days) provided by remapping based FCR. The baseline represents the lifetime without any refresh. Y-axis is in log scale. 

day, and the SSD can finish refresh operations within the refresh 
period. Recent work has shown that the response time overhead is 
within a few percent for daily refresh [14]. Note that our hybrid and 
adaptive FCR techniques have much lower overhead for refresh 
operations than periodic remapping based FCR. 

Additional erase cycles. FCR introduces additional erase operations. 
We will evaluate the impact of additional erase operations on effective 
lifetime and energy in Section VI. 

Adapting to variations in retention error rate. Note that retention 
error rate is usually constant for a given refresh rate and P/E cycle 
combination. However, there are environmental factors, such as 
temperature, that can change this rate. For example, retention error rate 
would be dependent on temperature. To adapt to dynamic fluctuations 
in retention error rate, our hybrid FCR and adaptive-rate FCR 
mechanisms monitor the changes in the retention error rate at periodic 
intervals, and increase/decrease the refresh (i.e. FCR) rate if the error 
rate in the previous interval is greater/less than a threshold. These 
mechanisms are similar in principle to what is employed in DRAM to 
adapt refresh rate to temperature changes [22].   

V. EVALUATION METHODOLOGY  

We use Disksim [15] with SSD extensions [9] to quantitatively 
evaluate the proposed techniques. All proposed techniques are 
simulated using various real workload traces: iozone [16], cello99 [20], 
oltp, postmark [17], MSR-Cambridge [19] and a web search engine 
[18]. These workload traces are chosen to cover diverse read ratios out 
of all SSD operations, which are 0%, 38%, 52%, 83%, 80% and 99% 
respectively. Iozone and postmark are file system benchmarks. oltp is a 
database application running on a financial institution. web search 
contains the I/O traces from a popular engine. Cello99 contains a set of 
traces taken from cello [20] over the period January 14 and December 
31 in 1999. MSR-Cambridge contains 1-week-long block I/O traces of 
servers at Microsoft Research Cambridge. 

We configure the simulated flash-based SSD with four channels. Each 
channel has 8 flash chips. Each flash chip has 8192 blocks containing 
128 pages. The page size is 8KB. The total storage capacity is 256GB. 
We select a group of candidate ECCs for NAND flash memory 
controller as listed in Table 1. The energy of flash read, program, and 
erase operations are collected from an experimental flash memory 
platform [10], and are used in the simulation infrastructure to obtain 
the overall energy consumption. To evaluate flash lifetime provided by 
a given error correction and FCR mechanism, we first obtain the 
maximum number of P/E cycles per block based on the experimental 
data we obtain on the relationship between P/E cycles and acceptable 
raw BER of a given ECC mechanism, as shown in Figure 2(b).  We 
then obtain the P/E cycles of each block after simulating a trace to 
completion. Dividing the simulated P/E cycles for the trace with the 
maximum possible P/E cycles provides us with the fraction of 
maximum possible flash lifetime (P/E cycles) that is exhausted by the 
trace.  Since we know the real length of the trace (e.g., cello99’s length 
is 11.5 months), we know how long in real time the trace runs to 

exhaust that fraction of maximum lifetime. We use linear extrapolation 
to determine how long the trace would have been to exhaust the full 
maximum lifetime. Note that we use this methodology since it was 
impossible to obtain or simulate multiple-year-long traces that can 
actually exhaust the lifetime of flash memories we evaluate. 

VI. RESULTS AND ANALYSIS  

A. Flash Lifetime with Remapping-Based FCR 

Figure 7 compares the lifetime provided by remapping-based FCR 
(with refresh interval ranging from daily to yearly) to the baseline with 
no refresh. Flash lifetime is evaluated under various ECC 
configurations (ranging from weak 512b to strong 32k-bit BCH codes) 
with five refresh periods for all workloads. All P/E cycle overheads 
introduced by remapping are taken into account in these evaluations.  

First, given the same workload and the same refresh interval (or no-
refresh), stronger ECC always provides a longer lifetime than weaker 
ECC. For example, given a refresh interval of 3 days and the IO-zone 
trace, lifetime can be increased by 3.5 times if 32k-bit BCH codes are 
used instead of 512b codes. This is because strong ECC can tolerate 
high raw BER at high P/E cycles and thus improves lifetime. 

Second, remapping based FCR provides significant lifetime 
improvements, especially for write-intensive applications, such as io-
zone and cello99. Using FCR in conjunction with weak ECC provides 
higher lifetime than using strong ECC alone (with no refresh). For 
example, flash lifetime with 512b BCH codes and daily refresh is 24 
times longer than with 32kb-BCH but no refresh, for the iozone 
workload. We conclude that using FCR can avoid the need for 
implementing high-cost strong ECC techniques while providing much 
higher lifetimes than such techniques.  

Analysis. Refresh period impacts lifetime in different ways depending 
on the characteristics of the workloads. For write-intensive applications 
(i.e. iozone, cell099 and postmark), lifetime always increases as refresh 
period decreases. These workloads require a high number of P/E cycles 
due to frequent writes and a short refresh interval increases the 
maximum P/E cycles each flash block can tolerate. For read-write-
balanced workloads, such as oltp, which has an approximately equal 
frequency of read and write operations from the host computer to SSD, 
lifetime first increases with reduced refresh period until a point (3-day 
refresh period). Lifetime decreases with reduced refresh period after 
that point, indicating that the additional P/E cycles introduced due to 
remapping outweighs the P/E cycle increase due to refresh. For 
example, for the oltp workload, the additional P/E operations increase 
from ~2x to ~7x when the refresh period changes from 3 days to daily, 
while the maximum P/E cycles a flash block can tolerate only increases 
by 50%. For heavily read-intensive applications (i.e., web search, 
MSR-Cambridge), remapping-based FCR reduces lifetime. This is 
because these applications do not require a high number of P/E cycles 
to begin with so there is little benefit to FCR. The additional erase 
cycles introduced by remapping leads to decreased lifetime even with a 
large refresh period of one year. 
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Figure 8. Flash lifetime (in days) provided by remapping based FCR versus hybrid FCR. Y-axis is in log scale. 
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Figure 9. Lifetime comparison of no refresh, remapping-based FCR, hybrid FCR and adaptive-rate FCR. Remapping-based FCR and hybrid FCR use the refresh 

interval that provides the highest lifetime for each trace. Y-axis is in log scale.  

B. Flash Lifetime with Hybrid FCR 

Figure 8 compares the lifetime of hybrid FCR and remapping-based 
FCR at various refresh intervals, assuming both are implemented over 
a baseline with 512b BCH codes. Hybrid FCR remaps the block if the 
program errors affect more than 30% of the number of bits that ECC 
can correct. We make several major observations. First, hybrid FCR 
always improves lifetime compared to both remapping-based FCR and 
the baseline with no refresh for all workloads. This is because hybrid 
refresh greatly reduces the erase cycles by largely replacing the remap 
operations with in-place reprogramming operations. On average, 
hybrid FCR provides 3x higher lifetime than remapping based FCR 
and 31x higher lifetime than the baseline with no refresh. Second, 
hybrid FCR provides more lifetime benefit over remapping-based FCR 
for read-intensive applications than for write-intensive applications. 
Although hybrid FCR can greatly reduce additional P/E cycles, the 
relative P/E cycle overhead decrease in write-intensive workloads is 
much smaller, as these workloads have a very high number of P/E 
cycles to begin with. Third, hybrid FCR improves lifetime of read-
intensive applications even when refreshes are infrequent (e.g., yearly) 
by greatly reducing the need to remap data. For balanced workloads, 
such as MSR-Cambridge, hybrid FCR increases lifetime over 
remapping-based refresh especially with short refresh periods. Note 
that remapping based FCR decreases lifetime for both web search and 
MSR-Cambridge workloads. Hybrid FCR fixes this problem and 
improves lifetime on all workloads. We conclude that hybrid FCR is a 
superior technique than remapping based FCR. 

C. Flash Lifetime with Adaptive-Rate FCR 

Figure 9 compares the lifetime improvement of adaptive-rate FCR 
(implemented over the hybrid FCR mechanism) to periodic remapping-
based FCR and periodic hybrid FCR. The refresh period of each 
periodic mechanism is chosen on a per-workload basis such that the 
lifetime provided for a workload by the mechanism is maximized. 
Adaptive-rate FCR improves lifetime over both periodic FCR 
mechanisms for all workloads as it avoids unnecessary refreshes. The 
improvements are especially significant in read-intensive workloads 
since these workloads do not have high P/E cycles, causing the 
adaptive-rate FCR to keep the refresh rate very low. On average, 
adaptive-rate FCR provides 46.7x, 4.8x, and 1.5x higher flash lifetime 

compared to no-refresh, remapping-based FCR, and hybrid FCR, 
respectively. We conclude that adaptive-rate FCR implemented over 
the hybrid FCR mechanism is a promising mechanism for significant 
and consistent lifetime enhancement of flash memory. 

D. P/E and Energy Overheads 

FCR techniques can introduce two main overheads: (1) additional P/E 
cycles due to remapping, which might outweigh the increase in lifetime 
due to reduced retention errors; (2) additional energy consumed by 
refresh operations. Figure 10 shows the ratio of additional P/E cycles 
due to remapping-based and hybrid FCR over the number of P/E 
operations intrinsic to each workload. First, the P/E cycle overhead of 
hybrid FCR is lower than that of remapping-based FCR. Second, the 
P/E cycle overhead for write-intensive applications is low. On average, 
write intensive workloads (i.e. iozone, cell099, postmark) only have 
20% and 2% P/E cycle overhead for remapping-based FCR and hybrid 
FCR respectively. Read-intensive applications have higher P/E cycle 
overhead since the workload itself has low P/E cycles to begin with.  
However, hybrid FCR’s P/E cycle overhead is below 10x even for 
daily refresh. Since daily refresh improves P/E cycle endurance by 
nearly 100x, the P/E cycle benefit of hybrid refresh still outweighs the 
P/E cycle overhead, leading to the lifetime improvements shown in the 
previous sections.  Note that all P/E cycle overheads have already been 
accounted for in the collection of the flash lifetime results. 

Figure 11 shows the additional flash energy consumption of 
remapping- based FCR and hybrid FCR averaged over all workloads 
compared to a system with no FCR. The refresh energy is estimated 
under the worst-case scenario that all data are to be refreshed. Even if 
we assume we must refresh the entire SSD each day, the energy 
overhead is only 7.8% and 5.5% for remapping based FCR and hybrid 
FCR respectively. When the refresh interval is 3 weeks, the energy 
overhead is almost negligible (less than 0.4%). We also observe that 
hybrid FCR has less energy overhead than remapping based FCR. This 
is due to two reasons. First, hybrid FCR reduces the high-energy 
erase/remap operations by performing in-place reprogramming most of 
the time. Second, when the data are programmed in place, the 
programmed data are almost the same as the data already present in the 
block, as the error rate is usually less than 1%. ISPP programming 
stops programming as soon as it detects that the target threshold 
voltage has already been reached. Thus, charge is injected into only a 
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small number of cells during in-place reprogramming and many cells’ 
states do not change (which consumes little energy). 
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Figure 10. P/E cycle overhead of remapping-based and hybrid FCR.  

We also evaluate the energy overhead of adaptive-rate FCR and find 
that it is only 1.5% (not shown in the figure). Recall that adaptive-rate 
FCR starts out with no refresh and gradually increases the refresh rate 
up to daily refresh as the P/E cycles accumulate. Yet its energy 
overhead is significantly lower than always daily refresh. We conclude 
that adaptive-rate FCR is the most superior of flash correct-and-refresh 
mechanisms in terms of both lifetime and energy consumption.   
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Figure 11.  Energy increase of remapping-based and hybrid FCR v. no refresh.  

VII. RELATED WORK  

To our knowledge, this is the first paper that exploits three major 
characteristics of retention errors in NAND flash memory to 
significantly improve flash lifetime without requiring any hardware 
changes. The three major characteristics are: (1) dominance of 
retention errors, (2) that retention errors can be fixed with in-place 
reprogramming, (3) correlation of retention error rate with P/E cycle 
lifetime. No previous paper developed mechanisms to: (1) reprogram 
in-place flash memory blocks to reduce retention errors; (2) adapt the 
reprogramming rate to the lifetime of the block based on the 
observation that retention errors increase with P/E cycle lifetime. 

Flash controllers have turned to stronger ECCs to correct multiple 
errors. BCH codes [11] are the most widely used due to their powerful 
error-correction capability. Choi [3] and Lee [4] implemented 16-bit 
and 32-bit BCH codes for flash memory respectively. We extensively 
compare FCR to different-strength BCH codes in this work, showing 
that FCR provides higher lifetime at much lower complexity. 

Pan et al. [14] propose the quasi-nonvolatile SSD technique, which 
relaxes non-volatility and uses refresh to improve P/E cycle 
endurance, similarly to remapping based FCR (which is concurrently 
developed). However, Pan et al. do not provide a lifetime evaluation 
using real experimental flash data and real workload traces. As shown 
in this work, additional P/E cycle overhead of remapping based 
mechanisms is very high and such mechanisms could even decrease 
the lifetime of NAND flash SSD for read-intensive applications.  

Both FCR and [14] are similar to “memory scrubbing” techniques 
commonly applied to volatile memories [23], which periodically read 
each memory location, correct errors, and restore the corrected values 
in the memory location. The goal of such mechanisms to ensure errors 

are corrected before they accumulate beyond a point that ECC cannot 
correct, and thus improve reliability. In contrast, FCR’s purpose is to 
improve P/E cycle lifetime of flash memory even if errors are 
correctable by ECC. As we show in this paper, simply applying 
scrubbing techniques to flash significantly increases erase operations, 
which degrades lifetime for especially read-intensive workloads. To 
overcome this, we introduce the new hybrid and adaptive-rate FCR 
mechanisms that exploit characteristics specific to flash memories.  

Previous work [5],[6],[8] characterized the error patterns of NAND 
flash memory and showed that retention errors are caused by charge 
loss and are dominant failure mode. These observed error patterns 
build the foundation for the FCR techniques we propose in this paper. 

Finally, Wilkerson et al. [24] observe that by increasing the strength 
of ECC, refresh rate in a volatile cache can be decreased, and thus the 
cache power can be decreased. Our proposal is the opposite and for a 
different purpose: we increase the refresh rate to reduce the need for 
strong ECC in order to improve P/E cycle lifetime in non-volatile 
flash memory. 

VIII. CONCLUSION  

We presented flash correct-and-refresh (FCR) techniques, which offer 

a low-overhead mechanism to significantly improve the lifetime of 

flash-based data storage systems, requiring only modifications to the 

SSD controller firmware or driver software. To our knowledge, this is 

the first work to improve flash reliability by leveraging the dominance 

of retention errors and using in-place reprogramming to correct 

retention errors. Our experimental evaluations using I/O traces from 

real workloads and error rates obtained from a real experimental flash 

platform show that FCR is effective in significantly improving flash 

storage system lifetime with only modest P/E and energy overheads. 

As flash continues to scale and the raw bit error rate and cell lifetime 

degrade, we hope our proposed FCR techniques are likely to serve as 

even more promising lifetime-enhancement techniques for future 

flash-based storage systems. 
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