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Abstract 

Last level caches (LLCs) account for a substantial fraction of the 
area and power budget in many modern processors. Two recent 
trends — dwindling die yield that falls off sharply with larger chips 
and increasing static power — make a strong case for a fresh look 
at LLC design. Inclusive caches are particularly interesting be-
cause many, if not most, commercially successful processors use 
inclusion to ease coherence at a cost of some data being stale or 
redundant. 
LLC designs can be improved statically (at design time) or dynam-
ically (at runtime). The "static dataless ways," removes the data—
but not tag—from some cache ways to save energy and area with-
out complicating inclusive-LLC coherence.  A dynamic version 
("dynamic dataless ways") could dynamically turn off data, but not 
tags, effectively adapting the classic selective cache ways idea to 
save energy in LLC but not area. Our data show that (a) all our 
benchmarks benefit from dataless ways, but (b) the best number of 
dataless ways varies by workload. Thus, a pure static dataless 
design leaves energy-saving opportunity on the table, while a pure 
dynamic dataless design misses area-saving opportunity. 
To surpass both pure static and dynamic approaches, we develop 
the FreshCache LLC design that both statically and dynamically 
exploits dataless ways, including repurposing a predictor to adapt 
the number of dynamic dataless ways as well as detailed cache 
management policies. Results show that FreshCache saves more 
energy than static dataless ways alone (e.g., 72% vs. 9% of LLC) 
and more area by dynamic dataless ways only (e.g., 8% vs. 0% of 
LLC).  

1 Introduction 
The on-chip cache hierarchy plays a crucial role in processor per-
formance, as evidenced by designs that dedicate more than 50% of 
the die area to large last-level caches (LLCs) [20,28,38,39]. Histor-
ically, designers have found the area and power demands of LLCs 
acceptable because their low activity factor results in low dynamic 
power and yields have been good enough to tolerate large dies. 
However, two trends — increasing static power [2,7,8,18] and 
diminishing die yields [1,15,22,35] — are pushing architects to 
reconsider LLC design.  

Inclusive LLCs [36] present an opportunity for improvement be-
cause they replicate the cache blocks contained in upper-level 
caches (closer to the processor). This design is widely used in 
commercial CMPs (e.g., Intel’s Nehalem, Sandy Bridge, and Ivy 
Bridge designs) because it simplifies coherence and reduce on-chip 
traffic [10,36,37]. However, replicating data makes inclusive cach-
es more area- and energy hungry than they need to be. The fact 
that they are used in spite of this waste and viable alternatives — 

exclusion [14], non-inclusion [23], and tag replication [4] — 
shows the high value placed on the coherence benefits of inclusion. 
Thus, an LLC design that reduces area and power overhead with-
out sacrificing inclusion is immediately useful. 
Static: To address this waste in inclusive caches, researchers have 
proposed NbCID [41], which uses cache ways built with tag and 
metadata but no data. These ways, which we call static dataless 
ways (SDWs), enhance performance and enable QoS in inclusive 
LLCs by creating more space for data not replicated in a private 
cache. Use of static dataless ways can save area and static energy 
while keeping the coherence benefits of an inclusive cache. How-
ever, our analysis (detailed in Section 3) shows that opportunity to 
use dataless ways varies widely across workloads: cache-sensitive 
workloads suffer if too many ways are made dataless. Since the 
number of static dataless ways is decided at chip fabrication time, 
it needs to be conservative to ensure that the worst-case perfor-
mance degradation across all workloads remains within an ac-
ceptable range. Thus, a fixed number of static dataless ways is 
unable to harness the full potential of dataless ways.  

Dynamic: This shortcoming of the static approach can be ad-
dressed by creating dataless ways at runtime. The data portion of 
cache ways can be turned off dynamically to save energy. We call 
such dataless ways dynamic dataless ways (DDWs). This is in-
spired by Albonesi’s Selective Cache Ways [3], which was among 
first systems to demonstrate that dynamically resizing caches is 
possible and can save energy. The concept of dynamic resizing of 
cache is easily extended to LLC and, in fact, a few modern proces-
sors allow system software to control the LLC size [12]. Unfortu-
nately, resizing the LLC dynamically gives up the area savings of 
static dataless ways. Furthermore, shrinking an inclusive LLC can 
interfere with private cache capacity because of back-invalidations 
to private cache blocks.  

New Hybrid: In this work we present the FreshCache LLC de-
sign, which seeks to achieve best of both worlds – static dataless 
ways, provisioned at design time to save area and energy with 
negligible performance impact, augmented with dynamic dataless 
ways enabled at run time for further energy savings when oppor-
tunity exists. Furthermore, FreshCache minimally changes com-
mercially popular inclusive cache coherence protocol and provides 
hardware management of dynamic resizing without software 
changes or profiling.           

At chip design time, FreshCache fixes a given number of cache 
ways as static dataless ways (e.g., 2 out of 16 ways). Such SDWs 
save both area and energy of the LLC.  The number of SDWs is 
chosen conservatively to keep the worst-case performance loss 
acceptable across all workloads. 

At run time, FreshCache hardware monitors the workload’s per-
formance sensitivity to dataless ways and increases or decreases 
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the number of DDWs depending upon the opportunity and the 
constraint. The number of DDWs at a given time is decided based 
on a software-provided maximum performance degradation (MPD) 
and the controller’s predicted performance loss from different 
numbers of DDWs. At runtime, FreshCache’s dataless-way-aware 
LLC controller actively guides cache blocks with stale data to-
wards dataless ways (SDWs or DDWs) to minimize potential per-
formance degradation due to presence of dataless ways. The use of 
dataless ways instead of turning off whole cache way allows 
FreshCache to keep benefits of inclusion without reducing the 
effective capacity of private caches.  Turning off entire cache way 
would require back invalidating corresponding blocks in private 
caches (if they exists) in order to maintain inclusion. Importantly, 
FreshCache achieves this with only minimal changes to the coher-
ence protocol. 

  In summary, a FreshCache design uses SDWs to save both area 
and power without possibility of substantially degrading perfor-
mance of any workloads while uses DDWs at runtime to opportun-
istically save more power according to the workload characteris-
tics.  

 
Our evaluation is divided into two parts. First, we present analy-

sis on why dataless ways can be beneficial. To this end we find 
that in an inclusive LLC on average 24% of valid cache blocks can 
contain stale data (data that cannot never be used), which can be 
exploited through use of dataless ways. We demonstrate that wide 
variability exists among workloads in its potential to enable sav-
ings through use of dataless ways. Second, in experiments with 
PARSEC [5] workloads and three commercial workloads, we show 
that FreshCache can use SDWs to save 8% of LLC area and up to 
72% (average 40%) of LLC and DRAM access energy without 
significantly affecting performance (1.7% on average, 2.8% in the 
worst case). We demonstrate that compared to a pure static ap-
proach, FreshCache saves more energy for some workloads  (e.g., 
72% vs. 9% energy savings) without hurting the performance of 
any workload. Compared to a pure dynamic approach FreshCache 
could save significant LLC area (e.g., 8% of LLC area savings vs. 
no area savings).     

2 Base system architecture 
We describe our design in the context of a base architecture pri-
marily modeled after the Intel Nehalem® architecture [36]. The 
base architecture, described in both Table 1 and Figure 1, contains 
three levels of on-chip caches. The L1 and the L2 caches are pri-
vate to a core, while the last level L3 cache is logically shared 
among all the cores on the die. The private L2 is exclusive with 
respect to the L1, and the L3 is inclusive with respect to the private 
caches. The 1:4 ratio of aggregate L2 to L3 size was chosen to 

follow Intel Nehalem (Xeon) E5507/5506 core [16] and recent 
industrial research [17].  
We model a “MESI” coherence protocol for on-chip coherence 
[15]. An on-chip directory located at the L3 is responsible for 
maintaining coherence. As shown in Figure 1, the tags for LLC 
blocks include state and sharing information required for coher-
ence. 

This in-cache-directory is similar many commercially popular 
x86-64 processors with inclusive LLCs. From Table 1 we see that 
the on-chip cache hierarchy configuration is scaled down by a 
factor of two from most commercial architectures. As discussed in 
Section 5.1, this makes off-chip accesses more frequent that is 
likely to result in underestimating energy savings and overestimat-
ing performance costs for our proposed technique.   

3 Stale data in LLCs 
This section analyzes how much opportunity is there to utilize 

Core 8, in-order, 2 Ghz 
L1 cache Private, 16kB 4-way, Split I/D, writeback 

L2 cache Private, 128 kB, 8-way,  
exclusive with L1, writeback 

L3 cache Shared, 4 MB, 16-way,  
inclusive to private caches, writeback 

Coherence MESI Directory protocol,  
directory co-located with L3 cache blocks 

Memory 2 GB , ~ 350 cycle round trip 
Table 1. Base system configuration 

 

Figure 1. Baseline system architecture 
 

 
 

 
 

Figure 2(a). Data in LLC is made stale. 
 

 
 

Figure 2(b). Stale data serves no purpose. 
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dataless ways. FreshCache takes advantage of valid cache blocks 
with stale data in inclusive LLCs to reduce power. For static data-
less ways, a designer must determine the prevalence of dataless 
ways across all workloads to avoid major performance impacts. 
For dynamic dataless ways, the variability in stale data and cache 
usage must be known. The wide variation in sensitivity to cache 
size across workloads is well studied and understood [32,40], and 
hence we focus on understanding the presence of stale data. We 
analyze the reasons behind the stale data in the LLC and quantify 
the amount and the distribution of it across sets of the LLC. We 
then demonstrate how different program characteristics can lead to 
wide variation in amount and distribution of stale data. 
    First, we describe below an example of how this can occur, and 
then present detailed analyses of how often it occurs and why. 
Figure 2(a) shows an example of how an LLC block can become 
stale.  When a private cache requests a cache block with exclu 
sive permission (i.e., a GETX request) from the LLC,  the LLC 
controller invalidates the sharers and  gives the cache block with 
exclusive permission to the private cache. Hereafter the data por-
tion of the LLC block serves no purpose because the private cache 
with exclusive permission is free to modify the block without noti-
fication. However, the tag and other meta-data continue to be use-
ful. For example, as depicted in Figure 2(b), the LLC forwards 
subsequent write or read requests for a block to its exclusive own-
er. The block’s data in the LLC cannot be used to satisfy a request, 
because it may have been modified in the private cache, and so the 
block is stale.  

Frequency of stale blocks. The number of stale blocks is propor-
tional to the overlap between private caches and the LLC; more 
overlap introduces more stale blocks. To evaluate the magnitude of 
stale blocks and to find whether they can be exploited, we measure 
the fraction of valid cache blocks in an LLC holding stale data for 
varying ratios of aggregate private L2 to shared L3 cache size. For 
a variety of workloads, we sampled the LLC every 100000 cycles 
(0.5 micro-sec) and report the average number of stale blocks 
across the samples.  We record the number of stale blocks as a 
fraction of valid blocks and do not include unused blocks.  

Figure 3 shows result of this experiment with L2:L3 ratios for 
several PARSEC [5] and three commercial workloads. On average 
nearly 24% of the cache blocks in the LLC contain stale data with 
a L2:L3 ratio of 1:4.  As expected, the fraction of stale cache in-
creases with higher L2:L3 ratios because there is more overlap 
between the LLC and private caches. In a few cases, the fraction of 
stale blocks is greater than the L2:L3 ratio. This occurs because of 
the small data footprint of one of the workloads (swaptions) does 

not fill up the entire LLC, so there are few valid blocks and stale 
blocks make up a large portion of them.  

As we have observed, blocks in the LLC become stale when a 
core writes to data in a private cache. However, the fraction of 
stale cache blocks in Figure 3 is greater than the expected fraction 
of writes, which indicates that some other factors may also be at 
work. We determined that an optimization in the coherence proto-
col leads to more exclusive blocks. 

The coherence protocol in our base system uses an exclusive 
(“E”) state optimization that proactively grants read-write (exclu-
sive) permission for a cache block requested with read permission 
if no other copy exists in the private caches. This optimization is 
used in many common coherence protocols, including MESI, 
MOESI, MESIF, to prefetch write permission in order to save an 
extra coherence transaction when blocks are read and then imme-
diately written. Importantly, because it grants read-write permis-
sion to a core, the E state serves as another source of stale cache 
blocks in addition to demand GETX requests. Note that although a 
block in the E state is clean, from the perspective of LLC, it is stale 
because the private cache can silently modify the block.  

To evaluate the impact of the “E” state, we measure the fraction 

 
Figure 4. Portion of blocks in private caches with exclusive 

permission that are clean or dirty. 
 

 
Figure 5. Distribution of stale blocks across sets. 

 

 
Figure 3. Portion of valid blocks with stale data. 
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of stale cache blocks that become stale due to the E state. In Figure 
4, the total height of each bar represents the fraction of private 
cache blocks that have exclusive (read-write) permission, and the 
dark portion shows the fraction of those blocks that were never 
written. On average, nearly 70% of the private cache blocks hold 
exclusive permission, which explains the high fraction of stale 
blocks in the LLC. Moreover, only around a third of those exclu-
sive blocks are actually modified. Overall we find that the exclu-
sive state optimization contributes nearly 65% of all stale blocks. 
Observation 1: A significant fraction of blocks in the LLC hold 
stale data at any given time, which adds to power and area costs 
but without any performance benefit.  

Stale block distribution. While the fraction of stale cache blocks, 
as well as their source, is informative, the ability to exploit stale 
blocks depends upon the distribution of stale blocks across the sets 
in LLC. Ideally, a processor would configure SDWs for the mini-
mum number of stale blocks across all workloads, and DDWs up to 
the maximum.  

Figure 5 shows the likelihood that a set will contain at least n 
stale blocks at any time during execution. For example, for 
facesim, on average more than 75% of the sets in the LLC contain 
four or more stale cache blocks. Across most of the workloads, a 
majority of the LLC sets contains at least 3 stale cache blocks, 
indicating a high potential to exploit the stale data phenomenon.  

More importantly, we observe that the distribution of number of 
stale blocks per set of LLC varies across workloads. For example, 
facesim has at least 4 blocks with stale data in 75% of the sets in 
LLC, while for graph500 only 15% of the sets have 4 or more 
cache blocks with stale data. The variations can be attributed to 
diverse program characteristics across different programs. This 
observation suggests any assumption built into a design about the 
availability of stale data blocks will either be conservative for 
some workloads or too aggressive for others. Thus, to fully exploit 
the stale data in LLC the number of dataless ways need to vary 
dynamically according to the workload characteristics.  
Observation 2: The distribution of stale data across cache sets 
varies depending upon workload characteristics and a design with 
static dataless ways alone is unlikely to fully realize potential of 
exploiting stale data in LLC.     

4 FreshCache: Leveraging Stale Data in the 
LLC 

The FreshCache design uses a hybrid of static dataless ways 
(SDWs) and dynamic dataless ways (DDWs) to design area and 
energy efficient LLC. SDWs help save both area and energy, while 
DDWs help save more energy when opportunity exists.  
    SDWs constitute a fixed number of contiguous ways in each set 
(e.g., two out of sixteen). The data in these ways are omitted from 
the cache layout. The number of SDWs in a FreshCache design is 
chosen conservatively to ensure worst-case performance across all 
workload remains acceptable. The performance of a workload with 
substantial LLC usage and with relatively low number of stale 
cache blocks can suffer adversely in the presence of a larger num-
ber of SDWs. 

On the other hand, DDWs are created at run time by turning off 
power to the data cells of a cache way. DDWs can save power, but 
not area, and provide dynamic control over the power savings and 
performance impact. Applications that can tolerate a larger number 
of dataless ways can use DDWs “for free” without incurring per-
formance penalties, while other applications can maintain high 
performance with fewer DDWs. For example, Figure 5 shows that 

for graph500 only 40% of cache sets have more than one stale 
cache block. However, a small number of dataless ways limits the 
savings on programs with more stale data, such as facesim where 
50% of sets have 5 or more stale blocks. Thus, FreshCache lever-
ages DDWs where the number of DDWs can be controlled auto-
matically by the hardware according to workload characteristics in 
order to save more power when the opportunity exists.  

FreshCache needs to accomplish two major tasks. First, it needs 
a dataless-way-aware LLC controller to select which blocks use 
dataless ways (SDWs or DDWs) and which use conventional (with 
data) ways. Second, it needs a hardware monitoring mechanism to 
select the optimal number of DDWs for a given workload at 
runtime.  Next, we describe how FreshCache achieves the first task 
with a modified LLC controller (called the FreshCache controller) 
and then delve into details of our online hardware monitoring and 
management mechanism for DDWs (called the DDW controller).  
4.1 FreshCache	  Controller:	  Managing	  Stale	  Data	  
Fundamental to a FreshCache design is how to exploit stale data in 
LLC and manage dataless ways, be it SDW or DDW. This subsec-
tion details the mechanisms of FreshCache controller that accom-
plishes this task. There are two primary goals of this design -- 1) 
keep dataless ways occupied with cache blocks with stale data to 
hide any potential performance degradation 2) uphold inclusive 
properties of the LLC without substantially perturbing the coher-
ence protocol.   

Dataless ways in the LLC can only store blocks that would oth-
erwise hold stale data, while conventional ways hold the blocks 
with valid data (metadata+data). If a stale cache block cannot be 
found, then the dataless ways must remain empty, which effective-
ly reduces the cache capacity. FreshCache uses a modified cache 
controller (the FreshCache Controller) that actively guides stale 
blocks to dataless ways to ensure that they have minimal perfor-
mance impact.  

When the coherence state of a block changes, the FreshCache 
controller interprets the new state to infer whether the data in the 
block is stale. If a valid cache block holds stale data then the con-
troller makes it a candidate for allocating in (or moving to) one of 
the dataless ways in the set.   The FreshCache controller uses a 
dataless-way-aware algorithm for allocation, writeback, and re-
placement.  

4.1.1 FreshCache Controller Policies 
The FreshCache controller must consider dataless ways during at 
least two occasions: first, when a cache block is allocated in the 
LLC, and second, when a private cache writes back a block to the 
LLC. In addition, the controller’s replacement policy selects a 

 
Figure 6. Modified LLC controller with LLC having data-

less ways. 
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victim from a subset of ways (dataless or conventional) when nec-
essary.  
Allocation of a cache block in the LLC: The LLC allocates a 
cache block with stale data in response to a write (GETX) request 
from private cache or a read request when a data cache block does 
not have other requester (sharer). Here, the FreshCache controller 
first looks for a free dataless way, and if that is not available it tries 
a conventional way before invoking the replacement policy to 
make a free block. Conversely, when allocating a cache block with 
valid data, the controller first seeks a free conventional way and 
then looks for a conventional way with stale data that can be 
moved to a free dataless way. If there are no free ways, it invokes 
the replacement policy. 

The goal of this algorithm is to minimize evictions by keeping 
the dataless ways occupied with stale cache blocks. We note that 
that the algorithm must know whether there exist stale blocks in a 
given set by interpreting coherence states. However, a set-
associative structure already accesses all metadata ways containing 
coherence state information in parallel and thus this does not add 
overhead. 

Writeback to a cache block in LLC: The LLC can receive a 
writeback from a private cache in three cases: (1) when a block 
held with exclusive permission is victimized from the private 
cache, (2) when the exclusive permission is relinquished by a pri-
vate cache in response to a read request by another core, and (3) 
when the LLC back-invalidates a block in a private cache to ensure 
inclusion. In the third case, the LLC does not store the written-
back data and thus no new mechanism is needed. However, in the 
first two cases if the corresponding block in the LLC resides in a 
dataless way then the writeback cannot proceed because there is no 
space for the data. In this case, the controller will move the block 
to a conventional way and replace an occupied conventional way if 
needed. A writeback to a block in a conventional way proceeds 
normally.  

Figure 6 depicts a LLC with dataless ways and the FreshCache 
controller that uses intra-set block movement to keep the dataless 
ways occupied with blocks with stale data. 
LLC Replacement policy:  Unlike conventional caches, the 
FreshCache may need to pick a victim from one of two classes of 
cache ways. During allocation of a cache block with valid data or 
when handling writeback to a block in a dataless way, it may be 
necessary to choose a victim only from conventional ways. To 
simplify the design, the locations of the dataless ways in each set 
are kept contiguous. Thus, existing victim selection mechanisms 
can be trivially extended to choose a victim from just the conven-
tional ways. For example, a binary tree-based pseudo-LRU [9] 
replacement mechanism, commonly used in highly associative 
LLCs, can select a victim from within conventional ways by con-
straining the tree traversal to a sub-tree structure of the conven-
tional ways in a given set. 

4.1.2 Implementation Issues  
While conceptually simple, the FreshCache design presents some 
interesting issues. 
What happens when a write request is received for a cache 
block in the LLC? 

When a private cache requests a cache block available in the 
LLC with exclusive permission (GETX), the LLC block becomes 
stale. This allows block’s meta-data (tag and coherence infor-
mation) to be moved to a dataless way, while the corresponding 
data portion can be discarded, as it is stale. However, instead of 

moving the block immediately, it is only done lazily during a later 
writeback or allocation as explained above.  This ensures that the 
cache-block metadata is moved only when freeing a space in con-
ventional way may help save later off-chip accesses.  
What happens for a writeback of an exclusive but clean (un-
modified) block from private a cache? 

Normally, a private cache need not send data when evicting 
clean data held with exclusive permissions (“E” state) to an inclu-
sive LLC because the LLC already contains the data. However, if 
the cache block resides in a dataless way then the clean data is not 
available in the LLC. A naïve solution is to send data on every 
writeback from a private cache. However, this can potentially in-
crease the on-chip network bandwidth usage.   

Instead, we observe that a private cache controller buffers the da-
ta written back to the LLC until it receives an acknowledgement 
message to handle protocol races. In FreshCache, the private cache 
sends a clean writeback without data.  If the block is in a dataless 
way, FreshCache controller sets a special DATA_REQUIRED bit 
in the writeback acknowledgement message. Only when this bit is 
set in the acknowledgement the private cache controller sends the 
buffered data. This solution only sends extra data messages for 
clean write-backs when necessary. From simulations, we found 
that this increases on-chip bandwidth usage by 1%.   
4.2 Managing	  Dynamic	  Dataless	  Ways	  
Dynamic dataless ways can be enabled or disabled at runtime to 
avoid hurting performance for cache-intensive workloads that do 
not contain much stale data in LLC. For workloads with few stale 
blocks in the LLC and high LLC usage, DDWs should be kept low 
(or even zero), while they should be used more for workloads with 
many stale blocks. Furthermore, DDWs effectively reduce LLC 
capacity when it is not needed, which provides additional power 
savings similar to dynamic cache-sizing techniques [3]. However, 
turning off only the data (but not metadata) in the LLC leaves data 
in the private caches. In contrast, if entire ways (metadata+data) 
are disabled then inclusion requires eviction of the corresponding 
data from private caches.  

In the following we describe the implementation details pertain-
ing to creation of DDWs and hardware monitoring mechanisms to 
decide the number of dataless ways.  

4.2.1 Creating Dynamic Dataless Ways 
Dynamically enabling dataless ways requires mechanisms to des-
ignate and disable the data portion of selects ways. First, data ways 
in the LLC must be modified to support turning them on/off. Se-
cond, the FreshCache controller should be able to designate a set of 
contiguous data ways in the LLC to turn off. The FreshCache al-

 
Figure 7. Hardware Control for Dynamic Dataless Ways 

(DDW).  Additions are shaded. 
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ways keeps all dataless ways contiguous as it enables simpler de-
sign of cache block replacement mechanism as mentioned Section 
4.1.2. Thus DDWs are always allocated contiguously by the 
SDWs. Finally, the controller flushes out any dirty data from those 
ways to the memory.  The flush operation is carried out in the 
background without blocking other requests.  

4.2.2 DDW Controller: Provisioning DDWs 
At a high level, the DDW controller monitors current cache per-
formance against an user-specified policy goals, and adjusts the 
number of DDWs up or down to achieve that goal. For example, 
the controller could seek maximum energy efficiency at any per-
formance. 

Depending upon execution environment and the purpose, the 
relative importance of performance and energy savings can vary. 
Thus, our proposed FreshCache design enables a user to provide 
the relative importance of energy savings and performance by 
specifying a maximum performance degradation (MPD) value. 
The FreshCache aims to minimize cache energy as long as the 
percentage performance degradation relative to the baseline design 
with conventional LLC remains within this user-provided MPD 
value. A high value of MPD indicates user’s willingness to save 
more energy at cost of potentially larger performance degradation, 
while a low value of MPD indicates greater importance towards 
performance. In summary, FreshCache treats the MPD value as an 
upper bound on the allowable performance sacrifice for energy 
efficiency. Thus, the DDW controller will find the number of 
DDWs that saves the most energy as long as estimated perfor-
mance degradation stays within this limit. Because caches misses 
take more energy than hits and extend execution time (drawing yet 
more energy), the controller may select a value with performance 
above the MPD. In the proposed FreshCache implementation MPD 
is expressed as integral performance degradation over the baseline 
with a conventional LLC. The software provides the desired MPD 
value to the hardware by writing to a designated register.  

The DDW controller is built from three components: (1) a miss-
rate estimator to predict cache behavior with different numbers of 
dataless ways, (2) configured miss latency and energy savings 
values, and (3) a memory-level parallelism estimator to calculate 
the performance cost of misses. With these components, the con-
troller predicts the performance loss and energy savings from dif-
ferent numbers of dataless ways and selects the greatest savings 
with performance above the MPD threshold. 

We use a slightly modified version of Qureshi et al.’s cache util-
ity monitoring mechanism [32] to estimate the number of off-chip 
misses with a given number of dataless ways.  As depicted in Fig-
ure 7, the monitor adds an auxiliary tag array of the same set-
associativity as the LLC but containing only one of every 32 sets 
using set-sampling [31]. This structure simulates hits and misses 
for each way in the set in the recency order. Counters keep track of 
the hit count for each way. We modify Qureshi’s proposal by in-
crementing the hit counter for a way only when there is a cache hit 
that a dataless way could not have served (e.g., read miss for 
shared data from a private cache but not for exclusive data in an-
other private cache) instead of on all hits. The hit counter values 
provide an estimation of the number of misses in an LLC when a 
given number of ways are rendered dataless.  The estimated miss 
numbers for each possible number of dataless ways are then fed to 
the DDW controller. 

The controller computes the estimated performance degradation 
for each number of DDWs by multiplying the estimated number of 
misses with the expected LLC miss latency (provided) and divid-

ing this total miss latency by the estimated memory level parallel-
ism. The parallelism is calculated as the fraction of misses across 
different cores. 

Finally, the controller computes the energy savings using con-
figured values for the static energy saved by turning off data ways 
and estimated energy cost of each off-chip accesses from a miss. 
While worse performance also increases energy due to running 
longer, the current implementation of the DDW controller does not 
incorporate this cost. From the predicted energy savings and pre-
dicted performance degradation, the controller then chooses the 
number of DDWs with performance cost less than the MPD and 
with most energy savings.  

This analysis is carried out periodically every 50M cycles, at 
which point the controller signals the FreshCache controller to 
increase or decrease the number of DDWs as depicted in Figure 7. 
The additional hardware structures needed for predicting cache 
misses adds 12KB of state overhead for a LLC with 4MB data 
capacity (< 0.3%). 
4.3 Putting	  all	  together	  
In summary, FreshCache uses static dataless ways (SDWs) to save 
area and energy and uses dynamic dataless ways (DDWs) to op-
portunistically save more energy as and when workload character-
istics permit. At runtime, the FreshCache controller actively guides 
cache blocks with stale data towards dataless ways (SDWs and 
DDWs) to hide potential performance loss. The number of SDWs 
is fixed conservatively at design time to ensure acceptable worst 
case performance across range of workloads while allowing rea-
sonable area and energy savings. At runtime, the DDW controller 
monitors the workload characteristics and chooses the number of 
DDWs against a user-specified upper limit on performance degra-
dation to enable the highest energy savings possible.  

5 Evaluation 
We evaluate the FreshCache design quantify its benefits: 

• How much energy and area can be saved by FreshCache? 
• Can hardware accurately control the use of dynamic dataless 

ways? 
• How big are the benefits of FreshCache’s hybrid approach in 

reducing LLC area and power?    

In addition, we measure the cost, in terms of performance overhead 
due to FreshCache. 

5.1 Simulation	  Methodology	  
We use the gem5 full system simulator [6] to model an x86-64 
machine running Linux (kernel version 2.6.28.4) with multithread-
ed workloads.   

We simulated a multi-core chip with 8 cores and three levels of 
caches. The parameters for simulation are shown in Table 1. The 
L2:L3 ratio is 1:4. The absolute sizes of the simulated caches are 
scaled down by at least a factor of two compared to real processors 
because slow simulation speed prevents running long enough to 
accurately measure the memory behavior for larger caches.  
Shrinking caches increases pressure on the LLC and increases the 
number of off-chip accesses. Thus, the performance cost of data-
less ways for larger caches likely to be lower than for our experi-
ments. In addition, our energy savings estimates likely to be lower 
because larger caches would have burned more static power. 

We extended CACTI 6.5 [27] to model the power and the area of 
our proposed LLC designs with dataless ways. We plugged its 
estimates into the full-system simulation to obtain power consump-
tion. For the LLC, we used low-power transistors with a 32 nm 
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process. The power for accessing DRAM was also derived from 
CACTI. We estimate that an LLC with the configuration in Table 1 
draws 0.8 watt of static power while each off-chip access costs 16 
nJ of energy. 
5.2 Workloads	  
We use a mix of memory-light and memory-intensive programs 
from Parsec [30] and three commercial-like multithreaded work-
loads to evaluate FreshCache. For all the Parsec workloads we use 
the native (largest) input set. We also simulated SpecJBB 2005 
[42], which models the middle-tier business logic of a three-tier 
web service and is written in Java; memcached [26], a memory 
cache frequently used by web services; and graph500 [25], a graph 
traversal algorithm useful in HPC environments and social net-
working services.  

We annotated each workload to define logical work units and 
then run simulations for fixed number of work units. This prevents 
perturbations from uneven synchronization across multiple simula-
tion runs. We start collecting statistics after the initialization phase 
with a warmed-up cache. We also repeat each experiment several 
times with slight timing jitter and report the average. 

 
5.3 FreshCache	  Savings	  
In this section we present the results of our evaluation of a Fresh-
Cache design that uses two SDWs, and up to 14 DDWs selected 
dynamically at runtime by the DDW controller. We use 2 SDWs 
because our experiments showed that it incurs negligible perfor-
mance cost (0.08% average, 0.46% worst case), while larger values 
had more than 1% worst case cost. Thus, using 2 SDWs has a low 
risk of negatively impacting performance while still providing 
useful area and power savings. 

In Figure 8 we show the energy, area, and performance impact of 
FreshCache with varying MPD values (1, 3, and 5%). The first 
cluster of bars in Figure 8 shows the energy saved in the LLC and 
DRAM access normalized to a baseline system with no dataless 
ways. The top of each stack in the stacked bars shows the percent-
age energy savings for the corresponding number of dataless ways 
(indicated by the legend) for the given workload. For example, on 
average, 28% of energy is saved with MPD=1% and above 44% 
with MPD=5%.  We observe that across all workloads substantial 
energy is saved by FreshCache; however, savings varies widely 
across workloads. For example, with MPD=3%, FreshCache can 
save nearly 69% of the LLC and the DRAM energy for fluidani-
mate, but only 8% of energy savings for graph500.  We also ob-
serve that across almost all workloads, energy benefits begin to 

diminish as the MPD increases. Higher performance degradations 
result in longer run times, which results in static energy use for a 
longer time, and more off-chip accesses, which use more dynamic 
energy. Above a threshold, the static energy savings from the 
DDWs are unable to offset the increase due to longer runtimes and 
off-chip misses. 

The singleton bar in the middle shows the percentage of the area 
of a conventional LLC eliminated by FreshCache. The area savings 
are due to SDWs in the FreshCache and do not change with work-
load or MPD values. As mentioned earlier in the section we evalu-
ated FreshCache with 2 SDWs. This saves 8.2% of LLC area, 
which could be substantial given that LLCs often account for more 
than 50% of the chip area.  

The third cluster of stacked bars in the Figure 8 shows the per-
centage performance loss lost for each value of MPD relative to 
the baseline with a conventional LLC. The loss of performance 
occurs when our modified LLC controller cannot find enough stale 
cache blocks to keep the dataless ways in each set fully occupied. 
For example we observe that for MPD=3%, on average perfor-
mance dropped 1.7%. Importantly, we observe that across all 
workloads the DDW controller is able to keep the performance 
degradation within the limit stipulated by the MPD. We also ob-
serve that the actual performance loss was often much further be-
low the specified MPD value. This occurs for many reasons. First, 
above a certain threshold, the static-energy savings from DDWs 
unable to offset the energy consumption increase from more off-
chip misses and a longer run time. Thus, even if a user accepts 
more performance degradation, it would not save more energy. 
Second, the DDW controller never lets performance for a single 
period (50M cycles here) drop below the threshold.  This is a 
stricter condition than the average MPD full run of the program, 
and is necessary because the processor does not know how long 
the program will run. Finally, as we will see later, the performance 
predictor is conservative and performance is often better than pre-
dicted.  

Putting all three clusters together, we see that FreshCache can 
save significant energy and non-negligible area at the cost of small 
or negligible performance loss, well within the user specified 
stipulated limits to performance degradation. With MPD=3%, 
FreshCache reduces energy on average by 41% and area by 8.2% 
for a mere 1.7% actual reduction in performance.  

How effective is the DDW controller?  One of the 
crucial components of FreshCache is the DDW controller that 
enables opportunistic use of dataless ways. Here, we ask whether 
DDW controller was able to achieve most of the opportunity that 

 
Figure 8. Energy/area savings and performance degradation with FreshCache.  

Performance Degradation (%) Energy (LLC + DRAM access) Savings (%) 
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Workload 
Maximum Performance Degradation 

1% 3% 5% 

blackscholes 15 13.8 15 13.8 15 13.8 

canneal 4 3.4 7 6.7 9 8.9 

facesim 4 2.8 5 4.9 6 7.4 

fluidanimate 8 8.7 14 13.8 15 13.8 

freqmine 7 6.9 11 11.2 13 12.2 

streamcluster 9 8 14 13.9 14 13.9 

swaptions 14 10.7 15 10.8 15 10.8 

x264 10 7.1 13 11.7 13 12.7 

graph500 2 2 4 4.0 5 4.9 

memcached 3 4.1 7 7.3 10 9.4 

specjbb 3 2.7 5 3.0 6 4.9 
Table 2. The number of DDWs selected by offline profiling 
(gray columns) and selected by the DDW controller (white 

columns) for varying MPD values. 
 
existed acros workloads to save energy. As a basis for comparison, 
we compare against the best that cane be done with a dynamic 
approach aided by offline profiling, which has the advantage of 
being able to calculate precise performance losses and could 
average performance over the whole workload and calculate 
precise performance losses. 
We ran each workload with every number of DDWs to find the 
number of dataless ways that achieves best energy savings for a 
given MPD value.  

The first cluster of stacked bars in Figure 9 shows the 
performance of this pure dynamic approach with offline profiling 
(DynamicOffline-3) against FreshCache (FreshCache-3) for 
MPD=3%. Overall, an offline approach saves an average of 44% 
of LLC plus DRAM energe, compared to 41% with the DDW 
controller. However, the average performance loss is slightly 
higher, 2% as compared to 1.7%.  

To understand the source of these differences, we investigated 
how the number of DDWs differs between offline profiling and the 
controller. Table 2 shows the offline value in the gray columns and 
the controller’s choice in white columns. We report the controller’s 
choices as the weighted average number of dataless ways used by 
the DDW controller. This average is calculated by multiplying 
number of dataless ways by the fraction of run time during which 
that number was used. Most importantly, we confirm that optimal 
number of dataless ways varies widely across workloads, justifying 
the need for dynamic control on the number of dataless ways. For 
example, for blackscholes with MPD=1%, 15 out of 16 dataless 
ways can be turned off, while for specJBB, which makes much 
greater use of the LLC, only 3 dataless ways is a better choice.  

Comparing the number of offline and predicted DDWs in Table 
2, we see that overall DDW controller selects number of DDWs 
close to number of DDW’s selected by offline profiling. For ex-
ample, for workload freqmine offline profile selects 7 dataless 
ways while weighted average of number of dataless ways selected 
by FreshCache is 6.87. Similarly, across majority of the workloads 
and values of MPD we generally observe that DDW controller was 
able to choose number of dataless ways close to the number we 
found optimal with offline profiling. This suggests that DDW con-
troller is effective in managing DDWs without needing software 
profiling. 
   
Is hybrid approch of FreshCache necessary?  FreshCache 
proposes a hybrid of a static chip design time and a dynamic 
runtime technique to utilize the dataless ways to enable area and 
energy savings in LLC. Here, we compare FreshCache against a 
pure static (like NCID [41]) and a pure dynamic approaches (like 
Selective Cache Ways [3]) to understand whether the hybrid 
aproach is justified or not. For understanding the tradeoffs of static 
design we evaluated two configurations --- a conservative 
configuration with 2 SDWs and an agrressive configuration with 8 
SDWs. These two designs do not use DDWs. 
In comparison to a pure dynamic approach, the primary difference 
is in chip area: as described previously, FreshCache saves 8.2% of 
chip area through SDWs, while dynamic approach saves no area. 
As described above, the hybrid design of FreshCache on average 
incurs slightly less performance overhead than a pure dynamic 
approach with offline profiling (DynamicOffline-3 in Figure 9), 
while providing comparable energy savings even without profiling 
information. Thus, the area savings from a hybrid design does not 
adversely impact the maximum performance yet provides a sub-
stantial area savings. 

In Figure 9 we also present the comparison of FreshCache 
against the static configuration, beyond quantifying the efficacy of 
FreshCache’s DDW controller (described earlier). Similar to Fig-
ure 8, the first set of bars show energy savings over the conven-
tional LLC. The Static-2 and Static-8 bars are the two static con-
figurations with 2 and 8 SDWs, and FreshCache-3 is FreshCache 
with MPD=3. We observe that Static-2 enables least energy sav-
ings across all the configurations studied (8.2%), while, as ex-
pected, Static-8 provided better energy savings (36%). However, 
this is still well below FreshCache-3, which provides 40.7% ener-
gy savings. We note that FreshCache lies between the optimal 
offline settings (DynamicOffline-3, described previously, with 44% 
saving) and the aggressive static design but does so without com-
plicated profiling.  

We separately evaluated difference between dataless ways and 
absent ways, which represents a cache with fewer ways in each set 
(data not presented here). Unlike dataless ways, memory-intensive 
workloads such as facesim, and specJBB saw performance drops of 
5-10% with 4 absent ways, which is many times the performance 
loss from dataless ways. 
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Figure 9. Energy savings and performance degradation for dynamic dataless ways under hardware control. 

The second set of bars in Figure 9 depicts the percentage of LLC 
area savings. As expected, the greatest area savings (35%) comes 
from the aggressive static design (Static-8) since it utilizes least 
number of transistors for the LLC. The FreshCache and the con-
servative static design (Static-2) both provide non-negligible 
(8.2%) LLC area savings. Given large chip area devoted to LLC, 
dwindling die yield and the fact that die yield is related to inverse 
fourth power of chip area [16], savings chip area is an important 
design consideration.  As mentioned earlier a pure dynamic ap-
proach saves no area. 

The final set of bars shows the performance loss of using these 
approaches compared to a conventional LLC design. Except for the 
aggressive static design (Static-8), all other designs limit the worst-
case performance degradation to 3% across all workloads, and 
often much less. However, the aggressive static design can lead to 
more than 10% performance degradation (graph500), which may 
be unacceptable. Further, 3 of the workloads (facesim, memcached, 
specJBB) suffer at least 6.5% performance degradation. In con-
trast, FreshCache limits performance loss for all workloads, since 
by design it exploits dataless ways to save more energy only when 
the opportunity exists 

Summary: We find that if a conservative static design is used 
then savings are moderate and an opportunity to save more is lost 
for many workloads. If an aggressive static design is used then it 
can lead to unacceptable performance degradations for a class of 
workloads. In contrast, if we use a pure dynamic approach, then we 
get the energy savings and high performance of FreshCache, but 
lose out on the area savings. While FreshCache cannot quite match 
the performance of optimal offline DDW selection from profiling, 
it comes close and requires no software support. Thus, only the 
hybrid approach put forth by FreshCache enables both non-
negligible chip area savings and significant energy savings.   

  

6 Related Work 
There have been many proposed cache designs similar to Fresh-
Cache that save power or improve performance. Researchers have 
previously proposed cache designs that decouple tags and data in a 
last level cache [4,41]. In particular, NCID [41] make use of data-
less ways to bring the snoop filtering benefits of inclusive LLC 
designs to exclusive/non-inclusive caches. On the other hand, 
FreshCache maintains an inclusive coherence protocol with only 
slight change (how write-backs to the LLC are handled), and the 
remaining changes are localized to the cache controller without 
affecting the protocol state machine. More importantly, NCID 

seeks to reduce invalidations to private caches and to support QoS-
allocation policies in the LLC, while our work demonstrated how 
the FreshCache can provide power and area savings. Finally, we 
demonstrate how to dynamically vary the number of dataless ways 
to take advantage of workload characteristics, while NCID is a 
purely static design. 

As described earlier FreshCache bears similarity to Albonesi’s 
Selective Cache Ways [3], with which software can turn off a de-
sired numbers of ways in L1 cache. However, our FreshCache 
design targets towards LLC and exploits the availability of stale 
cache blocks to minimize any increase in off-chip accesses. More 
importantly, unlike Selective Cache Ways, FreshCache can save 
substantial on-chip area as well. Several other proposals also 
looked into selectively turning off cache ways at runtime to save 
energy [13,42,44]. However, none of these techniques save area.   

Several researchers have suggested predicting and exploiting 
dead blocks in a cache [19,21,24,34]. A cache block is termed 
dead from the time it is last referenced until it is evicted from the 
cache.  Our notion of a valid cache block with stale data is differ-
ent from a dead block, as a valid cache block in the LLC may not 
be dead; it could possibly be accessed again. Unlike these works, 
which require predicting when a cache block becomes dead, it is 
easy to know when a cache block contains stale data by interpret-
ing its coherence state.  While these works focus on enhancing the 
performance of the cache, we focus instead on designing an area- 
and power-efficient LLC.  

Qureshi et al.’s V-way cache [33] proposed a decoupled, pointer-
linked tag and data store for set-associative caches where number 
of tags is a multiple of the number of data ways in order to reduce 
the number of conflict misses in the cache. Chishti et al.’s CMP-
NuRAPID [11] also uses decoupled, pointer-linked tag and data 
store to allow for controlled replication and capacity management 
in a NUCA cache to get the best of both shared and private organi-
zation of large caches.  Similar to FreshCache, both of these works 
have more tag than data, but for different purposes than our objec-
tive of area and power efficiency. Consequently, these designs are 
very different from ours. 

Recently researchers have looked into bridging the performance 
gap between inclusive and exclusive cache design through novel 
cache replacement policy [17]. They observe that the performance 
difference between an inclusive and an non-inclusive design stems 
primarily from the bad replacement decisions made at an inclusive 
LLC that back invalidates “hot” blocks from the private caches. 
They address this by proposing LLC replacement policy that is 

Performance Degradation (%) Energy (LLC + DRAM access) Savings (%) 
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aware of the temporal locality in private caches. Their replacement 
policy can also be applied in FreshCache to improve it perfor-
mance.  

FreshCache also bears similarities to victim caches and exclu-
sive/non-inclusive caches in which like FreshCache, may not keep 
a copy of a data present in the private cache. However, as men-
tioned earlier, FreshCache strives to keep the simplicity of com-
mercially popular inclusive coherence protocol with no or negligi-
ble changes. Whereas a LLC design as victim cache or exclusive 
cache require very different cache and coherence controller.   

Researchers have also proposed pure circuit techniques like Gat-
ed-Vdd [29] to selectively turn off cache blocks by adding extra 
gated transistors to the SRAM cells.  This allows power saving by 
turning off cache blocks that are deemed not useful. Flauntner et al. 
proposed Drowsy caches [13], where multiple supply voltages are 
used to enable SRAM cells to go into a low power mode where 
they keep the data but cannot be read or written immediately. We 
leverage similar techniques for dynamic dataless ways, but also 
propose a reorganization of the cache architecture that enables 
considerable area savings via static dataless ways.  

7 Conclusion 
The efficiency of processor-core power has received much atten-
tion, but caches lack the same variety of both area and power-
saving techniques. FreshCache attempts to fills this gap with the 
ability to statically and dynamically reduce power through dataless 
ways. At the same time FreshCache makes the LLC more area 
efficient. The design comes from the observation in inclusive 
LLCs a significant fraction of valid blocks contain stale data. Ra-
ther than give up the coherence benefits of inclusion, we instead 
take advantage of stale data dynamically not storing the data. At 
design time, FreshCache uses static dataless ways to save area and 
power, while at runtime uses dynamic dataless ways to further 
reduce substantial amount of power when opportunity exists.  
Thus, by using a hybrid approach FreshCache is able to enable 
both area- and energy-efficient LLC design. 
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