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Abstract—We introduce Chisel-Q, a high-level functional lan-
guage for generating quantum circuits. Chisel-Q permits quan-
tum computing algorithms to be constructed using the meta-
language features of Scala and its embedded DSL Chisel. With
Chisel-Q, designers of quantum computing algorithms gain access
to high-level, modern language features and abstractions. We
describe a synthesis flow that transforms Chisel-Q into an explicit
quantum circuit in the Quantum Assembly Language (QASM)
format. We also discuss several optimizations to reduce the
generated hardware cost. The Chisel-Q tool includes resource
and performance estimation which can be used to compare
different implementations of the same functionality. We compare
the output of the generic Chisel-Q synthesis flow with hand-tuned
versions of well-known quantum circuits.
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I. INTRODUCTION

Quantum computing [1, 2] has great potential to speed up
certain computations, such as factorization [3] and quantum me-
chanical simulation [4]. Although practical quantum computers
are still on the horizon, research progress is steady: over the last
decade, physicists have investigated a number of approaches to
implementing quantum circuits [5, 6], computer architects have
investigated architectures for quantum computers [7, 8], and
mathematicians have explored how to express difficult compu-
tational problems as instances of quantum computing [9, 10].
Unfortunately, techniques for expressing quantum algorithms
are mostly limited to high-level mathematical expressions or
low-level sequences of quantum gates [11]. More traditional
programming languages have not yet surfaced that are capable
of expressing and handling the idiosyncrasies of quantum
computing. As a result, many of the time-honored techniques
for abstraction, design, and debugging of classical algorithms
are not available to the writer of quantum algorithms.

Since many proposed quantum computing architectures
express algorithms using a quantum circuit model [2], i.e. a
netlist-like sequence of quantum gates operating on quan-
tum bits (or “qubits” for short), one approach would be to
provide an improved, programmatic interface for generating
quantum circuits. Hardware Design Languages (HDLs) such
as Verilog [12] immediately come to mind. However, quantum
computing circuits have their own challenges stemming from
their need to be reversible1: temporary state bits, called ancillas,
must often be introduced to turn irreversible computations into
reversible ones. To decouple these ancillas from the final output
bits, parts of the circuit must often be reversed at the end of
a computation to return ancillas back to their original state.
In fact, classical design methodologies utilizing state elements
introduce a need for tracking the history of the state in order
to retain enough information to revert ancillas at the end of

1The quantum equivalents of classical gates are unitary operators which
must be reversible by definition.
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Fig. 1. Proposed Quantum Circuit Design Flow. Quantum circuits are described
in a new Scala embedded language, called Chisel-Q. The output of the synthesis
tool flow is QASM (the Quantum Assembly Language) [11].

the computation. Fortunately, as we discuss in Sections III
and IV, much of the ancilla reversal process can be handled
with automatic transformations and should not be something
that a designer must consider. Thus, we seek a new domain
specific language (DSL) which focuses a designer’s attention
on the important aspects of quantum circuit design and which
can be compiled into correct quantum circuits.

To develop our language, we started with Chisel [13], a
new hardware description language that supports classical
hardware design with parameterized generators and layered
domain-specific hardware syntax. Chisel is embedded in the
Scala programming language, and raises the design abstraction
level by providing object orientation, functional programming,
parameterized types, and type inference. In fact, all of the meta-
level language features of Scala are available to the hardware
designer in Chisel. As shown in [13], Chisel permits compact
descriptions of hardware circuits using high levels of abstraction,
after which the Chisel backend generates low-level Verilog (for
synthesis) or C simulators (for design verification). Chisel is
gaining a rapid following and has already been used to fabricate
a complete RISC processor with a vector unit.

In this work, we introduce Chisel-Q, a quantum hardware
description language (QHDL) and compilation environment
that permits the expression of quantum circuits using Chisel
syntax. As shown in Figure 1, Chisel-Q takes a classical
digital circuit description, including both combinational and
state elements, and produces a quantum circuit with similar
functionality. Although not required, designers may choose
to include quantum operators in their circuit descriptions to
help direct the compilation process. The output of Chisel-Q is
the defacto-standard quantum netlist format, called “QASM”
(for Quantum Assembly Language) [11]. Chisel-Q includes
a resource and performance estimation tool that reports the
hardware cost, parallelism and latency of the produced netlist.

By supporting the existing Chisel syntax, we gain two
important benefits: First, the fact that Chisel-Q is embedded
in Scala means that quantum computing algorithms can be
designed in a high-level, modular fashion, using modern
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Fig. 2. Examples of Quantum Gates. Horizontal lines represent quantum bits (or “qubits”). Qubits are considered to be in a superposition of 0 and 1, written as
ψ = α|0 >+β|1 >, where α and β are complex constants. This figure shows one and two qubit gates. Only the CNOT gate (a quantum equivalent of the classical
XOR gate) and SWAP gates operate on two input bits, while the others operate on a single bit (altering the phase and/or sign between |0> and |1>). Not shown
here is a measurement gate which takes a qubit input and produces a classical binary result.

language features – an important step forward to the process
of describing such algorithms. Second, with Chisel-Q, we can
harness the skills of a variety of classical circuit designers to
produce quantum computing circuits. Consider, for instance, a
quantum floating-point unit derived from a classical design –
something completely possible with Chisel-Q.

Since Chisel-Q supports an extended syntax consisting of
quantum operators such as CNOT, a quantum circuit designer
can introduce hand-optimized versions of common modules–
thereby choosing exactly when and how ancillas will be
generated and where circuit reversal will be performed. A
clever designer can often produce smaller and more efficient
implementations of structured functions (such as addition or
multiplication) than can be produced by Chisel-Q. The modular
nature of Chisel permits such operators to be introduced
selectively and reused by many designs.

II. PRELIMINARIES AND MOTIVATION

In this section, we introduce both quantum computing
and Chisel. Even though quantum computing is radically
different from classical computing in a number of ways, we can
abstract most of its interesting properties into a quantum circuit
model [2] that mirrors classical circuits reasonably closely. It
is this rough congruence that permits us to successfully exploit
a classical design tool (Chisel).

A. Quantum Computing and Quantum Circuits

Quantum Computing exploits quantum effects such as quan-
tum superposition and entanglement (once called “spooky action
at a distance” by Einstein) to perform certain computations
more efficiently than possible with a classical computer. While
classical circuit designers attempt to reduce quantum effects
(e.g. as CMOS technology scales into the tens of nanometer
range), quantum circuit designers strive to enhance these effects.

A single quantum bit is referred to as a qubit and is in a
superposition of 0 and 1, written as ψ = α|0 >+β|1 >, where
α and β are complex constants such that |α|2 + |β|2 = 1. This
superposition means that each qubit carries more information
than a classical bit (which can only be in either a 0 or a 1
state). The act of measuring a qubit will return either a 0 (with
probability |α|2) or a 1 (with probability |β|2). After a qubit
has been measured, the result is a normal binary value that can
be processed with normal, classical computing circuitry

H
H
H

Fig. 3. Example of a Quantum Circuit. Horizontal lines are individual qubits.
This circuit shows single qubit operations (H) and two-qubit operations (CNOT).
Time advances from left to right, and operations are done in order. Gates that
do not share a qubit may occur in parallel.

Many quantum computing algorithms can be constructed
as quantum circuits which consist of a set of qubits operated
upon by quantum gates – similar to what occurs in the classical
realm with two important differences: First, quantum gates must
be reversible, since they represent unitary transformations on
data. Second, according to the no-cloning theorem [14], qubits
cannot be duplicated, which prevents direct implementation of
circuits with fan-out. Section III-B revisits the issue of fan-out.

Generally, a quantum circuit is constructed from a set
elementary quantum gates, as shown in Figure 2. A standard
universal set of one or two qubit quantum gates includes the
Controlled NOT (CNOT) gate that acts like reversible XOR
gate in classical circuit, the Hadamard/H gate that converts
the qubit value to a phase value and vice versa, the π/8 gate,
also known as the T gate, and the phase gate. Not shown in
Figure 2 is the measurement gate that produces classical values
from qubits. Figure 3, shown above, illustrates a quantum
circuit constructed from qubits and quantum gates. Further,
with the above gates, we can construct a 3-bit Toffoli gate
which computes c⊕ (a∧b), sometimes called the Controlled-
Controlled-NOT (CCNOT) gate. The 3-bit Toffoli gate is
universal and any reversible classical circuit can be constructed
from Toffoli gates, something we exploit in Section III-B.

Quantum circuits can be represented by a netlist format
that has become a de facto standard in the quantum computing
community, namely QASM [11]; QASM allows the definition
of qubits and sequences of operations between them. Note that
we can manipulate quantum circuits very similarly to classical
circuits – they have “wires” (i.e. qubits) and “gates” (with in-
terconnections between them). We can perform transformations
on these circuits without ever needing to deal with the quantum
nature of the “wires”, other than ensuring the reversibility of
the circuit (which is a “classical” property).



def innerProductFIR[T <: Num](w: Array[Int], x: T) =
foldR(Range(0, w.length).map(i => Num(w(i)) *

delay(x, i)), _ + _)

def delay[T <: Bits](x: T, n: Int): T=
if( n == 0) x else Reg(delay(x,n-1))

def foldR[T <: Bits] (x: Seq[T], f: (T, T) => T): T =
if (x.length == 1) x(0)
else f(x(0), foldR(x.slice(1, x.length), f))

Fig. 4. FIR Digital Filter Module expressed in Chisel.

B. Quantum Oracles

As discussed in the previous section, qubits exist in a
superposition of states – having properties of both one and
zero at the same time. When you put N qubits together into
an N-bit register, you gain a state element that can hold all 2N

combinations of bits at the same time. It is this exponential
amount of state that leads, under certain circumstances, to
powerful quantum computing algorithms.

Although the details of such algorithms are beyond the scope
of this paper2, it is important for our purposes to understand
that most quantum computing algorithms have a core that is
often called an oracle. Oracles are portions of the algorithm
that can be regarded as “black boxes” and are often specified by
classical functions, such as addition or modular exponentiation.
These functions take as input quantum values (such as our
N-bit register, above), and produce superposed outputs.

An oracle described as a classical digital circuit can be
transformed into a quantum circuit by replacing irreversible
operations such as “AND” or “OR” with reversible equivalents
in the set of quantum gates. The extra ancilla qubits that are
introduced to make the circuit reversible can be restored to their
initial states at the end of the computation through selective
reversal of the forward computation3. Consequently, a classical
circuit such as an adder that takes classical values as input
(i.e. values without superposition), can be transformed into a
quantum adder with quantum inputs (i.e. values with superpo-
sition) by performing the correct transformation: introducing
reversibility and logic for ancilla restoration. By automating this
process, we simplify the design of complex quantum oracles.

C. Chisel: a Scala Embedded Language for Hardware

The Chisel [13] Domain Specific Language (DSL) is
embedded in the powerful Scala language [15]. Chisel raises the
design abstraction level by providing functional programming,
parameterized types, and object orientation. It exploits Scala
libraries to define hardware data types and routines to convert
hardware data into low-level Verilog for logic synthesis.

Since Chisel is embedded in Scala, the Chisel programmer
may use all of the meta-programming features of Scala to
describe their circuit. Consider, for instance, a parameterized
inner-product FIR digital filter, mathematically described as:

y[t] = ∑
j

ω j ∗ x j[t− j] (1)

2You might start with the excellent book by Nielsen and Chuang [2], for an
introduction to quantum computing.

3If ancilla remain entangled with a result at the end of a computation, they
will introduce errors into the result when they are recycled.
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Fig. 5. Proposed Chisel-Q Design Flow. Quantum circuits are described in
Chisel-Q, then passed through parsing, conversion, optimization, and circuit
generation. The output of our synthesis tool flow is either QASM or statistics
about the resulting circuit (such as gate count or level of parallelism).

The programmer can describe this design with Chisel in a
compacted manner as shown in Figure 4. Here, function delay
creates an n-cycle delayed copy of its input, foldR describes a
reduction circuit given a function f and it creates summation
circuit. Based on above, innerProductFIR is introduced to
combine the multiplication and addition together.

Internally, Chisel constructs a netlist-like graph of operations
that represents the output circuit. By walking this netlist,
backend generators can transform this graph into whatever
format is desired. For instance, Chisel includes modules to
output Verilog as well as a high-level C simulator of the circuit.
The Chisel architecture makes it particularly easy to add new
backends – a feature that we exploit to transform classical circuit
descriptions into reversible quantum circuits. The following
two sections discuss how we perform this transformation.

III. CHISEL-Q ARCHITECTURE

In this section, we discuss the basic flow of Chisel-Q,
as illustrated by Figure 5. We focus on the transformation
of circuits without state (i.e. combination circuits) and save
the discussion of circuits with state elements for Section IV.
As mentioned earlier, the classical Chisel framework builds a
dataflow graph of circuit elements from modules expressed in
the Chisel language; to enable fine tuning of the output, we
supplement the Chisel syntax with quantum operators.

A basic summary of Chisel-Q compilation is as follows:
First, we traverse the dataflow graph to identify circuit elements
and separate quantum from classical signals; this operation
identifies portions of the circuit that are intended to handle
quantum data (i.e. the quantum datapath). Next, we map
classical irreversible gates into quantum reversible gates —
introducing ancillas as necessary. We construct a reversed
computation to return ancillas to their original states, thereby
decoupling them from the computation. Finally, after some
simple optimizations, we output QASM for the quantum
datapath, along with performance and parallelism statistics.

A. Signal Type Analysis

To separate classical signals and circuits from quantum
ones, we utilize a combination of user annotations and dataflow
analysis. Our signal identification mechanism permits designers
to transform part of the design (e.g. the data path) while aspects
of the design remains classical (e.g. the control path). By
default, signals in Chisel are labeled as “classical”. The user
can highlight signals that will carry quantum data with an
isQuantum annotation. These annotations are typically placed in
the top-level module. Further, quantum operators (as discussed
in Section III-C) provide implicit labeling of their outputs as
“quantum” in nature.
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Fig. 7. Quantum version of the “Carry” circuit from Figure 6. The Forward
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according to Table I. Three of the ancillas are returned to their initial state by
the Reverse Computation logic, such that AncIn1 = AncOut1 , AncIn2 = AncOut2 ,
and AncIn3 = AncOut3 . The fourth ancilla is consumed for the output.

Chisel-Q traces signals forward through the datapath,
labeling signals as “quantum”. Classical signals that interact
with quantum ones are “upgraded” to quantum signals by
selecting appropriately initialized ancilla bits. While, in princi-
ple, quantum signals can be “downgraded” to classical signals
through measurement, our focus on quantum oracles places this
operation outside the scope of this paper4. Quantum labeling is,
by nature, an inter-module operation: when module inputs are
labeled as quantum, then the module itself must be implemented
with quantum operators and provide quantum outputs. Each time
quantum conversion is detected at an output in a submodule,
we restart analysis of the calling module. The process is also
conducted iteratively to deal with sequential loops, until no
more signals in the design can be further converted.

B. Ancilla Insertion and Reverse Logic Construction

To transform a classical circuit into a quantum equivalent,
Chisel-Q walks through the dataflow graph. Each node in the
graph represents a gate-level logical operation (e.g. AND) or
an abstract arithmetic operation (e.g. summation). We start by
mapping the classical gates to quantum gates, as summarized
by Table I. To resolve the fan-out problem mentioned in
Section II-A, ancilla qubits are introduced for each gate
level operation. Chisel-Q handles literal values with initialized
ancillas. Read-only memories (ROMs) with quantum addresses
can be handled by implementing the ROM as a large sum-of-
products (similar to a PLA).

4Measurement is typically part of the enclosing quantum algorithm. In the
future, we plan to allow Chisel-Q to express complete quantum algorithms, in
which case we will revisit the role of measurement in Chisel-Q.

Quantum Gate Operator Example
Toffoli #&& c_p := c #&& (a, b)
CNOT #^ c := a #^ b

Pauli-X ! c := !a
X() c := X(a)

Pauli-Y Y() c := Y(a)
Pauli-Z Z() c := Z(a)

Hadamard H() c := H(a)

Phase P() c := P(a)
P()...angle() c := P(a) angle(n,d)

C-phase #@ c := a #@ b
#@...angle() c := a #@ b angle(n,d)

TABLE II. SYNTAX OF QUANTUM GATES IN CHISEL−Q.

Chisel-Q implements some abstract operators with built-
in implementations. For instance, by default, it utilizes a
hand-tuned parameterized quantum adder [16] for addition
and comparison5. Integer comparisons are based on the adder.
Chisel-Q also supports quantum logical operators and shift with
constant or varied steps. Of course, Chisel-Q can always be
extended by developing new operators as Chisel-Q modules.

To illustrate the transformation process, we consider the
circuit in Figure 6, a classical “Carry” circuit. Figure 7 shows
the corresponding quantum version derived by gate mapping.
In particular, the Forward Computation portion of the circuit
utilizes four ancillas, four CNOT gates, and two Toffoli gates
to produce its output, Cout . The output value is implemented
by transforming an input ancilla (here labeled AncIn4 ) in order
to leave the input values untouched.

The remainder of the transformation involves restoring
temporary ancillas to their initial states. Since the transformed
circuit is reversible by construction, restoring temporary ancillas
merely requires walking backward through the dataflow graph,
reverting any computation that was performed on these ancillas6.
This process can also restore input bits to their original values
if they were altered. The Reverse Computation in Figure 7
performs reversal of AncIn1 , AncIn2 , and AncIn3 .

C. Optional Use of Explicit Quantum Operators

To allow developers to make full use of their quantum
knowledge, Chisel-Q supports an optional native syntax for
quantum circuit design. Table II shows the quantum operators
available in Chisel-Q. Highlights include Toffoli, CNOT,
Pauli, Hadamard, Phase and Controlled Phase (C-phase) gates.
Without the angle() modifier, Phase and C-phase gates perform
a π/2 phase rotation. With the angle operator, designers can
specify any rational fraction of π. Most of these operators
are self-reversing, although phase and C-phase gates must be
reversed by applying a negative angle. It should be noted that
designers can use annotation IsReversed = false to disable
generation of reversal logic when appropriate.

Since quantum circuits differ from classical circuits in many
aspects, the quantum development feature provided by Chisel-Q
permits clever designers to implement a variety of efficient
quantum designs. Example usage of Toffoli and CNOT gates
can be found in Figure 8, while Hadamard and C-phase gates
can be found in Figure 12.

5Chisel-Q can call out to external generators when desired.
6We must also develop reversed versions of external circuit generators.



class Ripple_AddIO(width_n: Int) extends Bundle {
val in1 = Bits(INPUT, width_in)
val in2 = Bits(INPUT, width_in)
val out = Bits(OUTPUT, width_in)

}
class Ripple_Add(width_in :Int = 4) extends Component {
val io = new Ripple_AddIO(width_in)
val c = Vec(width_in){Bits(width =1)}
val sum = Vec(width_in){Bits(width =1)}

c(0) := io.in1(0) && io.in2(0)
for(k<-1 to width_in-1) {
c(k) := (io.in1(k-1) && io.in2(k-1)) ^ (io.in1(k-1)

&& c(k-1)) ^ (io.in2(k-1) && c(k-1))
}
sum(0) := io.in1(0) ^ io.in2(0)
for(k<-1 to width_in-1) {
sum(k) := io.in1(k) ^ io.in2(k) ^ c(k)

}
io.out :=sum.toBits

}
class Ripple_Add_Q(width_in :Int = 4) extends Component {
val io = new Ripple_AddIO(width_in)
val c = Vec(width_in){Bits(width =1)}
val c_p = Vec(width_in){Bits(width =1)}
val sum = Vec(width_in){Bits(width =1)}

c(0) := io.in1(0) && io.in2(0)
for(k<-1 to width_in-1) {
c(k) := io.in1(k-1) && io.in2(k-1)
c_p(k) := (c(k) #&& (io.in1(k-1), c(k-1))) #&&

(io.in2(k-1), c(k-1))
}
sum(0) := io.in1(0) #^ io.in2(0)
for(k<-1 to width_in-1) {
sum(k) := io.in1(k) #^ io.in2(k) #^ c_p(k)

}
io.out :=sum.toBits

}

Fig. 8. Parameterized Classical and Quantum Ripple-carry [16] adder modules.
Both modules utilize the same IO bundle (Ripple_AddIO). This example
illustrates the selective use of quantum operators.

D. Chisel-Q Optimization Approach

Optimization of Chisel-Q output is extremely important,
given the cost of implementing quantum circuits (from error
correction, scarcity of resources, etc.). Chisel-Q performs simple
optimizations to reduce the number of generated ancillas, as
detailed below. In addition, we assume that the generated
QASM will be subsequently fed through synthesis tools [17],
physical design tools [18, 19], or other optimization tools since
it is in a standard format.

For nodes with a single-level of fan-out (e.g. direct assign-
ments or NOT operations), we avoid introducing new ancillas.
For nodes with more than one qubit bandwidth and multiple fan-
outs, we avoid introducing new ancillas when the qubits from
that node are disjointedly connected to other nodes. Further,
for quantum operators, we avoid introducing ancillas entirely,
leaving it up to the designers to guarantee the correctness of
their circuits. After applying the above techniques, we conduct
a back-trace of signal names to keep the correctness of the
design, since some nodes are reduced and the output signal
names should be mapped to their inputs. The above name-
tracing process is repeated until no more reduction is possible.

IV. TRANSFORMING CIRCUITS WITH STATE

Classical circuit designers introduce state for a variety
of reasons, including pipelining, reuse of circuit elements,
and controlled sequencing. The presence of state complicates
translation for at least two reasons: First, sequential circuits may
exhibit a data-dependent control structure. Since the control of
quantum elements is usually classical, data-dependent control
is problematic when the data is quantum in nature7. Second,
classical latches erase information at every clock edge, making
it impossible to clean ancilla state that depends on previous
contents. We tackle both problems in the following sections.

A. Transforming Pipelines

Pipelines present a straightforward application of state.
Because QASM treats idle bits as if they are stored in a latch,
Chisel-Q can replace pipeline latches with multi-bit identity
elements in QASM. The result signals that all bits must be
available at the input before firing gates at the output—retaining
the ability to overlap multiple computations simultaneously.

B. Removing Data-Dependent Control

When a circuit includes one or more sequential loops,
Chisel-Q must remove any data-dependent looping behavior
before transforming to the quantum domain. The simplest
situation is one in which the number of cycles in the loop
is fixed or classically computable. In this case there is no data-
dependent looping, and the designer simply specifies the number
of iterations with an Iteration_Count_Quantum annotation.

A more complex situation occurs when the number of loop
iterations is dependent on input data (which will be quantum),
but there is still a classically-determined maximum iteration
count. A simple example would be a multiplication module that
stops iterating when it detects that the remaining significant bits
are zero. Chisel-Q requires the designer to specify a maximum
iteration count with an Iteration_Count_Quantum annotation
and identify a signal that will serve as a completion signal, via
a Done=signal annotation. In this case, Chisel-Q performs a
classical transformation as shown in Figure 9.

This transformation adds two new state elements, a Data
Latch and a Done Latch. We assume that the Done signal will
become true at some point in the computation, after which the
output data will be latched in the Data Latch and stay there—
even if the original circuit is iterated beyond the intended
number of iterations. We replace the original Done signal with
a classically-derived signal (Done’), that becomes true after
the maximum number of iterations. This new circuit has no
data-dependent looping and is now the same as our first case.

Consider what happens when this circuit is transformed to
the quantum domain. When the data inputs to the circuit (not
shown) contain a superposition of values, then each of these
values may cause the original Done signal to become true after
a different number of iterations. After the maximum iteration
count, Output’ will contain a superposition of the output values
corresponding to the original input superposition8.

7Again, we leave measurement out of the scope for now.
8Since quantum circuits are linear, we can reason about this by separating

the superposition of input values into individual binary inputs, trace each such
“classical” input through the circuit, then sum the outputs back together using
the complex coefficients that appeared on the inputs.
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Fig. 9. Transforming sequential circuits with a data-dependent number of
iterations into circuits with a fixed (maximum) number of iterations. This
normalization process is entirely classical. When eventually transformed to a
quantum circuit (see Figure 10), the result is that (1) control is not dependent
on a quantum value (Done’ is classical) and (2) the final output (Output’) can
hold a superposition of output values. Input bits not shown for simplicity.

Fig. 10. Transforming classical sequential circuits to quantum sequential
circuits while cleaning ancilla bits. The Forward Computation runs for a fixed
number of iterations (it must be normalized as in Figure 9), while saving the
history of states (of the “Latch”) on the stack. Then, the Reverse Computation
uses this history to reverse the computation and erase data on the stack. Some
ancillas can be recycled each iteration. Input bits not shown for simplicity.

Finally, if the loop has no maximum iteration count or
no clear completion signal, then Chisel-Q cannot handle it.
Chisel-Q alerts the designer to potential problems by emitting
a warning when it detects a sequential loop without annotations.

C. Circuit Reuse and Fixed Iterative Structure

After removing data-dependent looping as described above,
we have two options. First, we could eliminate state elements
by unrolling the loop. This choice reduces our circuit to a
combinational one. While straightforward, unrolling greatly
increases the size of the circuit emitted to QASM.

Alternatively, we can retain the structure of the implemen-
tation and emit a looping construct to QASM. In this case, the
latches represent points in the circuit where state is overwritten.
To revert ancilla at the end of the computation, we must retain
the history of data stored the latches. Figure 10 illustrates how
to utilize a quantum stack for this purpose. The quantum stack
stores quantum state in last-in-first-out (LIFO) order and may
be implemented with more primitive elements9.

In Figure 10(a), each state transition, Si⇒ Si+1, saves Si
on the stack for later use. The no-cloning theorem prevents us
from sending Si to both the Forward Operation block and
the stack; instead, we reconstruct Si after computing Si+1
with the Reversed Operation block. Some ancillas (AncEi)
are restored and recycled. After completion of the Forward
Computation, the Reversed Computation (Figure 10(b)) runs
the state machine backward (Si+1⇒ Si) to erase data stored on
the stack10. Figure 10 suggests a space/time tradeoff: instead
of reconstructing Si and AncEi with each iteration, we could
simply push and pop intermediate results on the stack (i.e. ISi
and IAncEi

). This alternative is twice as fast, at the cost of a
large increase in ancilla consumption and stack space.

D. Circuits with Memory

When memories are read-only from the standpoint of the
quantum datapath (e.g. constant or written by classical portions

9For some quantum computing technologies with ballistic movement (e.g. Ion
Traps) [5], this structure may have a very efficient physical implementation.

10Until erasure is complete, data on the stack is entangled with the result.

of the circuit), then the quantum lookup can be implemented by
using bits of the address to drive a tree of MUXes. The result
nicely handles an address that is a superposition of values.

On the other hand, when memories are written by the
quantum data path, we must be much more careful. Whenever
we read from such a memory, the no-cloning theorem forces us
to treat it as a destructive read and reconstruct the value after
using it (similar to an ancilla). During a write, if the address
and write-enable signal are classical, we can push the previous
value and its address on the stack for a later erasure step.
However, if the write-enable signal is quantum, we introduce
data-dependent control of the stack. Even worse, the meaning
of a quantum address during a write is not at all clear. We
leave the handling of these later two situations for future work.

V. EXPERIMENTAL RESULTS

In this section, we examine resource and performance
statistics for a variety of generated circuits and compare with
hand-tuned versions. We also transform circuits for a RISC
processor—circuits designed by classical circuit designers.

A. Chisel-Q Resource & Performance Evaluation

Chisel-Q produces resource and performance statistics
during compilation. It scans the generated QASM to obtain a
count of qubits and various quantum gates. For hierarchical
designs, the cost of submodules is mapped to the calling module.
It also estimates parallelism (minimum, maximum, and average)
and latency for a design by using a breadth-first search on
the dataflow graph in combination with knowledge of the
parallelism and latency for each type of operation node.

B. Mathematical Oracles for Shor’s Factoring

Table III shows resource estimation for 32-bit versions of
components of Shor’s factoring algorithm [3]. Chisel-Q code
for these circuits is described in the Appendix. As shown by
these results, our current optimization solution (Section III-D)
specifically targets consumption of new ancillas and CNOT
gates (by reducing their use for intermediate results). On
average, our technique reduces 36.0% ancilla qubits and 35.2%
CNOT gates for all the designs in Table III.



Circuit
Before Opt. After Opt.

# of ancilla qubits # of Toffoli # of CNOT # of X # of ancilla qubits # of Toffoli # of CNOT # of X

Adder 1032 188 2094 0 778 188 1586 0
Adder-Q 1001 188 2032 0 32 188 126 0
Mul_WT 17764 6582 37478 124 11101 6582 24152 124

Mul_Booth (Seq) 3704 4860 3811 4428 3598 4860 3387 4428
Exp_MulWT 572411 229018 1174488 36994 365826 229018 761318 36994

Shors_ExpMulWT 573192 229018 1176050 36994 366417 229018 762500 36994

TABLE III. RESOURCE ESTIMATION OF QUANTUM DESIGNS.

For the adder described with quantum operators, however
(See “Adder-Q” in Row 2 of Table III), our solution reduces up
to 96.8% ancilla qubits and 93.8% CNOT gates. The original
circuit generated by Chisel-Q included a set of expensive
concatenation operators that were avoided in hand-written
quantum designs, and we enhanced our optimization techniques
to reduce the above structure. In the end, our generated Adder-
Q has the same resource cost as the hand-written design by
[16], demonstrating the effectiveness of Chisel-Q.

Although our optimization heuristics do not currently reduce
other quantum gates, such as X and Toffoli gates, it is important
to remember that Chisel-Q facilitates the transformation of
quantum circuits with high levels of abstraction into a standard
gate-level netlist format (QASM). The result can be fed into
other quantum development tools for further optimization.

Table IV shows circuit latency and parallelism for the
circuits from Table III. We observe that the Wallace-tree multi-
plier (Denoted by “Mul_WT” in Row 3) provides significant
parallelism: on average 46.4 operations can be conducted
concurrently, and the maximum value is up to 2048. Further, its
latency is within a factor of 3 of addition. The Booth multiplier
(“Mul_Booth”, Row 4) is iterative, so exhibits high latency but
utilizes only 32.4% ancillas compared to “Mul_WT.” Finally,
we see that Chisel-Q preserves the parallelism of “Mul_WT”
for calling modules: As shown by Rows 5–6, by constructing
from this multiplier, the exponentiation module and Shor’s
factorization module easily preserve this high parallelism.

C. Mapping of a Classical RISC Processor

Table V, shows the results of compiling elements of a
RISC processor developed in Chisel. These components were
developed by classical circuit designers without any quantum
knowledge. Without no additional design effort, we can generate
quantum versions of an ALU, several arbiters, the flush unit,
FPU decoder and FPU comparator. More optimization is clearly
needed, but the important point is that existing well developed
classical circuits can be easily converted to cost-effective
quantum ones, meeting one of the primary goals of this work.

VI. CONCLUSION

We introduced Chisel-Q, a high-level quantum circuit design
language that permits quantum oracles to be constructed by
classical circuit designers using the meta-language features of
Scala and its embedded DSL “Chisel”. Sophisticated designers
can incorporate quantum operators in select portions of the
circuit for additional control over the synthesized output.
We discussed how Chisel-Q translates both combinational
and stateful circuits, as well as optimization techniques to
increase the quality of the synthesized output. For future
work, we plan to extend Chisel-Q to a full-blown language
for constructing quantum-computing algorithms, as well as

Circuit Latency
Parallelism

Min Max Ave

Adder 448 1 190 4.9
Adder-Q 268 1 32 2.2
Mul_WT 756 1 2048 46.4

Mul_Booth (Seq) 39680 1 236 10.4
Exp_MulWT 23543 1 3968 48.9

Shors_ExpMulWT 23792 1 3968 48.4

TABLE IV. PERFORMANCE EVALUATION OF QUANTUM DESIGNS.

Component # of ancilla qubits # of Toffoli # of CNOT # of X

ALU 27785 38492 15528 54056
Arbiter 132 95 35 162

Mem. Arbiter 1032 390 1714 488
Locking Arbiter 6856 10800 2776 14626

Flush Unit 357 638 546 474
FPU Decoder 9364 25948 21152 8226

FPU Comparator 271 1100 1037 329

TABLE V. RESOURCE ESTIMATION OF QUANTUM COMPONENTS IN
RISC PROCESSOR.

introducing additional optimization heuristics to better match
the quality of quantum circuits produced by human designers.
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APPENDIX

In this appendix, we present some of the Chisel-Q circuits
evaluated in Section V. These examples are inspired by Shor’s
factorization as introduced in [3] and implemented in [8].
All designs shown here are parameterized. Consequently, we
can obtain large scale quantum designs by setting the input
bandwidth variable (e.g., width_in in Figure 13).

Figure 8, shown earlier, includes two implementations of
ripple-carry adders designed both classically and with quantum
annotations. In the latter case, quantum gate operators were
used to tune the circuit as in Draper [16]. Figure 11 shows a
Booth multiplier. To convert the classical design into quantum
circuit, mapping of abstracted operators (e.g., summation “+”
and equal “===”) are utilized for this design. Since this is an
iterated structure, an Iteration_Count_Quantum annotation is
given. Figure 12 shows a Quantum Fourier transform (QFT),
described in a purely quantum manner: only Hadamard gates
and C-phase gates are used. Since all the qubits in this module
carry result information, there is no need to generate a reversed
circuit and we use annotation IsReversed = false. Finally,
Figure 13 utilizes a few lines of code to construct a complete
Shor’s factorization circuit from these modules.



class Mul_IO(width_in: Int) extends Bundle {
val a = Bits(INPUT, width_in)
val b = Bits(INPUT, width_in)
val prod = Bits(OUTPUT, 2*width_in)
val start = Bits(INPUT, 1)
val done = Bits(OUTPUT, 1)

}
class Mul_Booth (mulwidth :Int = 4) extends Component {
val io = new Mul_IO(mulwidth)
val A = Reg(){ Bits(width = mulwidth) }
val Q = Reg(){ Bits(width = mulwidth) }
val Q_1 = Reg(Bits(width = 1) )
val Count = Reg(resetVal = UFix(0, log2Up(mulwidth)))
val sum = A.toUFix + io.a.toUFix
val difference = A.toUFix - io.a.toUFix
Iteration_Count_Quantum = mulwidth

when (io.start === Bits(1)) {
Q := io.b
A := Bits(0)
Q_1 := Bits(0)
Count := UFix(0)

}
when (io.start === Bits(0)) {
Count := Count + UFix(1)
when (Q(0) === Bits(0) && Q_1 === Bits(1)) {
Q_1 := Q(0)
Q := Cat(sum(0),Q(mulwidth-1,1))
A := Cat(sum(mulwidth-1),sum)

}
when (Q(0) === Bits(1) && Q_1 === Bits(0)) {
Q_1 := Q(0)
Q := Cat(difference(0),Q(mulwidth-1,1))
A := Cat(difference(mulwidth-1),difference)

}
when ((Q(0) === Bits(0) && Q_1 === Bits(0)) ||

(Q(0) === Bits(1) && Q_1 === Bits(1))) {
Q_1 := Q(0)
Q := Cat(A(0),Q(mulwidth-1,1))
A := Cat(A(mulwidth-1),A)

}
}
io.done := Count >= UFix(mulwidth)
io.prod := Cat(A,Q)

}

Fig. 11. Parameterized Multiplier with Booth’s Algorithm. This version of
the multiplier is a sequential circuit with a fixed iteration count.
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