Abstract:
There are many works on the power network design and prototyping for digital designs, however some usual and practical design concerns are not addressed. In this work, we...Show MoreMetadata
Abstract:
There are many works on the power network design and prototyping for digital designs, however some usual and practical design concerns are not addressed. In this work, we present a realistic power network design methodology without IR violation certified by state-of-the-art commercial tool. Our work integrates analysis, optimization and synthesis of power network. In particular, we consider thermal effect and power pad's positions during the prototyping of power network. A scenario in placement regarding the violation of design rules is considered and resolved by maximum flow algorithm at the same stage. After the synthesis of initial power network, we generate a sensitivity matrix which is correlated with nodal voltage and resistances of net and via in metal layers. Furthermore, a Sequential Linear Programming(SLP) will be applied to adjust the sensitivity matrix iteratively until the IR drop constraint is satisfied. Our work is experimented on a real design in TSMC 65nm LP process, and the result validates our framework that the IR-Drop can be reduced to 2% of supply voltage.
Date of Conference: 19-22 October 2014
Date Added to IEEE Xplore: 04 December 2014
Electronic ISBN:978-1-4799-6492-5
Print ISSN: 1063-6404