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Abstract—The increasing automation of safety-critical real-
time systems, such as those in cars and planes, leads to more
complex and performance-demanding on-board software and
the subsequent adoption of multicores and accelerators. This
causes software’s execution time dispersion to increase due
to variable-latency resources such as caches, NoCs, advanced
memory controllers and the like. Statistical analysis has been
proposed to model the Worst-Case Execution Time (WCET) of
software running such complex systems by providing reliable
probabilistic WCET (pWCET) estimates. However, statistical
models used so far, which are based on risk analysis, are overly
pessimistic by construction. In this paper we prove that statistical
survivability and risk analyses are equivalent in terms of tail
analysis and, building upon survivability analysis theory, we
show that Weibull tail models can be used to estimate pWCET
distributions reliably and tightly. In particular, our methodology
proves the correctness-by-construction of the approach, and our
evaluation provides evidence about the tightness of the pWCET
estimates obtained, which allow decreasing them reliably by 40%
for a railway case study w.r.t. state-of-the-art exponential tails.

Index Terms—probabilistic timing analysis, WCET, Weibull

I. INTRODUCTION

The adoption of high-performance hardware is relentless to

respond to unprecedented (guaranteed) performance needs of

embedded software in automotive [1], space [2] and avionics

[3]. This emanates from the increasing adoption of software-

controlled autonomous systems in unmanned vehicles (e.g.

autonomous cars, drones, and deep-space missions).

One of the most remarkable side effects of complex

hardware/software platforms is that software execution times

present high and unobvious dispersion due to variable-latency

resources such as cache memories, networks-on-chip (NoCs),

advanced memories and memory controllers, direct memory

access (DMA) controllers, whose latency may vary due to

intrinsic application behavior (e.g. data is allocated in different

heap and stack locations across runs), interference across ap-

plications (e.g. contention in the NoC), and environmental con-

ditions (e.g. contention with DRAM refreshes). For instance,
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Federal Aviation Administration (FAA) Report DOT/FAA/TC-

16/51 [4] shows that the latency to load 4KB of data may vary

by a factor of 3x on a moderately complex Freescale’s quad-

core P5040 processor.

The impact of execution time variability on Worst-Case

Execution Time (WCET) estimates has been addressed us-

ing statistical analysis in the form of Measurement-Based

Probabilistic Timing Analysis (MBPTA) methods [5], [6],

[7], [8], [9], [10], [11]. MBPTA delivers an execution time

distribution whose risk of exceedance upper-bounds the true

risk of exceedance by construction. Hence, given an accept-

able risk level for the particular application under analysis

(e.g. related to the residual risk accepted in safety-critical

systems [12]) expressed in the form of an exceedance prob-

ability Ptarget, MBPTA delivers the lowest execution time

value whose exceedance probability Pestimate is guaranteed

to be exceeded at most with the target exceedance probability

(Pestimate ≤ Ptarget). For instance, the crosspoint in Figure 1

shows that the probability of a program to take more than

6,100 (cycles) is at most 10−3 under the Frechet distribution.

Extreme Value Theory (EVT) [13], appropriate for risk

analysis, is used to model the right/upper tail of execution time

distributions. In the context of probabilistic WCET (pWCET)

estimation, exponential tails delivered by EVT, see Figure 1,

have been shown by argument [7] and empirically [14] to

provide a reliable tail model for pWCET estimation. However,

tightness of those exponential tails is limited. Light tails, also

shown in Figure 1, delivered by EVT (e.g. Reverse Weibull)

have a maximum value that the tail approaches asymptotically

and hence, those tails are theoretically the tightest ones.

However, to our knowledge, no method has been devised

so far to use them reliably for pWCET estimation. In this

line, this paper addresses the limitations of EVT for pWCET

estimation and proposes novel solutions provably reliable and

delivering much tighter pWCET estimates than exponential

tails. In particular, our contributions are as follows:

Analysis. We formally show that tail modelling in the con-

text of survivability analysis [15] targets analogous questions

to those of risk analysis. Then, we show that log-concave1

distributions [16], inherited from survivability analysis, deliver

1A function f is logarithmically concave log-concave for short, if the
function log(f(x)) is concave.
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the tightest distribution models, but existing fitting methods

fail to model tails [17], [18], needed for pWCET estimation.

Proposal. We propose the use of a subset of log-concave

distributions: Weibull tail distributions with increasing hazard

rate, i.e. with shape β ≥ 1, neither Reverse Weibull as in

EVT nor full Weibull as in survivability analysis. Our approach

provides analogous accuracy to that of log-concave distribu-

tions, without limitations to extend them to arbitrarily low

exceedance probabilities, as needed for pWCET estimation.

Assessment. We compare our method and EVT alternatives

with a bootstrap analysis on large data samples (107 mea-

surements) from a railway case study as ground truth. Our

results provide evidence on the reliability of our approach and

significant pWCET reductions w.r.t. exponential tails obtained

with EVT, thus allowing to trustworthily increase system

utilization noticeably.

II. CONTEXT AND EXTREME VALUE THEORY

Critical systems undergo strict verification and valida-

tion (V&V) processes against their corresponding functional

safety standards (i.e. ISO26262 in automotive [12] and

DO178B/C[19] in avionics). Timing V&V processes require

collecting evidence supporting that software will execute

correctly and timely. In particular, those processes provide

evidence that the risk of violating deadlines for critical real-

time software is residual, since functional safety standards

acknowledge that risk cannot be completely avoided. Thus,

they impose thorough V&V processes that allow deeming

such risk as “sufficiently low” so that it can be neglected.

In this line, pWCET estimates allow to quantify such residual

risk. Notably, statistical analysis is not new in domains like

automotive. In fact, it is used during system analysis: for

instance, random hardware failure rates and coverage are rep-

resented (and operated) with probabilities and percentages in

the reference standard ISO26262 Part 5 [12]. On the software

side, a probabilistic treatment of the residual risk of software

faults has been shown to be compatible with ISO26262 [20].

EVT is the main framework to model high execution

times used so far. EVT includes two distribution families.

Generalized Extreme Value (GEV) distribution builds upon

the convergence of block maxima (BM); and Generalized

Pareto Distribution (GPD) builds upon peaks-over-threshold

(PoT) [21], [13]. For the sake of illustration, we provide the

Cumulative Distribution Function (cdf) for GPD:

F (x;ψ, ξ) =




1−

(
1 + ξx

ψ

)−1/ξ

ξ 6= 0,

1− exp
(
− x
ψ

)
ξ = 0.

(1)

where ψ corresponds to the scale and ξ, the extreme value

index (evi) in EVT, corresponds to the shape parameter. This

parameter characterizes the maximum domain of attraction

of the BM (which converges to the GEV family) and the

PoT (which converges to the GPD family)2. In particular,

ξ > 0 corresponds to heavy (Fréchet tails for GEV), ξ = 0

2Note that a 3-parameter formulation for GPD exists, with an additional
parameter (location). Such 3-parameter formulation is similar to that of GEV.
In any case, the particular formulation used is irrelevant for our discussion.

Fig. 1: Example of pWCET estimate obtained with light, exponential
and heavy tail GEV distributions with ξ = −0.5, ξ = 0, and ξ = 0.5
respectively. (µ = 0 and σ = 100). pWCET estimates are to be read
as the maximum probability of the program to take longer than a
given execution time value.

to exponential (Gumbel tails for GEV), and ξ < 0 to light

(Reverse Weibull for GEV) tails. Figure 1 shows an example

of the three tails for GEV.

Authors in [22], [9] explore the use of unconstrained tail

fitting, thus allowing ξ to take any value. As shown in [22],

for heavy tails ξ > 0, pWCET bounds are inordinately large,

becoming unusable in practice. Other authors rely on the

fact that the execution time of real-time programs is finite

to discard ξ > 0 by construction [23], [7], thus resorting to

exponential (Gumbel) tails as the limit distribution that can be

argued to be reliable, but much tighter than heavy (Fréchet)

tails. Such assumption has been further verified empirically

in [14]. We base our work on the premise that not only

the execution time of real time programs is finite, but the

probability of finishing a task increases as the task executes.

III. ON THE USE OF LIGHT TAILS AND RISK ANALYSIS

FOR WCET ESTIMATION

A. Risk and Survivability Analysis

Tails lighter than exponential ones (so with ξ < 0) can

deliver tighter bounds, as discussed in [7]. Yet, in the context

of EVT, either GEV or GPD, distributions with ξ < 0 have a

compact support, i.e. they have an absolute maximum value

that cannot be exceeded. Hence, light tails in the case of EVT

have an intrinsic risk of delivering optimistic tail distributions.

This has some key implications in the fitting process, since a

sufficiently large sample is needed to guarantee that light tail

fitting is reliable for arbitrarily low exceedance probabilities.

The target of our work is overcoming this limitation of the

data and delivering a practical solution to obtain pWCET esti-

mates tighter than those of exponential tails while preserving

reliability. We do so by complementing EVT with survivability

analysis as the theoretical ground for our hypothesis.

EVT is used in risk analysis to predict extreme (rare)

events with the objective of proving that risk is below specific

thresholds (e.g. financial risk). Survivability analysis, while

it also focuses on predicting extreme events, it has opposite

goals: proving that survivability is above specific thresholds

(e.g. human life duration). Hence, both analyses target the

modelling of extreme events, but with different objectives.

The type of distributions used to model those extreme events

(i.e. tail distributions) differs across both analyses.

• EVT (either GPD or GEV) is used in the context of risk

analysis, and it has been used so far in pWCET estimation



building on the idea that exceeding a specific execution

time bound is a risk.

• For survivability analysis tail distributions can be split

into two types: Decreasing Hazard Rate (DHR) and In-

creasing Hazard Rate (IHR) distributions. The boundary

between those two categories corresponds to exponential

distributions, which can be regarded as part of both.

In the context of pWCET estimation, we focus on IHR

distributions, since they include those distributions that, as

values get higher, the probability of realization increases. In

our context this means that, as the program runs, there is an

increasing probability of finishing the execution, which is the

case of real-time programs that need to have a finite execution

time to meet their deadline. Formally stated, a random variable

X is IHR if the hazard rate function is increasing, where the

hazard rate function is defined as:

h(x) =
f(x)

1− F (x)
, x ∈ support(X) (2)

where f and F stand for the Probability Density Function (pdf)

and the cdf of X , respectively. In Equation 2, support(X) is

a function representing the subset of the domain in which

the random variable (X) probability is defined (i.e. it is not

zero). In fact, the hazard rate function which assesses the

IHR property is equivalent to the convexity H function, where

H(x) = −log(1− F (x)), called cumulative hazard rate.

B. IHR Distributions in Survivability Analysis

Log-concave distributions, as they can have an arbitrarily

large number of parameters, are one of the best tools to fit

data. On the other hand, they are generally defined only for the

range of data observed. Hence, they are unable to model the

distribution beyond that range, which is not useful for pWCET

estimation. Some methods smooth the distribution by means

of convolutions with other laws (e.g. Gaussian) to better fit

the mode of the distribution [16], [17], [18]. While such an

approach delivers a distribution that spans beyond the range

of the data observed, it is tuned to model central behavior (not

the tails) and so inherits the original problem we aim to tackle:

an appropriate law needs to be identified for tail modelling.

Weibull distributions, among others, have often been used

to model IHR distributions. However, they are unable to

fit all tail distributions, so they are used only in specific

contexts where the problem at hand matches the shape of

those distributions [24], [16]. Therefore, while survivability

analysis opens new opportunities to model pWCET, this is

yet unexplored and existing distributions, in general, may

not fit the needs of pWCET estimation. In this paper we

address this challenge by contextualizing the needs of pWCET

estimation and defining distribution families able to model

pWCET distributions reliably, tightly and without incurring

on the limitations imposed by log-concave distributions.

IV. EQUIVALENCE BETWEEN IHR AND NON-HEAVY TAILS

In this section we introduce the connection between risk and

survivability analysis in the context of pWCET estimation,

which will lay out the ground for our hypothesis in further

sections. pWCET estimates should be obtained theoretically

under the assumption of the law of extreme events char-

acterized by quicker decay in the tail than an exponential

law, or equal, in the limit case. Exponential tails have been

regarded as the appropriate (limit) model in practice [14],

[7]. An exponential decay is a memoryless process where the

probability of the process to complete is constant regardless

of how long the process has been progressing. In the context

of pWCET estimation, this corresponds to having a constant

probability for the program to finish its execution despite

the time elapsed since the program started running. Instead,

the theoretical solution for pWCET estimation indicates that,

the longer the program has been running, the higher the

probability of finishing. That is, if X corresponds to execution

time as a non-negative random variable, this assumption can

be formally stated as follows if s < t and x > 0:

P (X > t+ x | X > t) ≤ P (X > s+ x | X > s), (3)

In the context of extreme events, where u is the threshold

upon which values belong to the tail of the distribution, s, t
have to be large enough so that s, t > u, for some u > 0 3.

In the general case of EVT (e.g. GPD), the tail decay can

be described as follows for heavy, exponential and light tails

respectively:

• if ξ > 0, then P (X > t+x|X > t) ≥ P (X > x) for x > t.
• if ξ = 0, then P (X > t+x|X > t) = P (X > x) for x > t.
• if ξ < 0, then P (X > t+x|X > t) ≤ P (X > x) for x > t.

Note that the assumption described by Equation 3 for

extreme events implies ξ ≤ 0. Hence, the assumption for

pWCET estimation matches the formulation above for light

and exponential tails from GPD, inherited from risk analysis

since, in the context of pWCET estimation, the longer the pro-

gram has been running, the higher the probability of finishing.

This matches the known concept in reliability modelling of

IHR, which is therefore appropriate for pWCET estimation.

Building on Equation 3, and given a fixed x, we have the

following equivalent assumption:

P (X < t+ x|X > t) ≥ P (X < s+ x|X > s), if s < t

Given that s < t, then P (X > t) < P (X > s), and hence,

we can elaborate the equation above as follows:

P (X < t+ x)− P (X < t)

P (X > t)
≥ P (X < s+ x)− P (X < s)

P (X > s)

If we use the cdf expressions instead, we have the excess

distribution:

F (t+ x)− F (t)

1− F (t)
≥ F (s+ x)− F (s)

1− F (s)
, if s < t (4)

If x tends to 0, then the cumulative probability ranges,

between t and t + x and between s and s + x, reduce to

the particular probabilities at t and s respectively:

h(s) =
f(s)

1− F (s)
≤ f(t)

1− F (t)
= h(t), if s < t (5)

3Note that the threshold u is not larger than the theoretical threshold corre-
sponding to the asymptotic behavior of the tail from the second fundamental
theorem in EVT [25], [26]



Fig. 2: Ccdf for GPD (ξ < 0) and exponential tails from EVT
for TEST8. Both models are fitted with a sample of n = 1000

observations out of all n = 10
7 observations made.

As shown, Equation 5 – which we derive from Equation 3

– builds upon the hazard rate function shown in Equation 2.

Hence, it models IHR distributions for survivability analysis,

analogously to the GPD formulation for risk analysis. Note

that in Equation 5 the equality case corresponds to a constant

decay rate, hence a constant hazard rate function.

Log Concavity: In order to use IHR distributions for

pWCET estimation, we build upon the following theorem

proven in [15] and [27]:

Theorem. Given a non-negative random variable X , with

f and F the pdf and cdf, respectively (where H(x) =
− log(1− F (x)), x ∈ support(X)),

log(f) concave ⇒ X IHR ⇔ H convex (6)

Note that X is IHR in the tail, i.e. (X | X > u) is IHR for

some threshold u > 0, if and only if Equation 3 holds for

all s, t > u and, therefore, X is log-concave. Thus, by using

log-concave distributions, IHR holds by construction.

A non-negative function is log-concave if its domain is a

convex set, and if it satisfies the inequality f(θx+(1−θ)y) ≥
f(x)θf(y)1−θ, for all x, y in the domain of f and 0 < θ < 1.

In order to test IHR one could make use of the log-concavity

of the probability density function, which would give a convex

H function and hence, IHR. Given an appropriate threshold

u so that (X | X > u) is IHR (and log-concave), we

can fit a log-concave density function to the tail by using

the maximum likelihood approach, as detailed in [17], [18].

Regardless of whether we fit the best log-concave distribution

or a distribution function family preserving log-concavity but

with much fewer parameters, as we do in this work, the

exceedance threshold (u above) must be estimated to use the

appropriate set of tail values from the sample for fitting. In

particular, we build upon the work by Hazelton [27] that

provides a procedure for testing whether we can reject the

hypothesis of log-concavity for a given threshold u.

V. WEIBULL TAILS (TAILW) FOR PWCET ESTIMATION

In Section II we have concluded that light tails with compact

support are likely optimistic (thus unreliable) for pWCET

estimation. On the other hand, exponential tails are the limit

distribution for appropriate pWCET distribution models, hence

being reliable but likely pessimistic. In order to further sup-

port this reasoning, Figure 2 shows an example of one task

belonging to the railway case study we use in this paper, see

Section VII. We fit GPD with the best fit, which naturally is a

light tail (so ξ < 0), and an exponential (exp) distribution,

using a sample with 1000 observations. In the figure, we

depict the pWCET distributions obtained with light (GPD) and

exponential tails, in the form of a complementary cdf (ccdf),

as well as the empirical ccdf of a much larger data sample with

107 observations, which we use as ground truth. The cutoff

values at an exceedance probability of 10−6 per run are also

marked. As shown, the decay of the data sample sharpens for

higher execution times, thus reflecting an IHR. The GPD best

fit due to its compact support becomes eventually optimistic

since the pWCET distribution reaches higher execution times

for decreasing exceedance probabilities. The exponential tail,

instead, has a fixed decay rate, hence getting farther away from

the actual distribution as the exceedance probability decreases.

Overall, GPD (with ξ < 0) and exp (ξ = 0) from EVT

produce lower and upper bounds to the pWCET distribution

for decreasing exceedance probabilities. Hence, we need an

alternative model that has to satisfy the following properties:

1) Must have IHR in the tail (so H convex in the tail), thus

having positive memory and evi < 0.

2) Must not have bounded (compact) support, not to suffer

the same problems as GPD (with evi < 0).

The set of H-convex probabilistic models, i.e. with log-

concave densities, satisfies the properties above and includes

all probabilistic models satisfying those properties. However,

as explained in Section III, those distributions may have a large

number of parameters, which reduces the number of degrees

of freedom. Furthermore, the fitting process allows describing

them only for the probability range where data exists, which

is useless for pWCET estimation.
Weibull distributions4 have been often used to model sur-

vival processes such as, for instance, the lifetime of processors

[24]. Failure rates over processor lifetime are usually shown in

the form of a bathtub curve, where the failure rate decreases

during the beginning of the lifetime (so DHR), since failures

due to infant mortality are frequent. However, the more the

processor survives in this phase, the lower the hazard rate.

Eventually, a near-flat phase is reached where the hazard rate

is nearly-constant, until the end of life period is approached,

when the hazard rate increases (so IHR) until the processor

eventually fails. Obviously, such a distribution does not meet

the properties indicated above since it should be IHR, and

Weibull distributions may have DHR for at least part of their

support. However, if β > 1, where β stands for the shape,

Weibull tails (tailW) are IHR and allow covering all the

spectrum between GPD with ξ < 0 and exponential tails. In

fact, if we allow β ≥ 1, the boundary case where β = 1
corresponds to the exponential tails.

A. Formal Definition of tailW

The tailW law is constructed using the excess probability

function, shown in Equation 4. Thus, the cdf is:

F (x, α, β, ν) = 1− exp
(
−α(x+ ν)β + ανβ

)
(7)

4The Weibull law for X is given by the cdf F (x, ψ, β) = 1 −
exp

(

−(x/ψ)β
)



for x ≥ 0, α > 0, β ≥ 0 and ν > 0. We consider

tailW law with ν fixed and β ≥ 1. The former reduces the

cost of parameter estimation (only 2 parameters need to be

estimated instead of 3) at the expense of delivering negligibly

more pessimistic tail models. The latter (β ≥ 1), as explained

before, restricts tailW distributions to the domain of IHR. The

likelihood ratio in the tail is described by:

l(x;α, β, ν) = n(log(α) + log(β)) + (β − 1)

n∑

i=1

log(x+ ν)

− α

n∑

i=1

(
(x+ ν)β − νβ

)

and the MLE to fit the tailW law to the tail is obtained with

numerical methods. The full definition of the tailW and a

numerical method based on MLE to estimate its parameters

can be found in the R package distTails [28], [29].

Since the purpose of tail prediction is only modelling tails,

for which we lack sufficient empirical data to rely on the

empirical quantile, we need to fit an appropriate law for the

tail. However, for the rest of the distribution we can simply rely

on empirical data. Hence, we can resort to a semi-parametric

model, where for a fixed threshold u, the law for x < u is

given by the empirical law and for x > u the law is given by

a parametric model (e.g. tailW or exp).

VI. FITTING PROTOCOL

In order to use tailW distributions, we define an application

protocol that guarantees reliability and maximizes tightness.

Consider a sample, x, {x1, . . . , xn} and a fixed threshold

u to define the tail. We start by checking that the sample

preserves the IHR property (log-concavity) for the considered

exceedance threshold u as described in [27]:

1) Apply the bootstrap log-concavity test in the tail of the

sample for the given u.

2) If the null hypothesis of log-concavity is rejected with

risk 0.05, take another sample and restart.

Note that the significance level is 0.05, so that 95% of the

bootstrapped samples must pass the test, is a common value

for statistical tests. From this point onwards, log-concavity

in the tail is assumed since it has already been tested. Also,

u ≥ uEVT , where uEVT is the threshold such that the

theoretical approach from EVT can be applied. Then, the

protocol continues as follows:

3) Fix λ = Femp(u)
4) Consider the sample y given by yi = xi/u−1 for i such

that xi ≥ u.

5) Fit the exp, tailW and logc by MLE. Then, the loglike-

lihood for each law can be denoted by (where Θ̂ corre-

sponds to the set of parameters for a logc distribution)

l̂exp = lexp(ψ̂;y) l̂tailW = ltailW (α̂, β̂;y, ν = 1)

l̂logc = llogc(Θ̂;y)

6) Test the null hypothesis tailW ∼ exp through the Like-

lihood Ratio Test (LRT) [30], [31] with risk α = 0.05:

2(l̂tailW − l̂exp) < χ2,1
0.95

Note that, since tailW has 2 parameters and exp 1, the χ2

test is applied with 1 degree of freedom (the difference).

If it is true, then the exp model (PoT with exp in the tail)

must be considered for high-quantile estimation, and the

fitting process finishes since the simplest model must be

used if the models are not proven to differ5. Else, we

continue with the next step.

7) Test the null hypothesis logc ∼ tailW with risk 0.05:

2(l̂logc − l̂tailW ) < χ2,δ
0.95

where δ is the number of parameters in logc fit minus

2 (those for tailW). If it is true, then tailW model (PoT

with tailW law in the tail) must be considered for high-

quantile estimation, and the fitting process finishes. Else,

tailW may not be a sufficiently good fit. Hence, either we

continue searching for tailW fitting with larger samples or

another valid value for u, or we resort to the exp model

(computing uEVT and fitting the new tail as indicated

before), which is known to be pessimistic but reliable for

sky-high quantiles6.

Overall, this application protocol is reliable by construction

and aims at maximizing pWCET tightness.

VII. EVALUATION

While theoretically tailW distributions meet the properties

needed to model pWCET distributions tightly and reliably, we

verify empirically such hypotheses in several ways:

• We compare tailW distributions against sky-high quan-

tiles for large (ground truth) data samples.

• We compare tailW against GPD (with ξ < 0) and exp.

• We apply LRT to compare tailW and the reference logc.

Case study. We evaluate tailW with a railway case study

running on an FPGA prototype. The railway case study is

a safety-related function from the European Train Control

System (ETCS) reference architecture in charge of distance

supervision and travelling speed control. This function has

strict real-time requirements and needs to be certified at the

highest integrity level in the corresponding railway safety

standards. We build upon 10 input data vectors, regarded as

representative by the end user, which trigger different combi-

nations of speed and acceleration, among other parameters. For

each input, which we name from TEST0 to TEST9, we collect

an execution time sample. In particular 103 measurements

showed to be enough for each test. However, this would allow

us deliver pWCET estimates but we would not have specific

references to assess their reliability and tightness other than

those predictions obtained with exponential tails. Thus, for the

sake of having some form of ground truth, we have collected

a large execution time sample with 107 measurements per

TEST since they allow us assessing the quality of the pWCET

estimates at sky-high quantiles. It is also worth mentioning

5If an exp tail is used for modelling, then EVT should be used to improve
the fit, computing uEVT such that uEVT ≤ u, and fitting the new tail.

6Note that typically, high quantiles are defined at the range 0.9-0.9999.
Since we target very small exceedance probabilities, in line with safety
standards requirements, we define sky-high quantiles those reaching values
around 1− 10n, where typically n ∈ [−6,−12].



that collecting those data samples required 2 non-stop weeks

of data collection, thus far beyond the typical effort an end

user would spend for the timing analysis of a single program.

Platform. The platform for this experiment is an FPGA

implementation of a LEON3+ architecture comprising first

level instruction and data caches, and a unified L2 cache,

where the sources of execution time variation have been

conveniently controlled by hardware means to guarantee the

representativeness of the measurements collected at analysis

w.r.t. the timing behavior during operation [32], [33]. In

particular, this processor builds upon the concepts of time

upper-bounding and time randomization to enforce represen-

tativeness. However, our analysis is agnostic of the platform

on which measurements are collected.

A. Assessing Model Hypotheses: H-Convexity and Light Tails

tailW relies on the convexity of the H-plot and lightness

of the tail for the distribution modelled. By definition of our

problem at hand (finite execution times), both properties must

hold. Figure 3 shows the H-plot for the full samples of the

railway case study (107 measurements). As shown graphically

in the plots, all data sets are H-convex, thus in line with

the hypothesis in Equation 3. The lightness of the tail can

be assessed with the Coefficient of Variation (CV) statistic.

Given that the CV in the context of the gpd for a certain

threshold u is CV(Xu) = 1/
√
1− 2ξ, where ξ is the evi,

we are able to classify the nature of the tail. This method is

properly developed and explained in the context of MBPTA

in [7]. In Figure 4, we show the CV plot for all TEST traces,

where the thick line corresponds to the trace for TEST6. The

CV plot shows that, given that CV ≤ 1 in general, distributions

have light tails. Small discontinuities in the data sample, which

may happen due to random sampling, may create peaks when

a low number of exceedances is considered; as in the case of

TEST0 and TEST 4, in Figure 4. Regarding TEST6, it is the

only one with a slightly different behavior since the leftmost

part of its CV is slightly heavy (CV ≥ 1), and it only becomes

light after excluding half of the sample. We discuss TEST6 in

more detail later.

B. Assessment with Large Data Sets

To assess the reliability and tightness of the tailW model,

for each of the 10 TESTs, we conduct a bootstrap experiment

consisting of generating 1000 random samples with 1000
observations each from the 107 observations collected for

that TEST. Then, we fit the exponential (exp), the GPD with

ξ < 0 and tailW models for each of those 1000 data samples.

The pWCET value obtained for each of the three methods is

assessed against the empirical distribution sky-high quantile

1 − 10−6 (so at an exceedance probability of 10−6). Note

that, by building on a data sample with 107 measurements,

the highest quantile we could consider would be 1 − 10−7,

which would be fully dependent on the highest value in the

sample. Relying on a single (randomly sampled) value may

bring some instability, so we opted for considering a lower

(still sky-high) quantile at 1− 10−6.

Figure 5a shows the Quantiles Of BootStrap (QOBS)

estimator for TEST0 in the form of a boxplot. All other

Fig. 3: H-plots for the whole TEST0 and TEST6 for a

bootstrap sample of 10000 observations. The x-axis shows

execution times in processor cycles.

Fig. 4: Plot of the CV against the excluded sample size.

The thick purple line corresponds to the TEST6, while the

thin lines come from the rest of the tests. The CV plot was

computed using the R package ercv [34].

TESTs except TEST6 have analogous behavior to TEST0,

so we omit them for space needs. Results are obtained using

different number of extremes (maxima) for tail fitting: we have

used 500, 200, 100 and 50 extremes selected with PoT. The

assumption formalized in Equation 3 lets us use the hypothesis

on IHR for all data. Therefore, those numbers of extremes

(between 50 and 500) can be reliably used for our analysis.

As shown, exp provides highly pessimistic estimates with 500

extremes, whose mean is in the range [1.15, 1.20]. Tightness

improves as we decrease the number of extremes. However,

fitting a distribution with a lower number of measurements

brings increased uncertainty.

As expected, gpd tends to underestimate the sky-high

quantile of the real data with a low number of extremes

(50), and quantiles are wide. Hence, in this case uncertainty

is relatively high and confidence intervals should be wide.

By increasing the number of extremes, uncertainty rapidly

decreases and quantiles narrow down. However, gpd further

underestimates the sky-high quantile of the real data due to

losing the asymptotic tail behavior by using values farther

away from the maximum in the sample.

Finally, tailW tends to tightly and reliably estimate the sky-

high quantile of the real data with few extremes (50), but with

wide quantiles. As we increase the number of extremes up to

500, we observe that reliability and tightness are preserved,
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(b) TEST6 1000 sample

●

●●●●

●●●

●●●●

●●●

●●●●

●●●

●●●●

●●●

●●●●

●●●

●●●●

●●●

●●●●

●●●

●●●●

●●●

●●●●

●●●

●●●●

●●

●

●●●●●

●

●●●

●

●●●●●

●

●●●

●

●●●●●

●

●●●

●

●●●●●

●

●●●

●

●●●●●

●

●●●

●

●●●●●

●

●●●

●

●●●●●

●

●●●

●

●●●●●

●

●●●

●

●●●●●

●

●●●

●

●●●●●

●

●●●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●
●●●●●●●●
●●
●●●
●●●●●●●●
●●
●●●
●●●●●●●●
●●
●●●
●●●●●●●●
●●
●●●
●●●●●●●●
●●
●●●
●●●●●●●●
●●
●●●
●●●●●●●●
●●
●●●
●●●●●●●●
●●
●●●
●●●●●●●●
●●
●●●
●●●●●●●●
●●
●● ●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●
●
●●●●●●●
●●●
●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●
●●●
●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●
●●●
●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●
●●●
●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●
●●●
●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●
●●●
●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●
●●●
●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●
●●●
●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●
●●●
●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●
●●●
●●●●●●●●●●●●
●●●●● ●●●●●

●●

●

●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●

●

●●

●

●

●●
●

●

●●

●

●

●●●●

●

●●●●

●

●●●
●

●

●●

●

●

●●●●

●

●●●●

●

●●●
●

●

●●

●

●

●●●●

●

●●●●

●

●●●
●

●

●●

●

●

●●●●

●

●●●●

●

●●●
●

●

●●

●

●

●●●●

●

●●●●

●

●●●
●

●

●●

●

●

●●●●

●

●●●●

●

●●●
●

●

●●

●

●

●●●●

●

●●●●

●

●●●
●

●

●●

●

●

●●●●

●

●●●●

●

●●●
●

●

●●

●

●

●●●●

●

●●●●

●

●●●
●

●

●●

●

●

●●●●

●

●●●●

●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●
●●

●●●●

●

●

●

●

●

●

●●

●
●●

●●●●

●

●

●

●

●

●

●●

●
●●

●●●●

●

●

●

●

●

●

●●

●
●●

●●●●

●

●

●

●

●

●

●●

●
●●

●●●●

●

●

●

●

●

●

●●

●
●●

●●●●

●

●

●

●

●

●

●●

●
●●

●●●●

●

●

●

●

●

●

●●

●
●●

●●●●

●

●

●

●

●

●

●●

●
●●

●●●●

●

●

●

●

●

●

●●

●
●●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

(c) TEST6 10000

Fig. 5: QOBS estimator distribution for TEST0 and TEST6 for 1000 and 10000 samples, under different models: exp, gpd

and tailW, with different number of extremes: (500, 200, 100, 50) for samples of 1000 measurements and (5000, 2000, 1000,

500) for 10000 measurements.

TABLE I: Lower confidence interval (LCI) for the reference

values for all railway TESTs.

Test LCI Test LCI

TEST0 0.00% TEST5 0.28%
TEST1 0.08% TEST6 0.97%
TEST2 0.13% TEST7 0.10%
TEST3 0.17% TEST8 0.21%
TEST4 0.00% TEST9 0.35%

and quantiles quickly narrow down. Overall, tailW provides

much tighter (and still reliable) pWCET estimates than exp,

and does not suffer the underestimation problems of gpd

due to the compact support of gpd, which should naturally

worsen as we consider higher sky-high quantiles (a.k.a. lower

exceedance probabilities). Note that, sporadically, tailW may

lead to pessimistic sky-high quantile estimates (comparable to

those for exp). As explained before, occasionally, tailW fitting

may not be sufficiently good and then, our model resorts to

exponential tail fitting to preserve reliability.

For TEST6 (Figure 5b), the larger the number of extremes

considered (and so the higher the confidence), the closer the

estimator to the reference value for tailW, but still most of the

distribution is below the reference value. For larger samples

of 10000 measurements – Figure 5c – estimates for TEST6

become more precise, but still slightly below the reference

value (up to 1%). Since the reference value is obtained with

point estimation, we have calculated its lower confidence

interval (a.k.a. how much reference lines at 1.0 should be

moved down in the y-axis). In particular, we use the binomial

confidence interval [35], since it only requires the size of

the sample used and the number of successes/failures. We

compute the 95% confidence interval. Results for all TESTs,

see Table I, show that all confidence intervals are tiny except

for TEST6, whose lower confidence interval is ≈1%, which

means that tailW estimates are within the confidence interval

of the ground truth value.

Since standards accept failure rates in the order of 10−5

to 10−9 failures per hour, and critical real-time tasks may

run up to several thousands of times per hour, we consider

exceedance probabilities of 10−6 and 10−12 per run for

the pWCET estimates, thus showing the sensitivity of the

different methods to the exceedance probability. In particular,

we compare the only two reliable methods: exp and tailW.

Given that gpd has been proven unreliable, we do not consider

it for pWCET estimation. Therefore, we estimate the pWCET

at such probabilities for tailW and exp with samples of 1000

execution time measurements. We consider, as in previous

experiments, different numbers of extremes (50, 100, 200 and

500), and show the results normalized w.r.t. tailW.

As shown in Figure 6, exp delivers pWCET estimates

between 5% and 20% higher than those of the proposed

tailW method for the railway case study for an exceedance

probability of 10−6 per run. As shown in Figure 5, tighter es-

timates are obtained for exp if fewer extremes are considered,

whereas tailW accuracy is highly insensitive to this parameter.

However, uncertainty increases if the number of extremes used

is relatively low. Therefore, as the reliability required for the

pWCET estimate increases, tailW provides higher gains.

Results for an exceedance probability of 10−12 per run are

shown in Figure 7. Such a lower probability should be used for

more critical tasks and/or for those tasks running more often.

As shown, trends are similar to those of 10−6 exceedance

probability, but at a higher scale, since exp pWCET estimates

are typically between 15% and 50% higher than those of tailW.

This increasing gap between the (tight) tailW model and exp

model can be easily understood looking at Figure 2, where

we see that the gap between exp and the actual distribution

increases at decreasing exceedance probabilities. Note that

achieving higher savings for tasks running more frequently

implies that potential savings in system utilization can also be

larger.

C. Comparing exp, tailW and logc Models

As explained before, logc distributions are the reference

model, but they can only be used in the value range determined

by input data. Nevertheless, we assess whether tailW delivers



Fig. 6: pWCET estimate increase for exp w.r.t. tailW at an

exceedance probability of 10−6 per run for the railway case

study with different numbers of extremes for the tail.

Fig. 7: pWCET estimate increase for exp w.r.t. tailW at an

exceedance probability of 10−12 per run for the railway case

study with different numbers of extremes for the tail.

distributions that cannot be distinguished from logc ones

statistically in the range where the latter are defined. For that

purpose, we perform an LRT.

We have applied the LRT to the 10 TESTs on the large

data sets. As shown in Table II, the test is passed in almost all

cases. In particular, the p-value is below 0.05 only for TEST1

(T1) with 100 extremes and TEST4 (T4) with 500 extremes.

Hence, this result confirms that M1 (so tailW) cannot be

distinguished from logc distributions, thus supporting the high

accuracy of the proposed model. In fact, in those cases where

the test is failed, we only need to select an appropriate number

of extremes that ensures that tailW is indistinguishable. The

default solution consists on collecting a new sample since

both distributions are naturally indistinguishable. Note that, in

general, α determines the ratio of false negatives (a.k.a. wrong

hypothesis rejections). In our case, given that α = 0.05, we

would expect 2 rejections out of 40 tests, which is exactly

what we obtained.

For completeness, we have applied the LRT to compare exp

with tailW. A test pass would mean that the simpler model

(exp has just 1 parameter whereas tailW has 2) should be used

instead of the complex one. Our results (omitted due to space

TABLE II: LRT p-values for the 10 TESTs comparing tailW

and logc models.

tailW vs logc

500 200 100 50

T0 0.91 0.63 0.24 0.19

T1 0.07 0.08 0.04 0.72

T2 0.72 0.63 0.21 0.37

T3 0.21 0.57 0.30 0.94

T4 0.01 0.72 0.48 0.80

T5 0.98 0.25 0.67 0.19

T6 0.88 0.77 0.97 0.97

T7 0.75 0.85 0.34 0.59

T8 0.52 0.61 0.25 0.51

T9 0.11 0.88 0.21 0.92

constraints) show that the test is failed in most of the cases,

thus meaning that exp is unable to capture tail distributions

with as much accuracy as tailW.

VIII. RELATED WORK

EVT relies on i.i.d. observations in the input sample [36],

[37], [38]. The difficulty of achieving this depends on the

underlying hardware platform [39], [33], [40], [10] and the

software support used [8]. For instance, the COTS hard-

ware platforms considered in [40], [10] pose difficulties to

enforce i.i.d. measurements, and some dependencies across

measurements may exist, thus requiring special consideration,

as shown by Santinelli et al. [10].

The source of dependencies has been investigated by Melani

et al. [41] concluding that pWCET estimation is still possible

despite dependencies. Other authors build upon alternative

methods for measurement collection to get rid of dependen-

cies. In particular, Yue et al. [40] consider retaining only max-

ima for that purpose. Lima and Bate [8] show that mitigating

the impact of discrete data may also help to mitigate the impact

of dependencies.

Several authors have considered general EVT distributions,

without restricting them to the exponential law [9], [8], [22],

whereas others build on the particular characteristics of the

problem modelled – finiteness of the execution time of critical

real-time programs – to fit exponential tails only [42], [37],

[23], [7], which have been shown to provide usable bounds

and confidence intervals [14].

MBPTA brings several challenges [43] including a sound

tail modelling application – the target of this work, the

representativeness of the input samples [11], [44], [39], [10],

[22], and how to interpret the obtained results. These three

challenges have been presented in [43], while [45] makes a

deep survey of the existing works addressing each of these

challenges. In this context, [20], [46] have shown how to

interpret EVT results from a certification point of view.

IX. CONCLUSIONS

While light tails are the theoretical best fit for pWCET

estimation, the lack of reliable fitting methods (for light tails

as part of EVT) that deliver reliable pWCET estimates for

arbitrarily low exceedance probabilities imposes the use of

exponential tails, which although proven reliable, are increas-

ingly pessimistic for decreasing exceedance probabilities.

We proved that risk analysis, where EVT is used, and

survivability analysis tackle the same fundamental problem

by predicting the occurrence of rare events. Then, building on

distributions from survivability analysis, we propose the use

of Weibull tails (tailW), which are proven to be as reliable as

reference log-concave distributions, but enabling the modelling

of arbitrarily low exceedance probabilities.

We validate our approach based on tailW on a railway case

study, showing that tailW provides reliable and tight pWCET

estimates, as opposed to EVT light tails (often unreliable)

and exponential tails (often pessimistic). Our results show that

pWCET estimates can be reduced by around 40% w.r.t. current

practice based on exponential tails, thus enabling much higher

utilization of hardware platforms.



REFERENCES

[1] ARM, “ARM Expects Vehicle Compute Performance to Increase
100x in Next Decade,” https://www.arm.com/about/newsroom/
arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.
php, 2015.

[2] A. West, “NASA Study on Flight Software Complexity. Final Report,”
NASA, Tech. Rep., 2009.

[3] M. P. et al, “Mixed-criticality embedded systems - A balance ensuring
partitioning and performance,” in Euromicro DSD, 2015.

[4] William J. Hughes, “DOT/FAA/TC-16/51. Assurance of Multicore Pro-
cessors in Airborne Systems.” Federal Aviation Administration, Tech.
Rep., 2017.

[5] F. Cros, L. Kosmidis, F. Wartel, D. Morales, J. Abella, I. Broster,
and F. J. Cazorla, “Dynamic software randomisation: Lessons learnec
from an aerospace case study,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2017, March 2017, pp. 103–108.

[6] M. Fernandez, D. Morales, L. Kosmidis, A. Bardizbanyan, I. Broster,
C. Hernandez, E. Quinones, J. Abella, F. Cazorla, P. Machado, and
L. Fossati, “Probabilistic timing analysis on time-randomized platforms
for the space domain,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2017, March 2017, pp. 738–739.

[7] J. Abella, M. Padilla, J. D. Castillo, and F. J. Cazorla, “Measurement-
based worst-case execution time estimation using the coefficient of
variation,” ACM Trans. Des. Autom. Electron. Syst., vol. 22, no. 4, pp.
72:1–72:29, Jun. 2017. [Online]. Available: http://doi.acm.org/10.1145/
3065924

[8] G. Lima and I. Bate, “Valid application of evt in timing analysis by
randomising execution time measurements,” in 2017 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), April
2017, pp. 187–198.

[9] G. Lima, D. Dias, and E. Barros, “Extreme value theory for estimating
task execution time bounds: A careful look,” in 2016 28th Euromicro
Conference on Real-Time Systems (ECRTS), July 2016, pp. 200–211.

[10] L. Santinelli, J. Morio, G. Dufour, and D. Jacquemart, “On the
Sustainability of the Extreme Value Theory for WCET Estimation,” in
14th International Workshop on Worst-Case Execution Time Analysis,
ser. OpenAccess Series in Informatics (OASIcs), H. Falk, Ed.,
vol. 39. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2014, pp. 21–30. [Online]. Available: http://drops.dagstuhl.
de/opus/volltexte/2014/4601

[11] J. Abella, C. Hernandez, E. Quiñones, F. J. Cazorla, P. R. Conmy,
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