
The University of Manchester Research

Efficient Linear System Solution Techniques in the
Simulation of Large Dense Mutually Inductive Circuits
DOI:
10.1109/ICCD46524.2019.00063

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Antoniadis, C., Mihajlovic, M., Evmorfopoulos, N., Stamoulis, G., & Pavlidis, V. (2020). Efficient Linear System
Solution Techniques in the Simulation of Large Dense Mutually Inductive Circuits. In Proceedings - 2019 IEEE
International Conference on Computer Design, ICCD 2019 (pp. 405-408). Article 8988760 (Proceedings - 2019
IEEE International Conference on Computer Design, ICCD 2019). https://doi.org/10.1109/ICCD46524.2019.00063
Published in:
Proceedings - 2019 IEEE International Conference on Computer Design, ICCD 2019

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:25. Apr. 2024

https://doi.org/10.1109/ICCD46524.2019.00063
https://research.manchester.ac.uk/en/publications/a321f1ac-fcca-475a-b369-084038c4e169
https://doi.org/10.1109/ICCD46524.2019.00063

Efficient Linear System Solution Techniques
in the Simulation of Large Dense

Mutually Inductive Circuits
Charalampos Antoniadis∗, Milan Mihajlovic†, Nestor Evmorfopoulos∗, Georgios Stamoulis∗ and Vasilis F. Pavlidis†

∗Dept. of Electrical & Computer Engineering, University of Thessaly, Volos, Greece
{haadonia, nestevmo, georges}@e-ce.uth.gr

†School of Computer Science, The University of Manchester, Manchester, UK
{milan, pavlidis}@cs.man.ac.uk

Abstract—The verification of integrated Circuits (ICs) in deep
submicron technologies requires that all mutual inductive effects
are taken into account to properly validate the performance and
reliable operation of the chip. However, the inclusion of all mutual
inductive couplings results in a fully dense inductance matrix
that renders the circuit simulation computationally prohibitive.
In this paper, we present efficient techniques for the solution of
the linear systems arising in transient analysis of large mutually
inductive circuits. These techniques involve the compression
of the dense inductance matrix block by low-rank products
in hierarchical matrix format, as well as the development of
a Schur-complement preconditioner for the iterative solution
of the transient linear system (which comprises sparse blocks
alongside the dense inductance block). Experimental results
indicate that substantial compression rates of the inductance
matrix can be achieved without compromising accuracy, along
with considerable reduction in iteration counts and execution
time of iterative solution methods.

Index Terms—RLC Simulation, mutual inductance, Hierar-
chical Matrices, Preconditioning, Schur Complement, Krylov
methods

I. INTRODUCTION
In high-frequency integrated circuits, parasitic inductance

becomes prominent and needs to be considered in simulation
to accurately predict the behavior and verify the reliability
of the chip. However, the simulation of large RLC parasitic
networks can be extremely time-consuming or, in some cases,
even infeasible due to their sheer size.

In the past, it has been sufficient to include only self-
inductance in the RLC simulation, resulting in large linear
systems with sparse coefficient matrices. For such systems,
iterative solvers are the methods of choice offering small mem-
ory requirements and excellent scalability. However, in modern
high-frequency ICs there is an increasing demand for modeling
all mutual inductive couplings between the different circuit
blocks, leading to a fully dense inductance matrix that affects
the scaling properties and storage requirements of iterative
solvers. As the convergence rate of iterative methods cannot
be predicted a-priori, the use of appropriate preconditioners
is necessary to ensure a robust and fast convergence across a
wide range of problems.

As direct sparsification (by truncation) of the dense induc-
tance matrix is well-known to lead to loss of circuit passivity
and simulation stability [1], most previous attempts in the
literature have focused on sparsifying its inverse (called the
reluctance matrix), which is amenable to sparsification due
to its diagonal dominance [2] [3] [4]. However, this requires
prior inversion of a large dense matrix which is a very
expensive computational procedure, making the reluctance-
based approaches feasible only for problems of moderate
sizes. An approach that avoids the expensive inversion of the
inductance matrix, by computing selectively only some of the
entries of the reluctance matrix up to a given sparsity ratio,
has been proposed in [5]. However, this approach introduces
error that is difficult to quantify in advance, thus limiting its
application in practical settings.

In this paper, we propose the compression (instead of sparsi-
fication) of the actual inductance matrix via the approximation

of large off-diagonal blocks by low-rank products, in a scheme
known as hierarchical matrix (or H-matrix) format. This
format conserves memory by storing only the low-rank factors
of the blocks, while enabling the execution of basic matrix-
vector operations required by iterative solvers in near optimal
complexity. Moreover, we propose a block preconditioner
based on an efficient approximation of the Schur complement,
which improves considerably the convergence rate of iterative
methods and has inexpensive application. Experimental results
demonstrate significant reduction in memory footprint and
execution time with negligible loss of accuracy, in comparison
to existing dense linear solvers in typical simulation scenarios.

The rest of the paper is organized as follows: Section
II offers an overview of transient RLC analysis, iterative
solvers and hierarchical matrix format. Section III introduces
hierarchical matrices as an approximation for the dense induc-
tance matrix. Section IV presents the proposed preconditioning
scheme for the simulation of mutually inductive RLC circuits.
Section V provides experimental results that demonstrate the
efficiency of the proposed methodology, while conclusions are
drawn in section VI.

II. BACKGROUND
A. Overview of RLC transient analysis

Consider an RLC circuit composed of n nodes and m induc-
tive branches with mutual inductive coupling between them,
as well as its Modified Nodal Analysis (MNA) description [6]:

G̃x(t) + C̃ẋ(t) = ẽ(t) (1)

where

G̃ =

[
G AL

−AT
L 0

]
, C̃ =

[C 0
0 L

]
, x(t) =

[
v(t)
i(t)

]
, ẽ(t) =

[e(t)
0
]

In the above, G ∈ <n×n and C ∈ <n×n are the node conduc-
tance and node capacitance matrices respectively, L ∈ <m×m
is the dense inductance matrix (with self-inductances as diag-
onal entries and mutual inductances as off-diagonal entries),
AL ∈ <n×m is the corresponding node-to-branch incidence
matrix, v(t) ∈ <n and i(t) ∈ <m are the vectors of the
unknown node voltages and branch currents, and e(t) ∈ <n is
the vector of excitations from independent sources at the nodes
(assuming, without loss of generality, that voltage sources
have been transformed to Norton-equivalent current sources).
Applying the Backward-Euler numerical integration method in
(1), we arrive at the problem of solving a system of n + m
linear algebraic equations at each discrete time tk, k = 1, 2, . . .
(starting with initial values x(t0) = [v(0) i(0)]

T):
Jkx(tk) = b(tk) (2)

where

Jk =

[
1

hk
C + G AL

−AT
L

1
hk

L

]
, b(tk) = ẽ(tk) +

C̃

hk

x(tk−1)

and hk = tk − tk−1, k = 1, 2, . . . is the chosen time-step size
(which can be either fixed or variable during the analysis). The
above is a linear system of the form Ax = b that has to be
solved at every discrete time tk, k = 1, 2,

B. Iterative linear solvers
Direct methods (based on matrix factorization) are not prac-

tically feasible for solving large dense systems or systems with
a large dense block (like 1

hk
L in (2)), due to their excessive

runtime and memory requirements. The only viable option for
such systems is the use of iterative methods, and particularly
Krylov-subspace iterative methods like GMRES (which is
suitable for general unsymmetric systems like (2)) [7]. The
operation with the dominant cost inside the iteration loop of
Krylov-subspace methods (and GMRES in particular) is the
matrix-vector multiplication, which for the system (2) can be
dealt efficiently by the hierarchical matrix framework that is
introduced in the next subsection and applied to the inductance
matrix L in Section III. Other operations of Krylov-subspace
iterative methods like inner products, scalar-vector products
and vector additions are not expensive computationally.

The convergence rate of Krylov-subspace methods is deter-
mined by the spread of the eigenvalues of the system matrix
and their distance from 1 [8]. In particular, convergence is fast
when the eigenvalues are tightly clustered together and slow
when they are spread apart. A slow convergence rate can be
alleviated by using a preconditioner matrix M and to solve an
equivalent system M−1Ax = M−1b.

An effective preconditioner needs to satisfy the following
two prerequisites:
• Preconditioning should lead to a much tighter clustering

of the eigenvalues of M−1A than those of the original
matrix A, thus reducing significantly the iteration counts.

• The reduction in the number of iterations should offset
the computational overhead introduced by the solution of
Mzj = rj in every iteration.

C. Low-rank product approximation and hierarchical matrices
If A ∈ <n×n is a square matrix or matrix block with

Singular Value Decomposition (SVD) A = UΣVT , where
Σ = diag(σ1, . . . , σn) and σ1 > · · · > σn, then by
introducing the following partition:

U = [U1 U2], Σ =
[
Σ1 0
0 Σ2

]
, V

T
=

[
VT

1

VT
2

]

with U1 ∈ <n×r, Σ1 ∈ <r×r and VT
1 ∈ <r×n, the optimal

low-rank product approximation of rank-r of A is defined as
Ã = (U1Σ

1/2
1)(V1Σ

1/2
1)T ≡ ZYT . It has been proven in

[9] that this approximation satisfies the optimization problem
min
Ã
‖A − Ã‖ s.t. rank(Ã) = r for any common matrix

norm. The benefit of the factorization Ã = ZYT with Z =
U1Σ

1/2
1 and Y = V1Σ

1/2
1 is that only the factors Z and Y

have to be kept in memory instead of the whole n×n matrix A
(see Fig. 1a). The above low-rank product approximation can
be straightforwardly extended to rectangular matrix blocks.

Hierarchical matrices or H-matrices [10] are a lossy com-
pressed matrix format which relies on the partitioning of a
dense matrix into a number of sub-matrix blocks that can be
approximated efficiently and accurately by low-rank products.
The special structure of H-matrices allows the development of
algorithms for the basic operations of matrix-vector multipli-
cation and matrix factorization with near optimal asymptotic
complexity.

III. APPROXIMATION OF THE INDUCTANCE MATRIX WITH
HIERARCHICAL MATRICES

Because of the natural fact that interconnect segments which
are farther apart exhibit weaker mutual inductive interactions,
the inductance matrix L will be characterized by progressively
smaller off-diagonal elements while moving away from the

Fig. 1: (a) Approximation of a n×n dense block with a low-rank product. OnlyO(2rn)
storage is required, while parameter r controls the accuracy of the approximation. (b)
Example of 256×256 inductance matrix in H-matrix format. Blocks around diagonal
(red-colored blocks) correspond to mutual inductances in close physical proximity to
each other. Blocks away form the diagonal (green-colored blocks) have progressively
smaller numerical values and can be approximated by low-rank products (the rank of
each block is indicated inside the block).

diagonal (assuming that segments in close physical proximity
are enumerated consecutively - otherwise suitable permutation
matrices can be applied). Then the matrix blocks that are away
from the diagonal can be efficiently approximated by low-rank
products and the whole inductance matrix by an appropriate
H-matrix (see Fig. 1b). The size and the number of blocks,
as well as the order of the low-rank approximation of each
block, constitute trade-off parameters between the degree of
compression and the quality of approximation.

It is noted that the usage of H-matrix format does not
require the a-priori knowledge of the whole inductance matrix.
Instead, only the spatial arrangement of the interconnects,
which is available before the assembly of the inductance
matrix, is required to perform the matrix blocking. Thus,
provided that we integrate the H-matrix library with the
inductance extraction tool, we can approximate a matrix block
by a low-rank product immediately after its computation, and
next store it directly in H-matrix format rather than as part of
a dense inductance matrix.

IV. SOLUTION AND PRECONDITIONING OF THE
TRANSIENT LINEAR SYSTEM

A. Multiplication of transient system matrix with a vector
The matrix Jk is composed of different storage formats,

with G + 1
hk

C and AL being in sparse format (compressed
row or column form) and L in H-matrix format. Thus, the
multiplication of Jk with a vector inside the iteration loop of
a Krylov-subspace method like GMRES, can be performed in
a block fashion by calling the appropriate sparse and H-matrix
subroutines.

B. Preconditioner formulation
Consider the block LU factorization of Jk of (2):

Jk = LJUJ =

[
I 0

−AT
L(G + 1

hk
C)−1 I

] [
G + 1

hk
C AL

0 S

]

where

S =
1

hk

L + A
T
L(G +

1

hk

C)
−1

AL

is the Schur complement of Jk. Because LJ is a block lower
triangular matrix with identity blocks on the main diagonal,
and thus has all eigenvalues equal to 1, the block upper
triangular matrix

UJ =

[
G + 1

hk
C AL

0 S

]
(3)

constitutes an ideal preconditioner for Jk (meaning that GM-
RES will converge in only one iteration).

C. Preconditioner application
The preconditioning step in the body of Krylov methods

involves the solution of the following linear system:

UJz = r⇒
[
G + 1

hk
C AL

0 S

] [
z1
z2

]
=
[
r1
r2

]
(4)

The system (4) has a block upper triangular coefficient matrix
and its solution can be achieved by block back substitution.
Specifically, we first solve Sz2 = r2 (details are given in
the next paragraph), then update the right hand side as r1 =
r1−ALz2, and finally solve (G+ 1

hk
C)z1 = r1. The latter is

a n× n sparse linear system which can be solved by a direct
or iterative sparse linear solver. Since it can be demonstrated
that G+ 1

hk
C is a symmetric diagonally dominant matrix with

non-positive off-diagonal elements [11], it is recommended to
use iterative methods for which very efficient preconditioners
have been developed [12], [13].

The Schur complement m × m system Sz2 = r2 has
coefficient matrix with two additive terms, S1 ≡ 1

hk
L and

S2 ≡ AT
L(G + 1

hk
C)−1AL, both of which are dense and

in different matrix formats (S1 is stored as an H-matrix).
However, since the relative contributions of S1 and S2 depend
on the time step size hk, we can choose one term over
the other for the typical range of step sizes in a variable-
step simulation. Specifically, for small step sizes the term
S1 = 1

hk
L dominates and the system 1

hk
Lz2 = r2 can be

solved by LU factorization of L inH-matrix format. For larger
step sizes, the term S2 = AT

L(G + 1
hk

C)−1AL is dominant
and the block preconditioner becomes[

G + 1
hk

C AL

0 AT
L(G + 1

hk
C)−1AL

] [
z1
z2

]
=
[
r1
r2

]

which can be straightforwardly derived to be equivalent to the
system [

G + 1
hk

C AL

−AT
L 0

] [
z1
z2

]
=
[
r1
r2

]
(5)

The latter is an (n+m)× (n+m) sparse linear system which
can be solved by any direct or iterative linear solver.

D. Selection of the dominant term of Schur complement
The choice of the approximation of S as S1 or S2, for

a given timestep, can be guided by quantifying the relative
magnitude of each term in its spectral norm (see Algorithm
1). While there exist efficient routines to compute the spectral
norm of 1

hk
L in H-matrix format, the spectral norm of

AT
L(G + 1

hk
C)−1AL can be estimated by the inequality

Algorithm 1 Choice of suitable approximation of S for a given
timestep hk
1: function S = APPROX(1

hk
L, AT

L(G + 1
hk

C)−1AL)

2: if
∥∥∥ 1

hk
L
∥∥∥
sp
>
∥∥∥AT

L(G + 1
hk

C)−1AL

∥∥∥
sp

then

3: S ' 1
hk

L

4: else
5: S ' AT

L(G + 1
hk

C)−1AL

6: end if
7: end function

||AT
L(G +

1

hk

C)
−1

AL||sp ≤ ||AL||2||(G +
1

hk

C)
−1||sp||AT

L ||2 (6)

Due to the specific structure of the interpolation matrix AL
the inequality (6) is fairly sharp and the estimate is getting
better as hk increases. With ||AL||2 =

√
2 we have

TABLE I: Details of the experimental benchmarks

Benchmark Number of
RL branches (m)

Number of
circuit nodes (n)

bus1 256 544
bus2 1024 2080
bus3 4096 8208
bus4 8192 16416
bus5 16384 32832

TABLE II: Computational impact of the approximation of dense inductance matrix L
with H-matrix LH.

Bench.
Compr.

Time
to H

matrix

Storage Mat-vec Product Time

Dense
L

H
matrix

Mem.
save

Dense
L

H
matrix

Speed
up

bus1 20ms 512.17kB 144.26kB 71.8% 0.04ms 0.03ms 1.33×
bus2 30ms 8MB 746.65kB 90.8% 0.65ms 0.6ms 10.8×
bus3 180ms 128MB 4.89MB 96.1% 11ms 0.32ms 34.4×
bus4 470ms 512MB 15.96MB 96.8% 50ms 1.7ms 29.5×
bus5 520ms 2GB 50.64MB 97.5% 225ms 8ms 28.1×

||AT
L(G +

1

hk

C)
−1

AL||sp ≤ 2||(G +
1

hk

C)
−1
h ||sp =

2

λmin(G + 1
hk

C)

(7)

where λmin(G + 1
hk

C) is the minimum eigenvalue of the
matrix G+ 1

hk
C. Its estimate can be obtained efficiently by the

inverse power iteration [14] where the matrix-vector product
from the normal power method is replaced by the solution of
a linear system.

V. EXPERIMENTAL RESULTS

A. Experimental setup
For the experimental evaluation of the compression rates

obtained by storing the inductance matrix L as a H-matrix
and the efficiency of the proposed preconditioning method we
created a set of interconnect RLC models with inductive and
capacitive coupling. The inductance matrix, with all mutual
inductances, was assembled with FastHenry [15], while we
assume that there is a capacitive path from all nodes to the
ground and a capacitive coupling between adjacent nodes.
Structural details of the benchmarks are summarized in Table I.
The simulation of the RLC interconnect models was performed
with a driver resistance of 30Ω, load capacitance of 20fF, total
wire self-capacitance of 40fF and total coupling capacitance
between adjacent wires of 20fF. A 1V 20ps ramp voltage
source was applied to one of the wires while the remaining
were kept inactive. Our experimental framework was devel-
oped in C/C++ and all our experiments were performed on a
system with a 3.6GHz Intel Core i7 CPU and 16GB memory.
It is noted that since we used an off-the-shelf RLC extractor
like FastHenry (rather than develop a custom extraction tool),
we were forced to store the whole dense inductance matrix
in memory before converting it to H-matrix format, and thus
were restricted in the largest circuit that could be handled by
the memory of the target machine.

B. Efficiency of the compression of inductance matrix by H-
matrices

The H-matrix approximation requires information on the
geometrical coordinates of the interconnect branches, but it
is pointed out that the physical structure of the circuit model
can be arbitrary and is not restricted to specific configurations
like parallel buses of conductors. In order to compress the
dense inductance matrix by H-matrices we adopt in this
work the HLIBpro library [16] [17] [18]. HLIBpro offers the
approximation routines to store a dense matrix in the H-matrix
format and perform a set of matrix operations withH-matrices.
The inputs to HLIBpro are the geometrical coordinates of the
nodes of the physical structure. HLIBpro identifies the node
indices that correspond to closer interconnects and performs a
segmentation of L into blocks. For the clustering process of the
coordinates into groups and, in turn, the segmentation of L into
a number of blocks of certain size we used the default set of

TABLE III: Iteration count to solve the transient system (2) with the proposed preconditioner and without preconditioner for timesteps 10fs, 1ps, 100ps at one time instant. The
spectral norms of the Schur complement terms are also reported for each timestep.

Bench. hk = 10fs hk = 1ps hk = 100ps
iter. with
prec. UJ

iter. w/o
prec. ||S1||sp ||S2||sp # iter. with

prec. UJ

iter w/o
prec. ||S1||sp ||S2||sp # iter. with

prec. UJ

iter. w/o
prec. ||S1||sp ||S2||sp

bus1 2 2021 3.7e+5 20 21 2043 3.7e+3 1.6e+3 3 NA 37.4 1.6e+5
bus2 2 1848 1e+5 64.6 16 3961 1e+3 6.3e+3 3 NA 10.4 6.3e+5
bus3 7 1326 7.1e+3 494.8 13 4476 71.5 4.9e+4 4 NA 0.7 4.9e+6
bus4 7 2427 1.3e+4 505.8 18 5563 129.9 5e+4 4 NA 1.3 5e+6
bus5 7 1876 2.5e+4 509 17 6158 250 5.1e+4 4 NA 2.5 5.1e+6

parameters of HLIBpro. Each block Ai was approximated by
low-rank product Ãi = ZiY

T
i such that ‖Ai−Ãi‖F 6 10−4.

Table II reports the time required to perform H-matrix com-
pression of L, as well as the memory savings and the speedups
of matrix-vector multiplication required in the Krylov loop.

C. Preconditioner efficiency analysis
The efficiency of the proposed preconditioner depends on

the timestep hk used in the simulation. Table III reports the
iteration count to solve (2) with the proposed preconditioner,
which uses two different approximations of the Schur comple-
ment (S = S1 and S = S2), and with no preconditioner for
the range of time step sizes that is of practical interest. Also,
it reports the spectral norm of S1 and S2 used to approximate
S in (4) for a given timestep, as in Algorithm 1. We adopt
hk ∈ {10fs, 1ps, 100ps}, where the lower range is used to
compute detailed waveforms and the upper range is used to
either examine the general trend in waveforms or to compute
steady state. From the iteration count we can observe that the
for small steps sizes hk ∼ 10 fs the choice S = S1 is superior,
and for hk ∼ [1 100]ps the choice S = S2 leads to smaller
iteration count. This is in agreement with the discussion in
Subsection IV-C on different weightings of the two terms S1
and S2 to the Schur complement of S. The cross-over point
between the two preconditioners occurs approximately in the
interval [10fs 1ps]. In the case with no preconditioning, the
Krylov-iterative method failed to converge for larger step sizes.

0 1 2 3 4 5 6 7

Time (s) 10
-10

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

V
o

lt
a

g
e

 (
V

)

dense L

L
H

L
-1

(a)

0 1 2 3 4 5 6 7

Time (s) 10
-10

-0.1

-0.05

0

0.05

0.1

0.15

V
o

lt
a

g
e

 (
V

)

dense L

L
H

L
-1

(b)

Fig. 2: Voltage response at randomly chosen nodes of bus1 (a) and bus3 (b) with hk =1ps
(the choice of hk = 1ps shows all the details in the response waveform) obtained
by full SPICE, H-matrix approximation with preconditioning, and sparse reluctance
simulation with same memory as H-matrix. The proposed approach is indistinguishable
from SPICE, while reluctance-based simulation exhibits significant deviation.

D. Transient analysis results
Combining the benefits of the storage of the dense in-

ductance matrix as an H-matrix and the reduced number of
Krylov iterations through the proposed preconditioner, Table
IV reports the speedups of the simulation of RLC benchmarks
for hk=10ps and 30 time points, in comparison to standard
SPICE simulation (dense L) and simulation with H-matrix
L but without preconditioner. For this simulation scenario,
the proposed methodology leads to speedups up to 2139×
for the largest circuit. Regarding the accuracy of the H-
matrix approximation, the relative rms error of the simulation
compared to exact SPICE was less than 0.01 in all nodes of
every benchmark. Simulation waveforms for random nodes
of two benchmark circuits are graphically displayed in Fig.
2, where it can be observed that the waveforms for H-
matrix with the proposed preconditioner are indistinguishable
from exact SPICE. Superimposed in the same figures are
waveforms from sparse reluctance-based simulation, obtained
by inversion and truncation of L (with sparsity ratio leading
to same memory footprint as the H-matrix approximation),

TABLE IV: Runtime results of the whole simulation of benchmark RLC circuits with
timestep 1ps.

Bench.
Size of
Matrix

Jk

SPICE
Time

Simulation
with H-matrix

w/o preconditioner

Simulation
with H-matrix

with preconditioner
Time Speedup Time Speedup

bus1 800 1.1s 1s 3.75× 0.28s 3.9×
bus2 3104 61s 9.75s 6.21× 1.57s 38.8×
bus3 12304 4989s 110s 19.19× 5.72s 872×
bus4 24608 31917s 515s 22.4× 23s 1388.3×
bus5 49216 194694s 2545s 76.5× 91s 2139×

which can be observed to exhibit a clear deviation from both
exact SPICE and the proposed methodology. Note that for the
largest benchmark circuit, the inversion of the dense L (with
size 16.3K) took an additional 111s.

VI. CONCLUSION
In this paper, we use the H-matrices for the compression

of the dense inductance matrix, arising in the modelling
of all mutual inductive couplings between the interconnects
in ICs and we present an efficient preconditioner for the
system to be solved during the time integration. With these
two ingredients, we can tackle much larger problems than
previously possible on a given computing platform, both in
terms of storage and wall clock time. Our experimental results
indicate that a very good compression ratio of inductance
matrix can be attained without compromising accuracy, while
the proposed preconditioner reduces the iterations count of
Krylov iterative method in simulation, effectively leading to a
significant speedup of the simulation.

REFERENCES
[1] Z. He et al., SPIE: Sparse Partial Inductance Extraction, Design

Automation Conf. (DAC), 1997.
[2] C. Antoniadis et al., On the Sparsification of the Reluctance Matrix

in RLCk Circuit Transient Analysis, Int. Conf. Synthesis, Modeling,
Analysis and Simulation Methods and Applications to Circuit Design
(SMACD), 2018.

[3] S. Zeng et al., Efficient partial reluctance extraction for large-scale
regular power grid structures, IEICE Transactions Fundamentals of
Electronics Communications and Computer Sciences, vol. 92-A, pp.
1476-1484, 2009.

[4] S. Zeng et al., Efficient Power Network Analysis with Modeling of
Inductive Effects, IEICE Transactions Fundamentals of Electronics Com-
munications and Computer Sciences, vol. 93-A, pp. 1196-1203, 2010.

[5] I. Apostolopoulou et al., Selective inversion of inductance matrix for
large-scale sparse RLC simulation, Design Automation Conf. (DAC),
2014.

[6] F. Najm, Circuit Simulation, Wiley-IEEE Press, 2010.
[7] R. Barrett et al., Templates for the Solution of Linear Systems: Building

Blocks for Iterative Methods, SIAM, 1994.
[8] Saad Y., Iterative Methods for Sparse Linear Systems, SIAM, 2003.
[9] C. Eckart. et al., The approximation of one matrix by another of lower

rank, Psychometrika, vol. 1, pp. 211-218, 1936.
[10] W. Hackbush, Hierarchical Matrices, Springer, 2015.
[11] A. Ruehli, Circuit Analysis, Simulation & Design, North-Holland, 1986.
[12] I. Koutis et al., A nearly-m logn solver for SDD linear systems, IEEE

Symp. Foundations of Computer Science, 2011.
[13] D. Spielman et al., Nearly-linear Time Algorithms for Graph Partition-

ing, Graph Sparsification, and Solving Linear Systems, ACM Symp.
Theory of Computing, 2004.

[14] G. Stewart, Matrix Algorithms Volume II: Eigensystems, SIAM, 2001.
[15] M. Kamon et al., FastHenry: a multipole-accelerated 3-D inductance

extraction program, IEEE Trans. Microwave Theory and Techniques,
vol. 42, pp. 1750-1758, 1994.

[16] S. Borm et al., Introduction to Hierarchical Matrices with Applications,
Engineering Analysis with Boundary Elements, vol. 27, pp. 405-422,
2003.

[17] R. Kriemann, Parallel H-Matrix Arithmetics on Shared Memory Sys-
tems, Computing vol. 74, pp. 273-297, 2005.

[18] R. Kriemann et al., Parallel blackbox H-LU preconditioning for elliptic
boundary value problems, Computing and Visualization in Sciences, vol.
11, pp. 273-291, 2007.

