
Threshold Logic in a Flash
Ankit Wagle∗, Gian Singh∗, Jinghua Yang∗, Sunil Khatri†, Sarma Vrudhula∗
∗ (awagle1,gsingh58,jinghua.yang,vrudhula)@asu.edu, † sunil.khatri@tamu.edu

∗ School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe AZ 85281
† Dept. of Electrical and Computer Engineering, Texas A&M University, College Station TX

Abstract—This paper describes a novel design of a threshold
logic gate (a binary perceptron) and its implementation as
a standard cell. This new cell structure, referred to as flash
threshold logic (FTL), uses floating gate (flash) transistors to
realize the weights associated with a threshold function. The
threshold voltages of the flash transistors serve as a proxy for the
weights. An FTL cell can be equivalently viewed as a multi-input,
edge-triggered flipflop which computes a threshold function on
a clock edge. Consequently, it can be used in the automatic
synthesis of ASICs. The use of flash transistors in the FTL
cell allows programming of the weights after fabrication, thereby
preventing discovery of its function by a foundry or by reverse
engineering. This paper focuses on the design and characteristics
of the FTL cell. We present a novel method for programming
the weights of an FTL cell for a specified threshold function
using a modified perceptron learning algorithm. The algorithm
is further extended to select weights to maximize the robustness
of the design in the presence of process variations. The FTL
circuit was designed in 40nm technology and simulations with
layout-extracted parasitics included, demonstrate significant im-
provements in the area (79.7%), power (61.1%), and performance
(42.5%) when compared to the equivalent implementations of
the same function in conventional static CMOS design. Weight
selection targeting robustness is demonstrated using Monte Carlo
simulations. The paper also shows how FTL cells can be used
for fixing timing errors after fabrication.

Index Terms—Threshold Logic, Floating Gate, Flash, Low
Power, High Performance, Perceptron

I. INTRODUCTION AND MOTIVATION

Methods to optimize the performance, power and area (PPA)
of static CMOS circuits have continuously improved over
three decades, leaving few opportunities, if any, for further
improvements. This suggests that if there are to be any further
advances in improving PPA at the logic and circuit levels,
the conventional way of computing logic functions has to
be revisited. Although several nanotechnologies are being
investigated as alternatives or enhancements to static CMOS
(e.g. [1]–[4]), they remain at the research stage and large scale
adoption is still far in the future.

This paper introduces a new programmable ASIC primitive,
referred to as a flash threshold logic (FTL) cell, that can
be used to substantially improve all three PPA metrics of
an ASIC. An FTL cell and its use in an ASIC is different
from any other type of ASIC component previously reported.
However, it is designed as a standard cell, so that it is fully
compatible with conventional ASIC design flow, and can be
processed by commercial design tools without any changes.
In other words, it can easily be combined with conventional
CMOS logic during synthesis, technology mapping, and place-

∗The research was supported in part by NSF PFI award 1701241.

and-route. However, it is functionally and structurally very
different from a complex standard cell.

An FTL cell of n inputs can realize any threshold
function of n or fewer variables. A threshold function
f(x1, · · · , xn) [5] is a unate Boolean function whose on-set
and off-set are linearly separable, i.e. there exists a vector of
weights W = (w1, w2, · · · , wn)1 and a threshold T such that

f(x1, x2, · · · , xn) = 1⇔
n∑

i=1

wixi ≥ T, (1)

where
∑

here denotes the arithmetic sum. A threshold
function can be equivalently represented by (W , T) =
(w1, w2, · · · , wn;T).

Q

C

x1

f(x1,. . . xn)
x2

xn-1

xn

FTL

w1

w2

wn-1

wn

Fig. 1: FTL Schematic

Figure 1 shows the schematic of
the FTL cell, in which the weights
W are internal parameters of
the cell. The schematic is meant to
convey that the input-output behavior
of an FTL cell may be viewed as an
edge-triggered, multi-input flip-flop,
whose output is a threshold function,
registered at the rising edge of the
clock signal C.

A distinctive characteristic of the FTL cell design is that the
actual threshold function realized by an FTL instance within
an ASIC is programmed after the circuit is manufactured. An
FTL based ASIC integrates flash or floating gate [7] transistors
along with conventional MOSFETs within the FTL cell. Thus,
unlike many of the emerging technologies [2], [3], [8], [9], an
FTL cell employs mature IC technologies (CMOS and Flash)
that can be commercially manufactured and integrated today.

A. FTL in ASIC Design – A Valuable Use Case

The focus of this paper is on the design of the FTL cell.
Before proceeding to that, it will be instructive to understand
its use in ASIC design [10]. The fact that an FTL is a
programmable, multi-input flip-flop provides a unique and
significant new opportunity to improve the PPA of ASICs.

Consider the logic netlist shown in Figure 2a which has
two registered outputs F and G. Suppose that transitive fan in
(TFI) cones of F and G are traversed and two subcircuits A
and B (see Figure 2b) are found that are threshold functions of
their inputs. The remaining subcircuit is labeled as C. Suppose
that subcircuits A and B are each replaced by an FTL cell,

1W.L.O.G, weights can be assumed to be positive integers [6], and for a given
truth table of a threshold function, there is a weight vector whose sum is
minimum [6].

ar
X

iv
:1

91
0.

04
91

0v
1

 [
cs

.E
T

]
 1

0
O

ct
 2

01
9

(a) A logic netlist.
(b) Identifying threshold functions in TFI
cones of flip-flops (c) A FTL-CMOS logic hybrid

Fig. 2: Use of FTL in ASIC design
programmed to realize A and B. This replacement is shown
in Figure 2c, where the FTL cells are shown as black boxes.
Now, subcircuit C would be re-synthesized to account for the
changes in the delay of FTL cells and the new loads that they
present to the outputs of C. The circuit in Figure 2c would
substantially improve the PPA of an ASIC for two reasons:
1) Subcircuits A and B and the two flip-flops are each

replaced by an FTL cell which has much few transistors,
resulting in a significant reduction in area and power.

2) The clock-to-Q delay of FTL cells are typically about 30%
to 40% smaller than the delay of standard cell realization
of subcircuits A and B plus the clock-to-Q delay of regular
flip-flops. In the FTL-CMOS hybrid design, this results in
a substantial amount of slack (required time minus arrival
time) on the outputs of subcircuit C, which in turn will
allow synthesis and technology mapping tools to drastically
reduce the logic area of subcircuit C.

FTL based ASICs also offers several other equally signifi-
cant advantages not possible with conventional CMOS logic.
1) IP Protection: A CMOS ASIC with embedded FTL cells

cannot be reverse-engineered by a foundry or any third
party because the functions of the FTL cells are unknown
(black boxes) at manufacturing time, as shown in Figure 2c.

2) Correcting Timing Errors: The fine-grained, post-
manufacture flash threshold voltage programmability
allows precise speed binning, and correction of timing
errors. This is not possible in traditional CMOS design.

3) Mitigating Aging Effects: By re-programming the flash
design in-field, our scheme allows for mitigating the effects
of aging. This is also not possible in CMOS design.

4) High Endurance: Unlike flash memory, the FTL cell does
not suffer from endurance issues. Flash transistors can
endure a finite number of write cycles (1K to 100K) [11],
[12]. In our approach, the flash devices will be programmed
a few times (at most), after fabrication, and then again to
possibly adjust for aging effects (in the field).

B. Main Contributions
The remainder of the paper will focus on the design of

the FTL cell and demonstrate its key characteristics through
extensive and detailed electrical simulations using the state-of-
the-art device and circuit models and commercial tools. The
main contributions of this work are summarized below.

• This paper introduces a novel circuit design of the FTL cell
to realize all threshold functions of n or fewer variables2.
The new design incorporates both flash transistors and
conventional MOSFETs in a unique way to realize highly
robust threshold logic circuits.

• The set of threshold voltages (Vt) of the flash transistors
in the FTL cell serve as a proxy for [W , T] that define a
threshold function realized by an FTL cell. Since the thresh-
old voltages of the flash transistors can be programmed
with high precision [7], an FTL cell can implement weights
with great fidelity. We introduce an algorithm that maps the
weights of a given threshold function f = [W , T] to the
threshold voltages of the flash transistors. This is a complex,
non-linear, multi-valued mapping. That is, several different
Vt(s) may correspond to a given W,T , each determined
by the complex electrical and layout characteristics of the
MOSFETs and flash transistors. Given a layout extracted
netlist of an FTL cell, we present a novel modification of
the classical perceptron learning algorithm (PLA) [13] that
works in concert with HSPICE to determine one Vt of an
FTL cell that computes f = [W , T]. This algorithm ac-
counts for layout parasitics and process variations. Like the
original PLA, the modified PLA is guaranteed to converge,
ensuring that a solution (Vt) for the given layout of an FTL
cell will be found in a finite number of steps if a solution
exists.

• The fine-grained programmability of threshold voltages of
the flash transistors in an FTL cell is exploited to improve
its robustness. Given that the mapping [W , T] ⇒ Vt is
multi-valued, we show how to direct our modified PLA
to find a Vt that will ensure that the FTL cell reliably
computes the given threshold function in the presence of
local and global process and environmental variations. Using
this approach, substantial improvement in the robustness of
the FTL cell is demonstrated using Monte Carlo simulations.
This also shows how post-fabrication tuning of the threshold
voltages can correct failures due to process variations, or
modify the delay to correct timing errors, improve a circuit’s
performance, or improve the performance characteristics of

2In the experimental results, we find that n = 5 is a sufficiently good choice to
demonstrate substantial improvements in PPA, since there are a large number
(117) of threshold functions of n or fewer variables

a design to alter the speed binning distribution in a manner
that maximizes profit.

C. Organization of the Paper
Section II gives a very brief overview of threshold logic

and flash transistor technology. Sections III, IV and V contain
the main body of this work. The architecture and operation
of the FTL cell are described in Section III. This is followed
by a description in Section IV of the modified PLA used to
program an FTL to implement a given threshold function.
Section V contains an extensive set of experimental results,
demonstrating the significant improvements in PPA of FTL
cells over their CMOS equivalents, and validating several
of the uses of post-fabrication programming/tuning of the
flash devices. Before concluding the paper in Section VII, we
present a brief and partial review of the prior art related to
this paper in Section VI.

II. BACKGROUND

A. Threshold Logic
Equation (1) defines an n-input threshold function. An ex-

ample of a 5-input threshold function is a 3-out-of-5 majority
function: f(a, b, c, d, e) = abc ∨ abd ∨ abe ∨ acd ∨ ace ∨
ade ∨ bcd ∨ bce ∨ bde ∨ cde ≡ a + b + c + d + e ≥
3 ≡ [wa, wb, wc, wd, we;T] = [1, 1, 1, 1, 1; 3]. An XOR is a
simple example of a non-threshold function. The importance
of threshold logic stems from the fact that many Boolean
functions that require exponential size AND/OR networks
can be realized by polynomial sized, fixed depth threshold
networks [6]. From a practical perspective, nearly 70% of
the functions in standard cell libraries are threshold functions.
We will demonstrate that implementing threshold functions
using conventional CMOS logic primitives is very inefficient,
as compared to the FTL cell. In our approach, Equation (1)
must be translated to the comparison of electrical quantity such
as charge, current or voltage. This is the basis of many other
threshold gate implementations as well [14].

B. Flash Transistors

e eee e

N+N+

Control
Gate

Drain Source

Floating
Gate

Dielectric

Fig. 3: Flash Transistor Cross
Section

Flash or floating gate tran-
sistors are dual-gate field
effect transistors (DGFETs).
The first gate is called a con-
trol gate and the second is a
floating gate (see Figure 3).
The control gate is similar
to the gate of a traditional
MOSFET. The floating gate is
inserted between the substrate
and the control gate, and is
electrically and physically isolated. Hence, current cannot flow
into (out) of the floating gate, unless electrons are forced to
enter (leave) the floating gate from (to) the substrate by a
phenomenon known as Fowler-Nordheim (FN) tunneling [15].

A flash device is programmed by holding its body, source
and drain nodes at the ground and applying a high voltage

(10-20 Volts) to the control gate. The resulting electric field
forces electrons to tunnel from the substrate into the floating
gate, increasing the threshold voltage of the flash transistor.
The resulting threshold voltage depends on the number of
electrons that tunnel into the floating gate, which depends
on the duration of the programming pulse. Significantly, the
threshold voltage of a flash transistor can be adjusted with a
fine granularity [7]. Once electrons are trapped in the floating
gate, they remain trapped for many years [11], [12], or until
removed by an erase operation. A flash transistor can be erased
by holding the control gate to ground, floating the drain and
source nodes, and applying a high voltage at the body node.
Erasing is simultaneously performed on all the transistors
which share a common body node.

III. FLASH THRESHOLD LOGIC (FTL) CELL

Figure 4 shows the architecture of the FTL cell. It has five
main components: the left input network LIN, the right input
network RIN, a sense amplifier (SA), an output latch (LA) and
a flash transistor programming logic (P). The LIN and RIN
consist of two sets of inputs (`1, · · · , `n) and (r1, · · · , rn),
respectively, with each input in series with a flash transistor.
In our implementation, `i = ri for all i. The conductivity of
these two networks is determined by the state of the inputs and
the threshold voltages of the flash transistors. The assignment
of signals to the LIN and RIN is done to ensure sufficient
difference in conductivity across all minterm pairs (mi,mj)
such that f(mi) 6= f(mj).

The FTL cell has two differential signals N1 and N2,
which serve as inputs to an SR latch. When [N1, N2] = [0, 1]
([1, 0]), the latch is set (reset) and the output Y = 1(0). The
magnitudes of the two sides of the inequality (1) in the defi-
nition of a threshold function are mapped to the conductance
GL of the LIN and GR of the RIN, such that [N1, N2] =
[0, 1] ⇔ GL > GR and [N1, N2] = [1, 0] ⇔ GL < GR.
As stated earlier, the flash transistor threshold voltages serve
as a proxy to the weights of the threshold function – the
higher the weight, the lower will be the threshold voltage.
For a given threshold function, this non-linear monotonic
relationship is learnt using a modified perceptron learning
algorithm described in Section IV.

The FTL cell has three modes: regular, erase and program-
ming mode. The Vt values of the flash transistors are set in
the programming mode and erased in the erase mode. The
evaluation takes place in regular mode.
FTL Regular Mode: In this mode PROG = ERASE = 0.
Assume that the Vts of the flash transistors have been set
to appropriate values corresponding to the weights of the
threshold function, and their gates are being driven to 1 by
setting HiV to VDD, FCj to 0V and all FTi to 0V. When
CLK = 0, the circuit is reset. In this phase, the nodes
N5 and N6 of LIN and RIN are connected to the supply,
N5 = N6 = 0, and N1 = N2 = 1. Therefore, the output Y
remains unchanged.

Assume now that an on-set minterm is applied to the inputs
in the LIN and RIN. With properly assigned Vt values to

Fig. 4: FTL Cell Architecture: Input net-
works LIN and RIN drive the sense am-
plifier with current based on weighted in-
puts. Input weights are implemented by
modulating the conductivity of LIN and
RIN using flash transistors. Sense ampli-
fier evaluates the threshold function and
drives the latch to produce the output Y.
An FTL cell is programmed by sending
high voltage pulses to the flash transistors’
gates via the Programming Logic.

the flash transistors, suppose that GL > GR for the given
minterm. When CLK : 0 → 1, both the LIN and RIN will
conduct, and N5 and N6 will both transition from 0 → 1.
Assuming GL > GR, N5 rises faster than N6, and hence N5
will make M7 active before N6 makes M8 active. This will
start to discharge N1 before N2. When N1 falls below the Vt
of M6, it will stop further discharge of N2, and turn on M3,
resulting in N2 : 0→ 1. Finally, [N1,N2] = [0,1] sets the SR
latch, resulting in Y = 1. For an off-set minterm, GL < GR,
and [N1, N2] = [1, 0] resulting in Y = 0.

The conventional circuit structures used in flash memories
are not suitable for programming an FTL cell because it has to
also perform logic operations. Consequently, we present a new
programming interface for an off-chip programming circuit to
set the Vt values of any FTL cell. During flash-programming,
this interface uses the FCj signal to select the jth FTL cell
and the FTi signal to select the ith flash transistor of the
selected FTL cell.
FTL Programming Mode:(ERASE=0, PROG=1, CLK=0,
FTi=0, FCj=0, HiV=20V). The ERASE and PROG signals
turn on M12 and M13 and turn off M14. In this state, the
source of the flash transistor is floating while the drain and
bulk are connected to the ground. Activating the appropriate
transistors using the FTi and FCj signals, high voltage pulses
are passed on the HiV line through MCj and MTi to the gate
of the flash transistor to set the desired threshold voltage (Vt).
FTL Erase Mode: (ERASE=1, PROG=1, CLK=0, FTi=0,
FCj=0, HiV=-20V). M12 is turned off by the ERASE signal.
Both the source and drain of the flash transistors are floating in
this state, while the bulk is connected to the ground. A negative
HiV pulse at the gate terminal of all the flash transistors in
this state will tunnel the charge from the floating gate, thereby
erasing the flash transistor.

IV. MODIFIED PERCEPTRON LEARNING ALGORITHM

In this section, we describe an algorithm to determine
the vector of flash transistor threshold voltages for a given
threshold function f = [W , T]. The problem is to find a
mapping between the Boolean space Bn, and the conductivity
space (GL, GR) such that GL > GR iff

∑
wixi > T (i.e.

for an on-set minterm), and GL < GR iff
∑
wixi < T (i.e.

for an off-set minterm). This mapping is depicted in Figure 5.
GL and GR are non-linear functions of the flash transistor

Fig. 5: Transformation from Boolean space to conductivity space;
Hyperplane gets converted into a line.
threshold voltages, the time-varying drain and sources voltages
of the input transistors, and the layout parasitics that vary
from instance to instance. To account for these dependencies,
GL and GR, in principle, must be obtained by solving a set
of differential equations – an approach that is not practical.
We next show how to simultaneously solve the differential
equations numerically and perform the binary classification
by a modified version of the classical perceptron learning
algorithm (PLA) [13].

The PLA starts with an initial hyperplane in the Boolean
space and iteratively adjusts it until all the on-set and off-
set minterms fall on opposite sides of the hyperplane. Each
minterm corresponds to some point in the (GL, GR) space.
Our modified PLA iteratively adjusts the Vt(s) of flash transis-
tors such that points in the conductivity space that correspond
to the on-set and off-set minterms fall on the appropriate side
of the line GL = GR (Fig. 5). We use HSPICE to determine
whether any point falls above or below this line.

A description of the modified PLA follows. The threshold
voltages of the flash transistors associated with the input
transistors in the LIN and RIN are labeled V1, V2, · · · , Vn.
The ith transistor in both LIN and RIN has a threshold
voltage Vi. In addition, there are two special flash transistors,
whose threshold voltages are VL and VR associated with
the LIN and RIN, respectively. For a threshold function
f = (w1, w2, · · · , wn;T), the Vi, 1 ≤ i ≤ n, correspond
to the weights wi of a threshold function, whereas only one
of VL or VR is associated with the threshold T of f . If VL
is associated with T , then VR = VDD, effectively turning it
off. If VR is associated with T , then VL = VDD. The use of
additional flash devices on both sides of the FTL cell allows
for extra programming flexibility. The induced symmetry also

balances the parasitics of the LIN and the RIN.
For the truth table (TT) of f , the modified PLA applies all

the minterms of f to the FTL cell, and records the HSPICE
response in an array called OT (output table). For a given
minterm mi, if TT (mi) = OT (mi) then the response is
called a correct response, otherwise it is called an incorrect
response. An FTL cell is completely programmed if the
recorded response for every minterm is correct. Until the
FTL cell is completely programmed, at least one minterm
would generate an incorrect response. In the event of an
incorrect response associated with minterm mi, the modified
PLA adjusts the threshold voltages of all flash transistors
associated with the ON input transistors within the interval
[δ, VDD − δ], by a minimum increment δ, using the following
equations (k denotes the iteration number of the algorithm):

V k+1
i =

{
V k
i − δmi mi ·W ≥ T
V k
i + δmi mi ·W < T.

(2)

Equation (2) is quite easy to understand. The term δmi is
simply a vector which has a value δ at all locations where
mi is 1, and zero elsewhere. For instance, δ(1, 0, 1, 1, 0) =
(δ, 0, δ, δ, 0). Suppose mi is an on-set minterm for which the
response was incorrect. This means that GL < GR. Therefore
GL needs to be increased for minterm mi. Hence the threshold
voltages of all flash transistors that are connected to the input
transistors that are ON for minterm mi, should be decreased
by δ. Similarly, if mi is an off-set minterm, then the threshold
voltages of the same flash transistors must be increased by δ.
This is what is expressed in Equation (2).

Since the Vi values are bounded above and below, it might
not be possible to satisfy the truth table using the Vi alone.
In such cases, the algorithm will resort to adjusting VL and
VR using the same principle as in Equation (2). If mi is
a on-set minterm that was incorrect, then GR should be
reduced. Therefore, VR is incremented by δ, until its upper
bound is reached. If this is not sufficient, then GL has to
be increased. Hence, VL is decremented. Given a threshold
function and a sufficiently small δ, the modified PLA will
converge to a feasible threshold voltage set assignment V ∗

t

for the FTL cell [13]. For an n-input threshold function, a
pessimistic upper bound on the number of iterations is given
by kmax = 2n||V ∗

t ||2/δ2. For n = 5 and δ = .02V ,
kmax = 2500||V ∗

t ||2.

A. Training for Robustness
The modified PLA does not consider the relative location

of the points with respect to the metastability region around
the line GL = GR (see Figure 5b). Even though minterms are
classified correctly, they can be arbitrarily close to the line.
The further away a minterm is from the line, the easier (and
faster and more robust) it will be for the sense amplifier to
detect the difference between N5 and N6, and discharge the
appropriate side (N1 or N2) first. Our approach to making the
FTL cell highly robust is to introduce an additional capacitance
C1 on node N1 when classifying an on-set minterm, and
determining the maximum value of C1 for which the modified

PLA converges. This handicaps node N1 and directs the
algorithm to find a solution, which will result in increasing
GL more than increasing GR. Similarly, we add a capacitance
C0 on node N2, when classifying an off-set minterm. The
corresponding threshold voltages found by the modified PLA
algorithm will increase the gap between GL and GR, which
makes it much more robust, and also improves its speed, as
a direct consequence. Note that C0 and C1 are introduced in
the simulations for improving the training solution only, and
are not part of the FTL cell.

V. EXPERIMENTAL RESULTS

A. Experiment Setup
A 5-input FTL cell was designed and a complete layout

(including the programming devices) was created using the
TSMC 40nm LP library. The flash transistor models were
obtained from [16] and were suitably modified to reflect the
characteristics and variations of the TSMC 40nm library. The
design rules for the flash transistors were obtained from ITRS.
The layout of the FTL cell was created as a standard cell with
an area of 15.6 µm2. For reference, if X represents the drive
strength, an X4 DFF and an X4 NAND gate have an area of
5.6µm2 and 2.8 µm2 respectively, while their delay optimized
X8 counterparts have an area of 14.347 µm2 and 7.3 µm2

respectively. The {setup, C2Q} of a X4 DFF is {67ps, 168ps}.
There are a total of 117 distinct threshold functions of 5

or fewer variables. A numbered list of these is given in [17]
and can also be accessed at [18]. In this section, we use the
same numbering scheme as in [17] to identify the functions.
In the sequel, the FTL cell trained to implement the threshold
function numbered n in [17] will be referred to as FTLn, and
the corresponding CMOS implementation will be denoted as
CMOSn. The threshold function itself will be denoted as Fn.

B. Training Iterations
The modified PLA algorithm was used to train the FTL

cell for robustness (see Section IV-A) for all 117 functions.
Figure 6 shows the number of iterations needed for training for
each of the 117 functions. The actual number of iterations were
about 10X lower than the theoretical upper bound, presented
in Section IV.

Fig. 6: Iteration count for the modified perceptron learning algorithm
for all 117 functions of 5 or fewer variables.
C. Area, Delay and Power Comparison

Each of the 117 functions were implemented as FTL cells,
and also synthesized by Cadence Genus© and placed and
routed using Cadence Innovus© , using the TSMC 40nm
LP standard cells. The total delay (logic delay + setup time

+ clock-to-Q delay) and power values were determined by
simulating the circuits at 25◦C at 20% input switching activity.
Figure 7 shows that each of the FTL implementations of
the 117 functions have substantially smaller area, power and
delay when compared to the CMOS equivalent. The averaged
improvements of FTL over CMOS are: area (79.5%), delay
(42.5%) and power (61.1%).

Fig. 7: PPA improvements of FTL over CMOS implementations.

Figure 8 compares the leakage power of the FTL and
CMOS implementations of the 117 functions. The functions
are arranged in ascending order of their CMOS leakage values.
Unlike the CMOS implementations, the leakage power of the
FTL implementations is nearly constant. Also plotted is the
area trend line of CMOS implementations, to illustrate the
strong correlation of leakage power with area. The few FTL
implementations that had higher leakage (shown circled) were
all small logic primitives. Nevertheless, the total power (see
Figure 7) of FTL implementations of even these functions is
far less than the CMOS implementations. These functions can
be avoided if leakage minimization is the primary design goal.

Fig. 8: Leakage power of FTL versus CMOS implementations.

D. Experiments on Training for Robustness

This experiment demonstrates the robust PPA training
method, described in Section IV-A, to improve yield. The test
function chosen was F115 = [W ;T] = [4, 1, 1, 1, 1; 5] =

ab + ac + ad + ae. The experiment consisted of training
multiple versions of FTL115 for various values of the parasitic
capacitances C1 and C0, and for each solution, performing
100K Monte Carlo simulations with local and global process
variations3, and checking if the truth table was correctly
realized. Table I shows the delay and yield for various values
of C1 and C0. The functional yield was improved from 13% to
100% (i.e. truth tables of all 100K instances were verified to be
correct) by increasing the values of C1 and C0. There are two
important observations to be made here. First, even though the
weights of b, c, d, e are equal, the corresponding flash tran-
sistors received different threshold voltages (V2, V3, V4, V5).
This shows that the perceptron learning algorithm, working
in concert with HSPICE, accounts for the layout parasitics.
Second, the delay improves with increasing robustness, due to
the increase in the difference between the voltages at nodes
N5 and N6,(see Section IV).

TABLE I: Multi-Corner Monte Carlo results with 100K simulations
of FTL115, trained for robustness using various capacitor values (fF)

C1, Average Vt Values (V) Yield Delay
C0 (V1, V2, V3, V4, V5;Vl0, Vr0) % (ps)

0.00 0.64, 0.74, 0.72, 0.74, 0.72; 1.00, 0.74 13 244
0.01 0.62, 0.72, 0.7, 0.74, 0.74; 1.00, 0.70 20 220
0.02 0.58, 0.74, 0.72, 0.74, 0.72; 1.00, 0.64 43 204
0.05 0.48, 0.68, 0.66, 0.70, 0.66; 1.00, 0.56 59 162
0.10 0.34, 0.56, 0.54, 0.60, 0.62; 1.00, 0.46 100 138

Fig. 9: Conductivity GL and GR of FTL115 [TT, 0.9V, 25◦C].
In the conductivity space, gap between off-set minterms and on-set
minterms increases, when the training is done for robustness.

In Section IV-A we argued that training an FTL cell with
a handicap in the form a parasitic capacitance on N1 and
N2 will improve the robustness by increasing the smallest
gap in conductance between the LIN and the RIN. Figure 9
demonstrates this very important characteristic of the robust
PPA algorithm for FTL. It is a plot of the conductivity
space, i.e., GR versus GL, of an FTL when trained for the
test function F115, with and without the parasitic (handicap)
capacitances. The blue points (orange points) correspond to
the GL and GR values of the on-set and off-set minterms of

3Several dozen parameters are varied in the HSPICE models provided by the
vendor

F115 in the absence (presence) of the parasitic capacitances
C1 and C0 (C1 = C0 = 0.1fF).

Recall that for an on-set minterm GL > GR and for an off-
set minterm, GR > GL. The plot clearly demonstrates that
training with the parasitic capacitances dramatically improves
the robustness in two ways. First, there is a significant increase
(by 21%) in the shortest distance between the two closest on-
set and off-set minterms, as indicated in Figure 9. Second,
the increase in GL is greater than the increase in GR, i.e.
∆GL/∆GR > 1 for the on-set minterms, and vice-versa
for the off-set minterms. Both of these effects contribute to
reducing the contention in the sense amplifier in deciding the
function output, which in turn directly improves the speed as
well, resulting in higher robustness and higher performance.

E. Delay Distributions
This experiment compares the distributions of delays of

FTL and CMOS implementations. We show the results for the
function F115 = [W ;T] = [4, 1, 1, 1, 1; 5]. The PVT corner
setting was [P, V, T] = [TT, 0.9V, 25◦C]. 100K Monte Carlo
instances were generated for both FTL115 and CMOS115.
The function of each of the 100K FTL instances was verified
against the truth table for correctness, for both FTL115 and
CMOS115. The histograms of delays are shown in Figure 10.
These clearly demonstrate the delay advantage of the FTL cell
over its CMOS equivalent, even in the presence of process
variations. The difference in standard deviation between the
two is insignificant. Note that the FTL instances with large
delays can be re-programmed to further reduce the delay. This
capability is not possible for the CMOS versions.

Fig. 10: Delay histogram of FTL115 and CMOS115 with 100K
Monte Carlo simulations. PV T = [TT, 0.9V, 25◦C].

TABLE II: Delay, total power and power-delay-product (PDP) of
FTL115, trained at VDD = 0.9V , and C0 = C1 = 0.1fF .

Supply
Voltage (V)

Flash Gate
Voltage (V) Power (u) Delay (ps) PDP

0.8 0.8 14.3 198.1 2837.1
0.85 0.825 20.5 157.6 3228.7
0.9 0.85 26.1 130.2 3396.9

0.95 0.875 40.3 111.2 4482.7
1 0.9 53.1 97.0 5148.6

1.05 0.925 76.0 86.4 6562.9
1.1 0.95 85.0 78.2 6644.0

F. Dynamic Voltage Scaling
Voltage scaling is a common mechanism to trade off per-

formance against power. Table II shows the results of training

FTL115 at 0.9V . The FTL was programmed with the resulting
set of flash threshold voltages, and then operated over the
voltage range [0.8V, 1.1V]. To ensure proper operation across
all voltages, the gate voltages of the flash transistors were
also scaled in this experiment. This result demonstrates how a
single VT assignment can be used for dynamic voltage scaling.
Note that the delay varies by 2.5X, power varies by 5.9X and
the PDP (energy) varies by 2.3X, as the supply voltage varies
over [0.8V, 1.1V]. This shows that the FTL cells offer a healthy
power, delay, and energy tradeoff by voltage scaling.

G. Post-fabrication Timing Correction
The experiments described in Sections V-D, V-E and V-F all

point to the flexibility of FTL due to its unique characteristic
of allowing for programming of the flash transistor threshold
voltages after fabrication. It should come as no surprise then
that this can also be used to correct timing errors.

Fig. 11: Datapath to demonstrate post-fab timing corrections

Fig. 12: Correcting setup time violation with an FTL cell after
fabrication. C2Q of FTL cell reduced from 180 ps to 142 ps.

Fig. 13: Correcting hold time violation with an FTL cell after
fabrication. C2Q of FTL cell increased from 142 ps to 180 ps.

Figure 11 shows a small datapath that was constructed
to demonstrate how setup time and hold time violations
can be corrected after fabrication in an FTL design. The

datapath consists of clock-to-Q (C2Q) delay, combinational
delay (D2D) and DFF specifications for setup (DFF setup)
and hold (DFF hold) times. The clock is skewed by an
appropriate amount ∆, to generate either a setup time or a hold
time violation. The violations are corrected by reprogramming
the FTL cell to produce different C2Q values.

Figure 12 shows how the data launched from FTL X misses
the target clock edge at DFF Y, thereby violating setup time. To
fix the setup time, the C2Q of FTL X is decreased. Similarly,
Figure 13 shows how the data launched at FTL X gets captured
by DFF Y one cycle early, thereby overwriting the old value
at DFF Y. By increasing the C2Q value of the FTL X, the
old value at the input of Y is retained for a longer time,
which satisfies the hold time condition. Since the FTL cells are
programmed post-fabrication, the delay can also be modified
after fabrication. Using the same idea of post-fabrication VT
adjustment, an FTL cell can be reprogrammed to mitigate
delay increases due to aging.

H. Chip-level programming architecture
Although the full architecture for programming the FTL

cells in an ASIC is not presented here, this section describes
the programming architecture in brief. An on-chip decoder
architecture is used to address the flash transistors of the FTL
cells, during programming. The address for the decoder is
sent into the chip using a serial communication protocol along
with a programming clock. The high voltage line needed for
sending programming pulses to flash transistors is generated
and sent into the chip using an off-chip voltage source. The
pin count overhead for programming is low (only 3 pins are
needed). When the address is received, the decoder activates a
specific flash transistor of a specific FTL cell for programming.

VI. RELATED WORK

A. Threshold Logic
The study of threshold functions and the development of

threshold gates date back to the 1960s culminating in the
authoritative book by Muroga [17]. Since then, an extensive
body of theoretical work, new circuit architectures and im-
plementations have been published. References [24] and [25]
provide a detailed survey of work prior to 2003.

One of the earliest reported works that demonstrated the
operation of threshold logic gates using flash transistors was
reported in [26], [27]. It was an analog design of a single
cell to demonstrate proof of concept. The focus has shifted
to exploring the use of emerging devices such as RRAMs,
STT-MTJs, and others, to implement threshold gates [9], [28],
[29]. Several recent works have devised efficient algorithms for
determining weights aimed at robust threshold gates [29], [30].
However until recently, due to the lack of designs tools and
incompatibility with existing design methodologies, threshold
logic remained outside mainstream VLSI design.

Recently, [10] reported an architecture of a threshold gate
and showed how it can be integrated with the standard-
cell ASIC design methodology using commercial tools. In
addition, they reported significant improvements in PPA of

an actual silicon implementation of ASIC with threshold
gates [31]. Their architecture, however, severely limits the
number of threshold functions that can be implemented. This is
because the weight wi associated with input xi is implemented
by using wi transistors each driven by signal xi. Hence, their
circuit has severe fan in limitations. For instance, the design
in [10] can only realize 11 of the 5-input threshold functions,
whereas, as demonstrated here, the FTL-5 cell can realize all
117 functions In addition, representing weights using multiple
transistors significantly reduces the robustness and prevents
it from scaling to lower geometries. Finally, the FTL cell
is programmed after fabrication, preventing copying by a
foundry, and numerous opportunities to correct failures and
tune for high performance and aging effects.

B. Flash Technology
Many research efforts have studied flash devices and their

use in memory. A short list includes [32], [33]. These papers
report details of flash devices and their characterization. How-
ever, they do not describe the use of flash transistors for logic
circuits. A good deal of work in flash has been reported in
the area of architectural techniques to increase flash memory
endurance. Some representative works include wear leveling
techniques, which are used in flash-based memory blocks [34],
to compensate for the fact that flash transistors typically have
a finite (10k - 100k) number of times they can be written [11],
[12]. In traditional flash memory, wear leveling is performed
at the architectural level to spread the wear of the cells.

The authors of [35] present a design flow to implement
flash-based digital circuits at the block level. These efforts
present results for a programmable logic array style cell design
and illustrate its use in a modified standard-cell style VLSI
design flow. In contrast, the work of this paper focuses on
threshold logic and is envisioned for use in a traditional
standard-cell based flow. An FTL cell can replace a D flip-
flop and some or part of its logic cone in any CMOS netlist.

To the best of our knowledge, there has been no work prior
to this paper which describes the synthesis, detailed electrical
characterization of sequential flash-based threshold logic cells.

VII. CONCLUSION

In this paper, we proposed a novel threshold logic cell
(FTL) using flash transistors. A modified perceptron learning
algorithm was also proposed to program the FTL cell. Sub-
stantial area (79.7%), power (61.1%) and performance 42.5%)
improvement of the FTL cells was demonstrated against their
conventional 40nm standard-cell based designs of the same
functions. By adding a capacitor to introduce a handicap in the
FTL cell during simulation, this paper shows that the learning
algorithm counters the effect of the handicap by generating
more robust solutions. Robustness against PVT variations was
demonstrated using 100K Monte Carlo simulations, demon-
strating a 100% yield. We also demonstrated that FTL cells are
amenable to dynamic voltage scaling, and post-silicon tuning
of setup and hold time violations.

REFERENCES

[1] M.J. Avedillo and J.M Quintana. A Threshold Logic Synthesis Tool
for RTD Circuits. In Euromicro Symposium on Digital System Design,
DSD ’04, pages 624–627, Washington, DC, USA, 2004. IEEE Computer
Society.

[2] Krzysztof Berezowski and Sarma Vrudhula. Automatic design of binary
multiple-valued logic gates on the rtd series. In Eight Euromicro Conf.
on Digital System Design, Porto, Portugal, Aug. 2005.

[3] P. Gupta and N.K. Jha. An algorithm for nanopipelining of rtd-based
circuits and architectures. Nanotechnology, IEEE Transactions on,
4(2):159–167, March 2005.

[4] R. Zhang, P. Gupta, and N. K. Jha. Synthesis of Majority and
Minority Networks and Its Applications to QCA, TPL and SET Based
Nanotechnologies. International Conference on VLSI Design, 0:229–
234, 2005.

[5] S. Muroga. Threshold Logic and its Applications. 1971.
[6] K. Siu, V. Roychowdhury, and T. Kailath. Discrete Neural Computation:

A Theoretical Foundation. Prentice-Hall, Inc., 1995.
[7] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai. Threshold voltage

distribution in MLC NAND flash memory: Characterization, analysis,
and modeling. In IEEE DATE, March 2013.

[8] R. Perricone, I. Ahmed, Z. Liang, M. G. Mankalale, X. S. Hu, C. H.
Kim, M. Niemier, S. S. Sapatnekar, and J. Wang. Advanced spintronic
memory and logic for non-volatile processors. In DATE, 2017, March
2017.

[9] J. Yang, N. Kulkarni, S. Yu, and S. Vrudhula. Integration of threshold
logic gates with RRAM devices for energy efficient and robust operation.
In IEEE/ACM NANOARCH, July 2014.

[10] N. Kulkarni, J. Yang, J. S. Seo, and S. Vrudhula. Reducing Power,
Leakage, and Area of Standard-Cell ASICs Using Threshold Logic Flip-
Flops. IEEE TVLSI, 24(9), Sept 2016.

[11] D. Jung et al. A Group-based Wear-leveling Algorithm for Large-
capacity Flash Memory Storage Systems. In ACM CASES, 2007.

[12] S. Boboila and P. Desnoyers. Write Endurance in Flash Drives:
Measurements and Analysis. In ACM FAST, 02 2010.

[13] F. Rosenblatt. The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 1958.

[14] Y. Beiu, J.M. Quinfana, M.J. Avedilo, and R. Andonie. Differential
Implementations of Threshold Logic Gates. In Proceedings of the IEEE
International Symposium on Signals, Circuits and Systems, 2003.

[15] R. Fowler and L. Nordheim. Electron Emission in Intense Electric
Fields. Proc. Royal Soc. of London. Series A, 119(781), May 1928.

[16] M. Abusultan and S.P. Khatri. Implementing Low Power Digital Circuits
using Flash Devices. In IEEE/ACM ICCD, October 2016.

[17] Saburo Muroga. Threshold Logic and its Applications . Wiley-
Interscience New York, 1971.

[18] https://sites.google.com/view/5-input-threshold-functions/ .
[19] A. Neutzling, J. M. Matos, A. I. Reis, R. P. Ribas, and A. Mishchenko.

Threshold logic synthesis based on cut pruning. In IEEE/ACM ICCAD,
Nov 2015.

[20] Dimitri Kagaris and Spyros Tragoudas. Maximum Weighted Indepen-
dent Sets on Transitive Graphs and Applications. Integr. VLSI J., 27:77–
86, January 1999.

[21] Sandeep Dechu, Manoj Kumar Goparaju, and Spyros Tragoudas. A
metric of tolerance for the manufacturing defects of threshold logic
gates. 21st IEEE International Symposium on Defect and Fault-
Tolerance in VLSI Systems (DFT’06), pages 318–326, October 2006.

[22] Manoj Kumar Goparaju and Spyros Tragoudas. An atpg methodology
using parametric fault model for defects in threshold logic gate networks.
WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS, 5(8):1206–
1211, August 2006.

[23] A. Neutzling, J. M. Matos, A. Mishchenko, A. Reis, and R. P. Ribas.
Effective logic synthesis for threshold logic circuit design. IEEE TCAD,
2018.

[24] V. Beiu. A survey of perceptron circuit complexity results. In IEEE
IJCNN, volume 2, pages 989–994 vol.2, July 2003.

[25] P. Celinski, S. D. Cotofana, J. F. Lopez, S. F. Al-Sarawi, and D. Abbott.
State of the art in CMOS threshold logic VLSI gate implementations
and systems. In IEEE VCAL, April 2003.

[26] V. Bohossian, P. Hasler, and J. Bruck. Programmable neural logic. In
IEEE ISIS, Oct 1997.

[27] E. Rodriguez-Villegas, J. M. Quintana, M. J. Avedillo, and A. Rueda.
High-speed low-power logic gates using floating gates. In IEEE ISCAS,
volume 5, May 2002.

[28] S. Savas, H. Hesham, T. Darwin, and C. Gregory. Reconfigurable
threshold logic gates with nanoscale DG-MOSFETs. Elsevier Solid-
State Electronics, 51(10), 2007.

[29] S. N. Mozaffari and S. Tragoudas. Maximizing the number of threshold
logic functions using resistive memory. IEEE TNANO, 17(5), Sep. 2018.

[30] S. N. Mozaffari, S. Tragoudas, and T. Haniotakis. A Generalized Ap-
proach to Implement Efficient CMOS-Based Threshold Logic Functions.
IEEE TCSI, 65(3), March 2018.

[31] Jinghua Yang, Joseph Davis, Niranjan Kulkarni, Jae sun Seo, and Sarma
Vrudhula. Dynamic and Leakage Power Reduction of ASICs Using
Configurable Threshold Logic Gates. In Proc. IEEE Custom Integrated
Circuits Conf. (CICC), San Jose, CA, Sept. 2015.

[32] H. An, K. Kim, S. Jung, H. Yang, K. Kim, and Y. Song. The threshold
voltage fluctuation of one memory cell for the scaling-down NOR flash.
In IEEE ICNIDC, Sep. 2010.

[33] E. Choi and S. Park. Device considerations for high density and highly
reliable 3D NAND flash cell in near future. In IEEE IEDM, Dec 2012.

[34] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali. Enhancing lifetime and security of PCM-based Main
Memory with Start-Gap Wear Leveling. In IEEE/ACM MICRO, Dec
2009.

[35] M. Abusultan and S.P. Khatri. A Flash-based Digital Circuit Design
Flow. In IEEE/ACM ICCAD, Nov 2016.

[36] J. Rajendran, H. Manem, R. Karri, and G. S. Rose. Memristor based
programmable threshold logic array. In 2010 IEEE/ACM International
Symposium on Nanoscale Architectures, June 2010.

[37] G. S. Rose, J. Rajendran, H. Manem, R. Karri, and R. E. Pino.
Leveraging memristive systems in the construction of digital logic
circuits. Proceedings of the IEEE, 100(6):2033–2049, June 2012.

[38] M. Soltiz, D. Kudithipudi, C. Merkel, G. S. Rose, and R. E. Pino.
Memristor-based neural logic blocks for nonlinearly separable functions.
IEEE Transactions on Computers, 62(8):1597–1606, Aug 2013.

[39] M. Soltiz, C. Merkel, D. Kudithipudi, and G. S. Rose. Rram-based
adaptive neural logic block for implementing non-linearly separable
functions in a single layer. In 2012 IEEE/ACM International Symposium
on Nanoscale Architectures (NANOARCH), July 2012.

[40] Georgios Detorakis, Sadique Sheik, Charles Augustine, Somnath Paul,
Bruno U. Pedroni, Nikil D. Dutt, Jeffrey L. Krichmar, Gert Cauwen-
berghs, and Emre Neftci. Neural and synaptic array transceiver: A
brain-inspired computing framework for embedded learning. In Front.
Neurosci., 2017.

[41] M. Uddin and G. Rose. A practical sense amplifier design for memristive
crossbar circuits (puf). 2018.

[42] S. Sayyaparaju, G. Chakma, S. Amer, and G. S. Rose. Circuit techniques
for online learning of memristive synapses in cmos-memristor neuromor-
phic systems. In Proceedings of the on Great Lakes Symposium on VLSI
2017, GLSVLSI ’17, 2017.

[43] X. Yao, J. Harms, A. Lyle, F. Ebrahimi, Y. Zhang, and J. Wang. Magnetic
tunnel junction-based spintronic logic units operated by spin transfer
torque. IEEE Transactions on Nanotechnology, Jan.

[44] S. Patil, A. Lyle, J. Harms, D. J. Lilja, and J. Wang. Spintronic logic
gates for spintronic data using magnetic tunnel junctions. In 2010 IEEE
International Conference on Computer Design, Oct 2010.

	I Introduction and Motivation
	I-A FTL in ASIC Design – A Valuable Use Case
	I-B Main Contributions
	I-C Organization of the Paper

	II Background
	II-A Threshold Logic
	II-B Flash Transistors

	III Flash Threshold Logic (FTL) Cell
	IV Modified Perceptron Learning Algorithm
	IV-A Training for Robustness

	V Experimental Results
	V-A Experiment Setup
	V-B Training Iterations
	V-C Area, Delay and Power Comparison
	V-D Experiments on Training for Robustness
	V-E Delay Distributions
	V-F Dynamic Voltage Scaling
	V-G Post-fabrication Timing Correction
	V-H Chip-level programming architecture

	VI Related work
	VI-A Threshold Logic
	VI-B Flash Technology

	VII Conclusion
	References

