
BRASIL: A High-Integrity GPGPU Toolchain
for Automotive Systems

Matina Maria Trompouki∗, Leonidas Kosmidis†,∗
∗Universitat Politècnica de Catalunya †Barcelona Supercomputing Center (BSC)

Abstract—Embedded General Purpose Graphics Processing
Units (GPGPUs) are increasingly used in automotive to enable
Advanced Driving Assistance (ADAS) and Autonomous driving.
However, their functional safety certification has been addressed
so far only at the application or hardware level. In this work,
we demonstrate how the entire GPGPU software stack can be
developed and certified up to ASIL-D, including its toolchain. We
introduce BRASIL, a GPGPU toolchain targeting high-integrity
GPGPU computing and we explain our methodology to achieve
ISO 26262 compliance, as well as our tool qualification strategy.

I. INTRODUCTION

Embedded GPGPUs are increasingly used in existing and
upcoming vehicles to satisfy the high computational need
of Advanced Driver Assistance Systems (ADAS) and Au-
tonomous driving in the automotive sector, which is regulated
by the existing automotive standard, ISO 26262 [1]. However,
it is widely acknowledged that they have brought a significant
disruption in the their certification process, creating several
challenges and opportunities in the automotive domain [2][3].

A high-integrity safety-certified electrical or electronic sys-
tem in the automotive domain needs to comply with ISO
26262 at all its constituent levels, from hardware up to the
application software. At the early phases of the product’s
safety life cycle, hazard analysis is performed to identify
potential hazards in the operation of the system, as well as an
assessment of their corresponding risk. Based on this process,
a corresponding Automotive Safety Integrity Level (ASIL) is
assigned, ranging from the low ASIL-A to the highest ASIL-D.

At hardware level, there are only a few GPUs developed
according to ISO 26262 like the ASIL-B certified Imagination
Technologies’ PowerVR GX6650 GPU found in Renesas’ R-
Car H3 SoC [4], future PowerVR GPUs which are designed
to reach higher ASIL levels [5] and NVIDIA’s Xavier SoC
which is used in this work and is designed to reach ASIL-D.

On the other hand, qualified toolchains for GPGPUs do not
exist yet. In fact, the programming models used for main-
stream GPGPU programming rely on very low-level operations
such as dynamic memory allocation and pointers, which com-
plicate both the certification of the GPGPU programs, as well
as the qualification of their compilers. A recent work, Brook
Auto [6] simplified the certification of automotive GPGPU
applications by removing these features from a CUDA-like
language, but didn’t cover the tool qualification issue.

In this paper, we demonstrate that the certification of the
entire GPU stack for the automotive domain is possible. We
make the following contributions: a) we argue that building

on existing ASIL-D certified graphics drivers implementing
safety-critical API standards is not only desirable, but it also
provides the shortest path to GPGPU certification based on the
reigning standard. b) we present BRASIL, a GPGPU toolchain
based on Brook Auto, which can be qualified according to ISO
26262. c) for the first time in the literature, we show which
modifications and evidence are required to increase the tool
confidence of a GPGPU toolchain and we describe our tool
validation plan. d) finally, we provide evidence for our high-
confidence error detection capabilities and we experimentally
show that the required changes do not harm performance, but
instead lead to an improvement compared to Brook Auto.

II. ISO 26262 TOOL QUALIFICATION

When a tool like a compiler is used in safety critical systems
and its output affects the behaviour of the system needs to be
qualified. In other words, enough evidence must be shown,
that the use of the tool does not introduce errors which can
create a risk. The amount of evidence depends on the Tool
Confidence Level (TCL), which is assigned depending on the
classes of Tool Impact (TI) and the Tool Error Detection Level
(TD), using a process called Software Tool Classification.

The Tool Impact specifies whether an error in the toolchain
results in functional safety violation (2) or not (1). On the
other hand, the Tool Error Detection describes the probability
(confidence) about whether such an error can be detected and
can be high (1), medium (2) or low or unknown (3).

Depending on the TCL of the tool, which can be from 1
(lowest) to 3 (highest), and the ASIL of the target system,
different ways to obtain evidence and qualify the tool are
recommended. The selected methods for a particular tool are
described in its Software Tool Qualification Plan. If the TI is
1, the TCL is 1 and therefore no additional evidence and tool
qualification is required. However, when the tool impact is
high, as the tool confidence is decreased, the required TCL is
increased requiring increasingly more evidence. For a tool with
TCL 3 in order to be used in a certified system up to ASIL-
D, the processes for tool qualification are: a) confidence from
prior use, b) evaluation of the tool’s development process, c)
validation of the tool and d) development of the tool according
to safety standards. The first two are highly recommended
by ISO 26262 for lower ASILs (A-B) and in a lesser extent
for higher ASILs. For higher ASILs, the recommendations
are inverted, highly recommending c) and d) and simply
recommending a) and b).

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



The compilation of the Tool Documentation is another step
in the qualification process, in which the functionalities of
the tool are described, together with its intended use, the
user manual and the installation guide. Moreover, it contains
information about known issues and work arounds.

Finally, a qualified tool is accompanied by the Qualification
Report, which is a set of tests, procedures and their outcome
that provide the evidence required according to the Tool
Qualification Plan and shows that the tool works as it is
expected. The Tool Classification, Qualification Plan, Tool
Documentation and the Qualification Report form the Tool
Qualification Kit for a given tool.

III. STATE-OF-THE-ART IN GPU AND CERTIFICATION

Next we review the state-of-the-art in safety-critical GPU
software we use to build a fully certifiable GPGPU solution.

Brook Auto: Brook Auto [6] is both a language for GPGPU
application development and a toolchain implementation.
However, only the language part and the software written in it
are amenable to certification. On the other hand, its toolchain
is not qualified. Brook Auto is implemented as a source-to-
source compiler, which transforms Brook Auto code into C++
for the CPU part of the application, and OpenGL ES 2 for the
GPU part of the application. The compiler is written in C++
and the generated application code is linked to a runtime also
written in C++, which interfaces with the OpenGL ES 2 API.
The code relies on multiple class hierarchies with dynamic
polymorphism in order to support several backends. However,
the OpenGL ES 2 API and driver implementation on which
Brook Auto relies is not safety certified. Moreover, the C++
implementation of the Brook Auto compiler and the runtime
violate critical code guidelines like ISO 26262 and MISRA [7]
due to the dynamic polymorphism. Finally, for the same reason
the toolchain contains significant portions of code which are
not used within the OpenGL ES 2 backend.

Safety Critical Graphics Standards: Despite the fact that
general purpose embedded GPUs have been only recently em-
ployed in automotive, traditional embedded GPUs supporting
only graphics operations have been used in the automotive and
in other safety critical domains (e.g. avionics) for several years
now, to support rick cockpit and dashboard applications.

In order to support the use of GPUs for graphics operations
in certified systems, Safety Critical graphics standards have
been developed [8] achieving the highest degrees of certifica-
tion across all safety critical markets and their respective cer-
tification standards. In 2016 the latest version of the OpenGL
SC 2.0 standard was introduced, supporting programmable
GPUs. This standard was based on the predecessor OpenGL
ES 2.0, which has been extensively used across the embedded
GPUs, by defining a subset removing functionality in order
to minimise the implementation cost and guarantee that the
dynamic features that prevent certification are removed. As a
result, OpenGL SC 2.0 has been approved by all the relevant
regulatory bodies in critical systems, and as such is used in
the stringiest certification levels, including DAL-A in avionics
and ASIL-D in automotive.

IV. BRASIL

In this work we introduce BRASIL, a GPGPU toolchain that
builds on existing technologies and can be qualified for use
up to the highest ASIL. BRASIL is based on Brook Auto [6]
and contains modifications in its implementation which allow
its qualification. Our implementation is available at [9].

Next we first examine the modifications we performed and
then we present our Tool Qualification Kit.

A. Qualification Oriented Modifications

ISO 26262 highly recommends the development of a qual-
ified tool according to a safety standard. We performed sev-
eral improvements in Brook Auto’s implementation following
recommendations of 3 functional safety standards: ISO
26262 [1], MISRA C++ [7] and OpenGL SC 2.0 [8]. It is
worth noting that according to ISO 26262 no functional safety
standard can be fully applied in the development process of
software tools, and it can only be applied in small toolchains,
but not on large compilers based on gcc or llvm.

Brook Auto compiler follows an object-oriented design,
with multiple back-ends: it supports code generation for single
and multicore CPUs as well as many GPU graphics APIs.
In order to reduce the qualification effort and cost, we only
retained two backends: the single core CPU for redundancy-
based software verification and the OpenGL ES 2 backend
and their corresponding runtimes, as well as the minimal host
code backend. We also identified and eliminated dead code to
achieve full code coverage as suggested by ISO 26262 and
added additional assertions to capture potential violations.

In order to achieve higher compliance with safety standards,
we also addressed the issue of pointers, whose use is restricted
by both ISO 26262 and MISRA. The initial version was
heavily based on C-style, pointer-based string operations,
which we replaced with safe C++ string object methods in
BRASIL. Furthermore, employing the C++ pass by reference
feature has helped to eliminate pointer usage in function calls.

Additionally, we have changed the original object-oriented
design of the runtimes, which is based on runtime polymor-
phism. This feature violates several MISRA C++ rules and
the rule that forbids the use of hidden control flow in ISO
26262, due to hidden pointer redirections through vtables in
the generated code, which can result in a potential failure
and affect the deterministic execution time behaviour of the
software. We modified the code in order to ensure that it is
decided statically, at compile time, which methods are called.

On the graphics API compatibility, in order to comply
with the OpenGL SC 2 standard, we have modified the
OpenGL ES 2 backend, so that it only uses the OpenGL
SC 2 subset. The most significant change in that aspect was
the offline compilation of the shaders. BRASIL implements
a two step process: The BRASIL compiler generates both
the source code of the kernel in the shader language which
is used for verification, as well as its compiled version in
GPU executable form, using the offline qualified compiler of
the driver provider. Therefore, if any compilation errors are
introduced by BRASIL, they are detected immediately.



B. BRASIL Tool Qualification

Software Tool Classification: For any compiler there is a
possibility that it introduces errors that may violate functional
safety. Thus BRASIL’s Tool Impact is high (1) and therefore
it requires qualification. For any compiler, it is also true that
the probability to have high or medium confidence to detect
an error introduced by the compiler is very low. Although
we designed BRASIL so that its output can be validated by
multiple means, we conservatively assume that this is also our
case, so that the Tool Error Detection Level (TD) is 3.

Tool Qualification Plan: Since we target the highest au-
tomotive integrity levels, given that the Tool Classification
assigned TI 1 and TD 3, for its qualification we have to rely
less on confidence from prior use and the evaluation of the
development process, and provide more evidence about its
validation and its development according to safety standards.

Our modifications do not change the functionality of the tool
compared to Brook and Brook Auto, but offer compliance with
safety standards. These preexisting equivalent tools have been
extensively used in the past by the scientific High Performance
community as well as by the AMD’s customers of Brook+.
We have compiled a list of existing open source applications
which used Brook and can be used for validation, since they
also include equivalent CPU implementations. Therefore there
is high confidence of the tool working correctly and a list of
known problems and work arounds.

Regarding the evaluation of the development process, ISO
26262 is very vague in this aspect and acknowledges that it
should not be applied in the full tool, but to an adequate and
relevant subset of it. Our changes to a subset (2 backends) were
designed and developed to fit the automotive V-model software
development according to the Automotive SPICE [10]. In
particular, our safety standards modifications changed the
software architectural design, as well as the software detailed
design and unit construction. Further to this, we enhanced the
software unit verification with static kernel code checks and
dynamic kernel execution redundancy, via comparison against
the CPU version. Finally, we addressed software qualification,
by providing all the required material and evidence.

Validation is one of the main pillars of BRASIL’s qualifica-
tion. Validation happens in many different levels, to increase
confidence. First, it takes place at the compilation of the gener-
ated code, which is statically checked by glslangValidator[11]
and compiled by qualified compilers for CPU and GPU.
If BRASIL introduces any error, syntax or semantic, these
tools will detect it. In this case, the user may refer to the
documentation for the known issues and their solutions.

Checking for functional errors is achieved by using the ex-
tended regression suite inherited from its predecessors, which
contains use cases with known program output, therefore
their execution allows to compare the result. Moreover, the
preserved single CPU backend allows each GPGPU kernel to
be validated with both CPU and the predetermined output.
The next validation level is applied with the AMD Brook+
SDK applications ported in [6], which provide an option for

random input selection and a CPU validation feature, so that
the BRASIL generated GPU code is double-checked against
both the application’s native CPU implementation and the
generated kernel CPU implementation. Finally, the user can
rely on this automatic CPU kernel generation to validate the
GPU output of the automotive application either during the
testing phase only, or even during the system deployment.

Therefore, it is clear that there is high confidence that any
errors which may be produced by BRASIL can be detected.

Last but not least, the compliance of the tool according to
safety standards is a strong feature of BRASIL, not typically
found in other compilers due to their size.

Tool Documentation: Thanks to the extended prior use
of the tool and given that we preserved its specification,
we are able to reuse large amount of previous efforts of
documenting the tool. This includes the official documentation
of the Brook project at Stanford, then the large open source
community at Source Forge [12], AMD’s commercial effort
with Brook+ [13], the latest additions from Brook Auto [6] and
its extensions to support accelerator programming education
on low-cost embedded systems such as the Raspberry Pi [14].
From this we remove the parts that are not applicable in
BRASIL, mainly due to the elimination of backends.

The documentation contains information about the use of
BRASIL, its installation guide, a user manual/tutorial, the
example use cases and their explanation used also for its
validation, the expected behavior under anomalous operating
conditions and a list of the known issues of the compiler.
Information about the error detection and validation provisions
in the design process of the tool and their use is also provided.

Tool Qualification Report: The Qualification Report con-
tains the results of the tool qualification. ISO 26262 is mainly
a process-based standard and therefore its tool qualification
cannot be quantified. Instead, results of qualitative assessments
such as the prior use, the development process and compliance
with standards are provided. For those cases, we report that
our assessment has been deemed positive.

V. EVALUATION

The experimental evaluation of BRASIL with the validation
tests described in the Qualification Plan on two automotive
platforms show an overall improvement in execution time
thanks to our modifications. Although this is not very no-
ticeable on NVIDIA Xavier due to its high-end CPUs, on
the lower-end Imagination Technologies’ GPU there was an
improvement of 100m compared to the original Brook Auto
implementation, using AMD’s Brook+ SDK applications.

Moreover, the execution of all validation tests (regression
tests, existing applications from prior use and Brook+ ap-
plications) are passed without any errors. For this process,
the GPU execution output produced by the GPU BRASIL
backend is compared against the CPU output of the CPU
BRASIL backend, as well as the hand-written CPU reference
implementation of the same algorithms in AMD’s applications.
Moreover, the generated code is passed by the glslangValidator
and both the offline qualified compilers for CPU and GPU
without any errors.



VI. FUTURE SAFETY-CERTIFIED GPGPU COMPUTING
AND CONCLUSION

Since currently only graphics standards have been certified
for critical systems, they are the only option available today
for GPGPU applications which need to be certifiable for the
highest integrity level. However, performing GPGPU comput-
ing using graphics APIs in a hand written manner is a very
complex and error prone task [6], which can have the opposite
effect on the certification, because either the process cannot be
proven to be correct or the certification cost is increased due
to complexity. Consequently, a higher-level GPGPU toolchain
has to be used, such as our BRASIL proposal, which requires
to be qualified and we have shown how this can be achieved.

On the other hand, general purpose programming models
like CUDA and OpenCL cannot be used in safety critical
systems, since they violate fundamental features not permitted
by the current automotive standards and development guide-
lines. In addition, their drivers require to support a large API,
which is hard to certify even if their programming models were
compatible with ISO 26262. Last but not least, their compilers
are difficult to qualify, due to the generality and the multiple
features supported by those languages.

Therefore, the possible paths for future adoption of CUDA
or OpenCL in safety critical systems are:

a) the definition of safety critical subsets of these languages.
This is the path taken by the Khronos Group, which is
currently working on such APIs for OpenCL. However, the
large number of industrial partners involved in such standard-
isation activities has shown that it takes significant time until
consensus is reached. Moreover, even after the standard has
been accepted, it takes significant time until implementations
are ready and additional delays until their libraries get certified
and their compilers qualified. Especially the issues identified
by [6], indicate that if those features are preserved in the safety
standard subset for compatibility with the high-performance
versions, certification and qualification cost is going to be high.

b) the standards to be changed or relaxed in order to permit
the certification-problematic features of these languages. [2]
foresees such a relaxation for the equally challenging introduc-
tion of machine learning in automotive. However, even if such
a relaxation takes place in automotive standards, it is unlikely
that this will happen in fail-operational systems like avionics,
which are much more conservative. In that case, the safety
critical standards will be significantly diversified, as well as
their GPGPU adopted solutions.

c) the adoption of safety critical Domain Specific Languages
(DSLs) or model-based GPGPU tools, combined with certified
driver implementations for CUDA and OpenCL, implementing
only the features used by these high-level languages. Such an
approach is taken by HIPAcc [15] which has been proposed
for another safety-critical domain (medical) [16] although it is
not qualified, and its qualification cost will be higher as it is
based on LLVM. Also the latest version of Matlab can generate
CUDA code for GPGPUs from Simulink models. However,
such solutions cannot be considered as general purpose, since

they can only be used for certain applications (e.g. imaging in
the case of HIPAcc [15]) and they currently suffer from the
absence of certified GPU drivers and qualified tools for CUDA
and OpenCL, despite they can offer application certifiability,
just as the case of Brook Auto [6], which is general purpose.

To sum up, even if in the future one of these possible paths
for adoption of CUDA or OpenCL languages in safety critical
systems may become reality, BRASIL at this moment and
in the near-future appears as the fastest way to achieve full
compliance with the current version of ISO 26262, including
at the toolchain level.

ACKNOWLEDGMENTS
This work has been partially supported by the Spanish

Ministry of Science and Innovation under grant TIN2015-
65316-P and the HiPEAC Network of Excellence. Leonidas
Kosmidis is also funded by the Spanish Ministry of Economy
and Competitiveness (MINECO) under a Juan de la Cierva
Formación postdoctoral fellowship (FJCI-2017-34095). The
authors would like to thank Dr. Ian Broster from Rapita
Systems and Sergio Carretero from Airbus Defence and Space,
Getafe, Spain for their insightful discussions on tool qualifi-
cation in critical domains during the early stages of this work.

REFERENCES

[1] International Organization for Standardization, ISO/DIS 26262. Road
Vehicles – Functional Safety, 2009.

[2] S. Saidi et al., “Future Automotive Systems Design: Research Chal-
lenges and Opportunities: Special Session,” in International Conference
on Hardware/Software Codesign and System Synthesis (CODES), 2018.

[3] S. Alcaide et al., “Safety-Related Challenges and Opportunities for
GPUs in the Automotive Domain,” IEEE Micro, pp. 1–1, 2018.

[4] Renesas, “R-Car H3: Better Computing Capabilities and
Compliance with Functionality Safety Standard,” 2015,
https://www.renesas.com/kr/en/solutions/automotive/soc/r-car-h3.html.

[5] A. Girdler, “PowerVR Automotive,” in AESIN ADAS and HAV Seminar,
2018, http://2pe5rtjld2w41m0dy17n5an1-wpengine.netdna-ssl.com/wp-
content/uploads/2018/12/Andrew-Girdler-Imagination-Technologies-
1055.pdf.

[6] M. M. Trompouki and L. Kosmidis, “Brook Auto: High-level
Certification-friendly Programming for GPU-powered Automotive Sys-
tems,” in Design Automation Conference, ser. DAC ’18, 2018.

[7] Motor Industry Software Reliability Association , MISRA C++:2008
Guidelines for the use of the C++ language in critical systems, 2008.

[8] Khronos Group, “OpenGL SC Overview,” 2016,
https://www.khronos.org/openglsc.

[9] L. Kosmidis and M. M. Trompouki, “BRASIL,” 2019,
http://github.com/lkosmid/brasil.

[10] DA QMC Working Group 13 / Automotive SIG (Automo-
tive Special Interest Group and Quality Management Center
in the German Association of Automotive Industry, “Automo-
tive SPICE Process Assessment / Reference Model Version 3.1,”
November 2017, http://www.automotivespice.com/fileadmin/software-
download/AutomotiveSPICE PAM 31.pdf.

[11] Khronos Group, “glslang: An OpenGL and OpenGL ES shader front
end and validator.” 2017, https://github.com/KhronosGroup/glslang.

[12] I. Buck et al, “Brook Subversion Repository,” 2007,
https://sourceforge.net/projects/brook/.

[13] AMD, “AMD Brook+ Subversion Repository,” 2009,
https://sourceforge.net/projects/brookplus/.

[14] M. M. Trompouki and L. Kosmidis, “Brook GLES Pi: Democratising
Accelerator Programming,” in Proceedings of the Conference on High-
Performance Graphics, ser. HPG ’18, 2018.

[15] R. Membarth et al, “HIPAcc: A Domain-Specific Language and Com-
piler for Image Processing,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 27, no. 1, Jan 2016.

[16] R. Membarth et al., “Generating Device-specific GPU Code for Local
Operators in Medical Imaging,” in IPDPS, May 2012.


