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Abstract—Physics-informed neural networks (PINNs) is an
emerging category of neural networks which can be trained to
solve supervised learning tasks while taking into consideration
given laws of physics described by general nonlinear partial dif-
ferential equations. PINNs demonstrate promising characteristics
such as performance and accuracy using minimal amount of
data for training, utilized to accurately represent the physical
properties of a system’s dynamic environment. In this work, we
employ the emerging paradigm of PINNs to demonstrate their
potential in enhancing the security of intelligent cyberphysical
systems. In particular, we present a proof-of-concept scenario
using the use case of water distribution networks, which involves
an attack on a controller in charge of regulating a liquid
pump through liquid flow sensor measurements. PINNs are used
to mitigate the effects of the attack while demonstrating the
applicability and challenges of the approach.

Index Terms—Water distribution, security, physics-informed
neural networks, cyberphysical systems.

I. INTRODUCTION

Cyberphysical systems (CPSs) integrate physical processes
with automation, computation, and computer networks. The
cyber environment monitors and controls the behavior of
the physical system based on informed decision making
mechanisms through feedback loops, usually comprised of a
variety of sensors and actuators. Examples of CPSs include
water management and distribution systems, power grids, and
industrial manufacturing systems. In smart water distribution
systems, the deployed sensors monitor vital information such
as water level, pressure, and velocity in pipes and provide the
system operator an overview of the system’s state [1]]. Actu-
ators, such as pumps and flow regulators/valves, act upon the
aforementioned measurements to ensure stable and efficient
operation. While infusing dynamics and physical processes
with software and networking provides many benefits to CPS
infrastructures, it also makes them vulnerable to cyberattacks.

The security of CPSs, such as those deployed in critical
infrastructures, is of crucial importance due to the catastrophic
consequences that may occur in case of system failures. Em-
bedded systems for CPS monitoring and control, spanning over
large areas, are likely to be controlled over wireless networks.
Despite the benefits of remote control over geographically
dispersed locations, such configurations might provide the
opportunity to attackers to gain access to the network. As a
result, they can maliciously tamper sensor data and disrupt the
normal operating conditions of the system.

Recent cyberattacks on CPS infrastructure portray the preva-
lence and importance of such incidents. For example, on April

24 2020, an event was reported by Israeli officials stating that
a cyberattack, aimed at disrupting water supplies by increasing
chlorine levels in drinking water, was thwarted [2f]. The attack
targeted vulnerable computers in the distribution networks,
that control water flow and wastewater treatment, as well as
programmable logic controllers (PLCs) that operate valves in a
number of locations. The systems recorded faulty data, pumps
went out of control, and the attackers took over the operation
system at one station.

CPSs are characterized by complex physical phenomena,
typically modeled by means of approximation algorithms
which are very computationally taxing and often not accurate
enough. State-of-the-art approaches for securing CPS rely
heavily on physics-based models of the physical side [3].
However, carefully engineered attacks through the cyber layer
have been demonstrated to cause significant system failures
while bypassing any physics-based intrusion detection system.
Methods able to merge data-driven learning with physics-
based models can build algorithms able to significantly en-
hance the security of CPS to cyberattacks by concurrently
leveraging both cyber-layer and physical-layer information [4].
An emerging category of neural networks, physics-informed
neural networks (PINNs), have demonstrated great ability in
data-driven training to understand the physical limitations of
a given scenario and perform very accurate approximations
when regarding physical laws that are described by partial
differential equations. This results to fast data-driven inference
of partial differential equation solutions.

In this work, we examine the feasibility of using PINNs
in a test case of a smart water distribution system in order
to mitigate the effect of sensor-based attacks. We examine a
proof-of-concept scenario of a controller in charge of dictating
a pump’s operation based on measurements from sensors
placed within a pipe. In order to deal with the attacked
(data integrity) or removed (availability) measurements while
retaining system observability, a trained PINN acts as a virtual
sensor to prevent the controller from altering the pump’s
operating conditions and mislead state estimation processes.
We examine the applicability of the approach while discussing
the challenges and future applications.

The rest of the paper is organized as follows. Section
provides background on PINNs. Section presents our
threat model and proposed approach. The setup and results
are presented in Section Challenges and future work are
discussed in Section [V
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Fig. 1. PINN-enhanced smart water distribution network: A liquid pump’s
operation is dictated by the decisions of a control function. The control routine
collects data from remote sensors that reports the cylindrical channel’s state.
An attacker tries to indirectly influence the operation of the pump by altering
the data sent to the controller from the sensor by either complete sensor
compromise or man-in-the-middle interference.

II. PHYSICS-INFORMED NEURAL NETWORKS (PINNS)

PINNs are neural networks trained to solve supervised
learning tasks while respecting given law of physics, in the
form of general nonlinear partial differential equations [J5].
Therefore, they can be integrated in complex physical sys-
tems and provide surrogate models that naturally encode the
system’s underlying physical laws. A set of partial differential
equations that PINNs can be trained to approximate are the
Navier-Stokes equations [6]. These equations describe the
motion of viscous fluid substances which encompasses many
phenomena such as air flow around a wing and water flow
in a pipe. Our use case is focused in the two-dimensional
adaptation of the equations, given by:
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where wu(z,y,t) is the z-component of the velocity field,
v(z,y,t) the y-component, and p(x,y,t) the pressure. The
kinematic viscosity of the fluid is denoted by v and its density
by p. Eq. (1) is the continuity equation, derived from the
principle of conservation of mass. Eqs. (Z) — (3)), represent the
relationship of U and V' velocity, respectively, with pressure
p, time ¢, and spatial coordinates (x,y).

PINNS trained for Navier-Stokes equations can be leveraged
for fast prediction of the system’s state at given time instants,
since velocity and pressure represent the physical properties
of a system’s environment. Utilizing this ability, the PINN can
act as a surrogate sensor in case of sensor compromise during
cyberattacks or malfunctions.

III. METHODOLOGY

A smart water distribution network, as a CPS, tightly inte-
grates sensor measurements that dictate the behavior of system
controllers and actuators. The decision processes within CPSs
often involve information feedback loops that control software
and hardware systems to take informed actions towards spe-
cific efficient and stable operation objectives. Hence, for large-
scale critical CPS, e.g., water supply networks, sensors are
placed in remote, often exposed, locations and communicate
with the system’s control and estimation functions through
wireless networks. These remote sensors constitute an al-
luring target for potential cyberattacks in the form of data
availability and integrity attacks. Availability attacks (e.g.,
denial-of-service, SYN flood attacks, etc.) can render the water
distribution network unobservable, i.e., unable to estimate
system states due to insufficient information gathered from
the collected measurement data. Similarly, integrity attacks
(e.g., false data injection attacks [7], [8]]) can manipulate and
falsify the collected sensor measurements, overall altering state
estimation outcomes. Such availability-based attacks as well
as data integrity attacks targeting observability can lead CPS
operators to be oblivious of the overall system state leading to
incorrect control actions and, thus, causing harmful cascading
events [9]]. Leveraging the underlying physics that characterize
the CPS with neural networks can aid in state estimation.

In this section, we explain our approach which aims to
provide means of mitigation to such attacks. Our proof-of-
concept scenario consists of an indicative part of a smart water
distribution system in which a pump pushes liquid through a
pipe and aims to maintain a constant flow by adjusting its
operating conditions according to measurements captured by
sensors placed in the pipe. An illustration of the considered
setup can be seen in Fig. [T]

A. Threat Model

In this work, we consider a case of an incompressible fluid
flowing past a circular cylinder. We assume non-dimensional
free stream velocity, a cylinder with constant diameter, and that
the fluid is uniform in density across the cylindrical channel.
Sensor are placed inside the channel and record the fluid’s
U and V velocity. The sensors report the measurements to a
control algorithm (e.g., state estimation) in order for the latter
to take appropriate actions via controllers and actuators for the
liquid pump operation. An attacker, aware of this feedback
loop, tries to interfere with the reported measurements to
indirectly mislead the controller and steer the system towards
amplifying the error in the estimation, and thereby leading to
non-convergence or even towards a possibly unstable state.

B. System Observability

In a CPS, physical processes are typically monitored in
order to provide control routines with the appropriate state
information. This information acts as external stimuli that
depicts a clear picture of what is happening at different parts
of the system at any given moment, and helps controllers to
dynamically react to the current conditions.



Fig. 2. The x-component (U) velocity field representation of the whole
channel as depicted by the graphical representation tool ParaView. Liquid
flows from left to right with top and bottom boundaries acting as solid wall
surfaces. A small vortex is created in the channel due to the sensor and points
directly behind it move slower in the x-direction.

Definition 1 (Observability): A system is said to be ob-
servable if, for any possible evolution of state and control
vectors, the current state can be estimated using only the
information from system outputs. For an input-free time-
invariant continuous system:

z(t) = Ax(t), x(tg) = zo = unknown 4)

with measurements:
y(t) = Cu(?) (5)

where z(t) € R", y(t) € R, A € R™*", and C € RP*",
the system is observable if the observability matrix O =
[C,CA,--- ,CA" YT ¢ R"*" has full column rank (i.e.,
rank(C) = n). In our work, we consider a single sensor
(n = 1) placed in the cylindrical channel which collects two
measurements (p = 2): the x and y components of the liquid’s
velocity, as seen in Fig. 2]

In order to derive the state of the system at a given time
using Eqs. @) - @), zo has to be determined. Since the
n-dimensional vector 2:(0) has n unknown components, 7
measurements are required to sufficiently determine xg. If n
derivatives of the continuous time measurements are used, the
observability matrix O can be formed. Following Definition
m for the system to be considered observable, the rows of O
have to be linearly independent. However, if an attacker is able
to tamper the sensor measurements, the modified O contents
can render the system unobservable. Thus, compromising the
measurements can indirectly affect the pump’s operation.

C. Arttack Mitigation Strategy

Considering the above threat model and observations, typi-
cal control routines in CPS such as state estimators include
monitoring and detection units (MDUs), able to identify
corrupted sensing data [10], [I1]. MDUs contain detection
algorithms which can remove faulty or malicious data so that
they will not affect the control estimation routines [8]], [12].
However, it is necessary that the underlying physical system
state to be computed from existing measurements (system
observability). In order to address this issue of removing the
detected and contaminated data, and thus, keep the system
observable, a trained PINN can be activated and act as a
temporary surrogate data provider to the control function (Fig.
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Fig. 3. Top: An attacker compromises a sensor, making the system unobserv-
able and affecting the functional operation of CPS control routines. Bottom:
The detection of falsified data follows the replacement with PINN-generated
values to retain system observability.

B). The MDU is aware of the stationary sensors’ z and
y coordinates and thus forwards the compromised sensor’s
coordinates to the PINN, alongside with the current time
instance. Then, the PINN calculates the corresponding U and
V' values under normal operating conditions, to fill in the gap
due to the discarded sensor measurements.

PINNSs’ accuracy in recreating the dynamic environment of a
physical system by taking into account the bounds of physical
laws can act as reliable sources of very accurate approximate
information. By replacing the compromised sensor during the
attack timeframe with a “virtual PINN-enabled sensor”, the
system can maintain its observability and continue its normal
operation. The utilization of PINNS, in this scenario as a fail-
safe mechanism, can give enough time to the system operators
to thwart the attack or even replace a malfunctioning sensor
without having to shut down the system or lose control of it.

IV. EXPERIMENTAL SETUP & RESULTS

To validate and evaluate PINNs ability to predict a system’s
dynamic environment for the case of liquid flow in a pipe, we
first create an appropriate dataset following the example in
[13]l. In particular, we create a cylindrical channel using gMsh
by creating a rectangular mesh geometry, discretazing space
in triangles for the computational solver [14]. We assume
a uniform free stream velocity at the left boundary, a zero
pressure outflow condition imposed at the right boundary,
and set the top and bottom boundaries as walls. The channel
encloses a domain of size [—15,25] x [—8, 8].

For creation of a high-resolution dataset, we utilize the
spectral/hp-element solver NekTar++ [15]. In order to use
the built-in Navier-Stokes solver in NekTar++, we create
the appropriate configuration . XML files. For the sake of
simplicity, we define Reynolds number Re = 100, kinematic
viscosity v = 0.01, free stream velocity u., = 1, and a total
experiment duration of 2000 steps. A data-snapshot of the
system is taken every 10 steps. A snapshot of the component
velocity field of the resulting simulation is depicted in Fig. 4

The resulting solution to the Navier-Stokes equations is split
to training and testing data with a ratio of 70% and 30%,
respectively. Building on top of the PINN code in [16], we
have altered its operation mode from identifying Navier-Stokes



Fig. 4. A snapshot representation of the velocity (U, V') field predicted by
the trained PINN as a slice of the (z,y, t) testing dataset. The scattered blue
dots represent the datapoints generated by the finite-element solver of the
Navier-Stokes equation, included in NekTar++.

TABLE 1
PINN ACCURACY IN VELOCITY PREDICTION

Velocity Component Accuracy (%)
U 99.4511313
|4 95.712483

equations into inferring them. The neural network consists of
an input layer (z,y,t), 7 hidden layers with 20 neurons each,
and an output layer (U, V). Each layer has a hyperbolic tangent
activation function. Our training dataset only represents a
small area of the channel, specifically the area [1, 8] x [—2, 2],
in order to better demonstrate the network’s ability to gen-
eralize. The results of the testing session are given in Table
|1]r The testing set, i.e., 30% of the generated dataset, consists
of 2087 spatial coordinates, in 200 temporal points each. The
test’s accuracy is normalized and averaged in order to provide
a single metric for U and V' velocity predictions. Specifically,
the trained PINN is able to successfully approximate the z-
coordinate and y-coordinate of velocity, U and V, of the points
tested with a deviation of ~ 0.55% and ~ 4.3% from the
actual ground-truth values, respectively.

V. CHALLENGES AND FUTURE WORK

In this paper, we demonstrate the applicability of PINN as
a mitigation mechanism against observability cyberattacks in
CPSs. We show that a PINN can be very accurate with minimal
training and a small dataset. This way, complex physical
processes can be accurately characterized without the com-
putational complexity and effort of traditional approximation
methods. In order to further validate this specific idea, it is
important to determine how long the accuracy of the PINN
can remain high, hence rendering it an effective mitigation
mechanism which enhances the availability of a system. In ad-
dition, investigating the accuracy of PINNSs trained using real
datasets derived from real-world water distribution facilities
and digital twin testbeds is an immediate future task, which
will further validate the effectiveness of PINNs to model the
physical dynamics of the system under consideration.

A few challenges are still at large, such as the mitigation
mechanism of the current work, which assumes a detection
mechanism against falsified data. Furthermore, the current ap-
proach cannot distinguish between faulty sensors and cyberat-
tacks. It relies on the detection mechanism’s ability to do that.

As the detector is a crucial component of the overall system,
in our future work we will investigate how PINN generated
data can be used to detect measurement anomalies caused by
data integrity and availability attacks. The potential to utilize
PINNs in various CPS domains for anomaly detection and
state estimation stems from their accuracy. PINNs could be
utilized as ground truth when comparing the system’s current
state against the PINN-predicted one, to distinguish anomalous
behavior beyond problematic sensor measurements. For exam-
ple, the Navier-Stokes equations’ solutions rely on the liquid’s
density. Therefore, a change in density, e.g. contamination of
the water, could be detected.
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