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Abstract—Within a framework for verifying parametric net-
work protocols through induction, one needs to find invariants
based on a protocol instance of a small number of nodes. In this
paper, we propose a new approach to accelerate parameterized
verification by adopting decision trees to represent the state
space of a protocol instance. Such trees can be considered as
a knowledge base that summarizes all behaviors of the protocol
instance. With this knowledge base, we are able to efficiently
construct an oracle to effectively assess candidates of invariants
of the protocol, which are suggested by an invariant finder. With
the discovered invariants, a formal proof for the correctness
of the protocol can be derived in the framework after proper
generalization. The effectiveness of our method is demonstrated
by experiments with typical benchmarks.

Index Terms—Formal methods, parameterized verification,
machine learning, decision trees, cache coherence protocols

I. INTRODUCTION

Parametric protocols are often verified by enumerating all
reachable protocol states and checking the desired properties.
This reachability analysis can be done through either explicit
state enumeration [1], [2], [3] or using symbolic methods [4],
[5]. Both approaches suffer from the state space explosion
problem – the size of the reachable state space grows ex-
ponentially with respect to the protocol size, and eventually
it exhausts all available computer memory for verification.
However, according to earlier experiences in parameterized
verification, explicit state enumeration has outperformed the
symbolic approach, thanks to symmetry reduction techniques
and more advanced compact hash tables [6].

Explicit state enumeration is suitable for model checking
bounded protocol models, but it cannot produce useful infor-
mation like invariants, in the form of predicate logic formulas.
However, for formal verification of parametric protocols, an
inductive proof framework (e.g., see [7]) usually requires an
set of inductive invariants, for which it needs to find auxiliary
invariants. Similarly, in the classic CMP method [6], auxiliary

invariants are also needed to construct an abstract protocol
model for a CEGAR-style refinement procedure.1

In order to bridge the gap between explicit-state model
checking to symbolic invariant generation, we propose a
decision-tree based machine learning approach. Within our
approach, we first collect reachable states (abbrev. RS) of
an instance of the parametric protocol under verification and
record our knowledge about RS as a decision tree. Then
we construct candidates of invariants by adopting an earlier
algorithm as proposed in the literature [7], [8], [9], and filter
true invariants according to the knowledge obtained in the first
step. After proper generalization, the selected invariants can be
used to construct a formal proof for parameterized verification.

Our contributions in this work are summarized as follows:
• We propose a decision-tree based learning technique to

sum up symbolic formulas to approximate the behaviors
of a protocol instance. In particular, we use explicit-
state based model checking to get the reachable state
set of a protocol instance with the help of symmetry
reduction; the state space is stored in a table called a data
sheet. We randomly select a variable with more than one
value in the data sheet as target variable; we extend the
classical decision-tree algorithm to classify the selected
target variable based on other variables from the data
sheet. The paths from the root to a leaf node cover the
reachable state set. If an invariant candidate contradicts
a formula corresponding to such a path, then it will be
refuted; otherwise we regard it as a true invariant.

• We develop a learning paradigm to synthesize the set of
auxiliary invariants to accelerate the verification of para-
metric cache coherence protocols. Invariant candidates
will be conjectured by an invariant finder, and sent to a
server, which constructs the aforementioned decision tree
to decide whether such a candidate is indeed an invariant.

1CEGAR: counterexample guided abstraction refinement.



If so, then the invariant and proof dependency relation
will be recorded and used to construct a formal proof for
parameterized protocol verification.

• We implement the extended decision-tree based learning
approach as a teacher to classify the data sheet generated
from the RS of the protocol. We integrate the teacher into
the framework of paraVerifier [7], [8], [9] to automat-
ically find invariants and to prove parametric cache co-
herence protocols. We conduct experiments successfully
on typical benchmarks.

Our work is the first one to apply decision trees to parame-
terized verification of cache coherence protocols. Experimental
results show that our method can accelerate the finding of true
invariants for parameterized verification with less memory and
computation time.

Paper structure. The rest of this paper is organized as follows.
In Section II, we present our research problem of parameter-
ized verification, introduce some preliminaries used in this
paper and discuss the main challenge of finding auxiliary
invariants in parameterized verification. Our approach to ac-
celerating parameterized verification by utilising decision-tree
for learning invariant candidates is presented in Section III.
With experimental results on typical benchmarks, we demon-
strate that our new approach can speed up the verification of
parametric cache coherence protocols in Section IV, in terms
of computational time and memory cost. This is then followed
by conclusions and future work in Section VI.

II. PARAMETERIZED VERIFICATION

A. Parametric communication protocols

In this section, we give a high-level description of the
problem we want to tackle and introduce a number of basic
notations. We work in the context of a communicating network
of computers; we call them nodes. Every node runs the same
protocol. We explicitly consider the number of nodes to be
N ; this makes the system parametric. We refer to [7] for the
details of the specification formalism.

Example 1 We explain the formalism by a simple mutual
exclusion protocol with N nodes. Global states are described
using a finite set V of state variables, which range over a finite
set D. We use the global Boolean variable x to indicate that the
critical resource is available or not. n is an array containing
local variables: each n[i] describes the state of node i, which
is one of I(dle), T(rying), C(ritical), and E(xiting).

Our simple mutual exclusion protocol has the following
guarded commands (also called protocol rules):

try(j) ≡ n[j] = I B n[j] := T
crit(j) ≡ x ∧ n[j] = T B {n[j] := C, x := false}
exit(j) ≡ n[j] = C B n[j] := E
idle(j) ≡ n[j] = E B {n[j] := I, x := true}.

Each guarded command has the form g B A, where the guard
g is a predicate over V and A is a parallel assignment to
variables v` := e`.

The protocol itself is defined by mutexiniN , the initial state
of the protocol, and mutexrulesN , the set of protocol rules:

mutexiniN ≡ x ∧
N∧
i=1

n[i] = I

mutexrulesN = {try(j) , crit(j) , exit(j) ,
idle(j) | j = 1, . . . , N}

MutualExN = (mutexiniN ,mutexrulesN )

and it should satisfy the following invariant requirement:

mutualInv(i1, i2) ≡ ¬(n[i1] = C ∧ n[i2] = C).

The property mutualInv(i1, i2) describes that n[i1] and n[i2]
cannot be in a critical state at the same time. It should be
understood that i1 6= i2. Note that we normally use i to denote
node identities in formulas and j to denote node identities in
guarded commands.

The research problem. In general, we assume given a network
of N nodes; its (global) state space is described by the
variables in V , and every node runs a communication protocol
described by P = (I,R). We aim to prove some invariant
property req of the protocol, which can be specified using a
(parametric) formula without temporal modalities. We write it
in the form ¬

∧k
n=1 fn, where each fn is a literal e1 = e2 or

e1 6= e2. Thus, the question we want to answer is:

Does the invariant property req hold in every reach-
able state of the nodes running P?

B. An automatic proving approach

Recently, an automatic proving approach [7], [8], [9] is
proposed by Li et al. to address the above research problem,
and their central idea is to guide a theorem prover by providing
inductive invariant candidates. In their approach, an inductive
invariant is an invariant that is satisfied by the initial state
and preserved by each guarded command of the protocol. The
protocol satisfies the requirement req if there is an inductive
invariant that implies req .

This approach requires to add auxiliary invariants to make
the (conjunction of all) invariants inductive. The following
steps are used to find auxiliary invariants candidates:

1) Concretize the requirement req into reqc. A single
injective mapping from parameters to natural numbers is
normally sufficient; as the node identities are symmetric.

2) Concretize a guarded command (from r to rc) that
describes a single step of the protocol. It selects a set of
concretizations that covers all possible combinations of
instantiations of parameters in req and r together, and
concretize each pair (req , r) and record all the necessary
actual parameter indices for each r separately.

3) Check whether reqc is an inductive invariant and, if
necessary, find a strengthening aux that will be used as
an auxiliary invariant. Here the concretizations enable
this approach to exploit a BDD-based oracle to ensure



Fig. 1: The workflow of paraVerifier

that aux holds in a small instance of the protocol – this
is achieved via the symbolic model checker NuSMV.2

4) Generalize aux into a parameterized form. This is pos-
sible as the approach carefully registers the indices of
instances in the first two steps.

The above four steps have been implemented as a tool
invFinder within the framework of paraVerifier [7] and its
extension L-CMP [10], whose main workflow is depicted
in Figure 1. paraVerifier also contains proofGen with the
support of the theorem prover Isabelle [11], and it is supposed
to be fully automatic – in contrast to other existing approaches,
it automatically finds auxiliary candidate invariants, and auto-
matically tags their proof dependencies. The tool proofGen
automatically transforms them into Isabelle proof scripts, when
will be in turn fed into Isabelle to prove the requirement req .

C. Finding auxiliary invariants

In the above step 3, one needs to check whether a (con-
cretized) requirement reqc is an inductive invariant for a
(concretized) guarded command rc. The set invs records all
auxiliary invariants found so far. invFinder first computes the
weakest precondition wpc ≡ WP(action(rc), reqc) and then
decides how to proceed as follows:3

1) If wpc≡reqc, the statement action(rc) does not change
reqc. This typically holds for guarded commands that
don’t use variables appearing in reqc. invFinder regis-
ters “r preserves req” as a hint for the theorem prover.

2) If guard(rc)→ wpc is found to be a tautology, then the
command rc is only enabled if reqc holds afterwards.
Thus, invFinder records “r establishes req” as a hint
for the theorem prover.

3) If neither of the above two cases holds, a new auxiliary
invariant aux will be constructed. invFinder registers “r
ensures req with the auxiliary invariant aux .”

To find a simple formula aux , invFinder first constructs
¬
∧k

n=1 f
c
n ⇐⇒ ¬guard(rc)∨wpc and then considers all its

subformulas starting with the smallest ones, such as ¬f1, ¬f2,
. . . ; ¬(f1 ∧ f2), ¬(f1 ∧ f3), . . . ; ¬(f1 ∧ f2 ∧ f3), . . . . Each
subformula will be checked whether it is indeed an auxiliary
invariant. In this paper, this will be implemented by sending

2In this paper, we will use a decision tree that describes the reachable states
as such an oracle, instead of using the BDD-based oracle.

3action(r) is used to return the parallel assignment part of the guarded
command r.

TABLE I: A fragment of the output of invFinder

concrete invariant rule proof hint
mutualInv(1, 2) crit(1) based on invOnXC(2)

crit(2) based on invOnXC(1)
crit(3) preserves mutualInv(1, 2)

invOnXC(1) crit(1) establishes invOnXC(1)
crit(2) establishes invOnXC(1)

the formula to an oracle running DT-Decide based on a data
sheet collected from the RS of a protocol instance (see details
in Section III). After finding an auxiliary invariant, it will
be generalized by changing its concrete process identifiers to
parameter variables i1, i2, . . .. After this step, this auxiliary
invariant is added to the set of requirements that need to be
eventually checked with proofGen.

This main step will be repeated until proof dependencies
for all pairs (reqc, rc) have been checked or a pair (reqc, rc)
is found for which no proof dependency applies. The former
case terminates the search for auxiliary invariants successfully,
while the latter indicates that the requirement reqc cannot
be handled by paraVerifier, most likely because req is not
actually an invariant. paraVerifier often has the set of invari-
ants converge quickly because of two reasons: (1) the chosen
invariant candidate is a correct invariant in a small protocol
instance; (2) the size of the chosen candidate is as small as
possible because paraVerifier starts the search for auxiliary
invariants with the smallest candidates.

Example 2 We continue with Example 1. Assume given the
concrete requirement mutualInv(1, 2), combined with the three
concrete guarded commands crit(1), crit(2), and crit(3). The
resulting outputs of the cases described above is shown in
Table I. In the table, each line records a concrete invariant,
a concrete guarded command and the hint for the theo-
rem prover. The first line introduces an auxiliary invariant
invOnXC(1). Its generalized form, invOnXC(i), is added to
the set of candidate invariants, and it is then again concretized
to check whether it is an inductive invariant. These checks are
documented in the last two lines of Table I.

III. LEARNING INVARIANTS WITH DECISION TREES

In this section, we present in detail our decision-tree based
method to learn invariant candidates, in order to speed up the
formal verification of parametric protocols.



A. Decision trees

A decision tree (DT) is a flowchart-like structure in which
each internal node represents a test on an attribute (e. g.
whether a coin flip comes up heads or tails), each branch
represents one outcome of the test, and each leaf node repre-
sents a decision taken after testing all attributes. A decision
tree is a compact representation to classify examples. The
paths from root to leaf represent classification rules, which
allow to predict the value of a target variable based on
values of input variables. Data comes in records of the form
(x, Y ) = (x1, x2, x3, ..., xk, Y ). The dependent variable Y is
the target variable that we are trying to classify or generalize.
The vector x is composed of the input variables x1, x2, x3,
etc. Algorithms for constructing decision trees usually choose
a variable xi at each step that best splits the set of items.
Typical algorithms include ID3 (Iterative Dichotomiser 3) [12],
C4.5 (a successor of ID3) [13], and CART (Classification And
Regression Tree) [14].

One of the well-known metrics to pick the best variable is
based on a notion of information gain in line with Shannon’s
entropy function. It calculates the entropy of every attribute
x of the data set, then partitions the set into subsets using
the attribute for which the resulting entropy after splitting
is minimized (equivalently information gain is maximized).
The inductive bias in these learning algorithms is roughly to
compute the smallest decision tree that is consistent with the
sample – a bias that again suits our setting well, as we would
like to construct a small decision tree to save both time and
memory for parameterized verification.

However, in a classical decision tree algorithm like ID3,
when there is no more predicting attribute, then a single-node
tree is returned with a label which is the most common value
of the target attribute in the examples. This is not surprising
because the idea of classical decision tree is based on statistics,
that is, the classification (or decision) is based on the most
frequent value of the target variable – it underapproximates
the data. This ideal of predicting the most likely value is not
suitable for our verification purpose. Intuitively, in our context,
our data sheet corresponds to the reachable state set. We pick a
target variable (attribute) and create a decision tree to classify
the target variable based on the data sheet. Our goal is to
create a model that predicts all possible values of the target
variable based on the other variables – we overapproximate
the state space. A path from root to a leaf is regarded as a
classification rule, a formula f ; or more exactly, a conjunction
of atomic formulas, each of which restricts the value of one
variable. These formulas f form a partition of the state space.
We don’t care about the frequencies of the different values
for the target variable, but we do care to record all possible
values. Except for the change just described, we can use any
decision tree construction algorithm as-is.

Now we can give the algorithm shown in Algorithm 1 to
make a decision tree tree from a data sheet data if a target
attribute and other atrributes attribs are given. Line 2 deals
with the case that decision on the value of targ attrib can be

Fig. 2: Extended decision tree (target variable: n[1])

Algorithm 1: makeDt (data, targ attrib,attribs)

1 An extended ID3 decision tree making algorithm is
shown in Algorithm 1.

Input: A data sheet data, target attribute targ attrib,
atrributes attribs

Output: A decision tree tree to classify targ attrib
1: if all the samples agree on the same value a on the

targ attrib then
2: return a single node labelled with targ attrib = a
3: else if atrributes = {targ attrib} then
4: return a single node labelled with

targ attrib = a1 ∨ ... ∨ targ attrib = am, where
a1,...,an are all possible values of targ attrib in data

5: else
6: A← the Attribute that best classifies examples.
7: create a node Root labelled with A.
8: for each possible value vi of A do
9: Add a new tree branch branch labelled with vi

below Root, corresponding to the test A = vi
10: Examples(vi)← be the subset of examples that

have the value vi for A
11: branch←

makeDt(Examples(vi), targ attrib, attribs−{A})
12: end for
13: end if
14: return Root

made at once because all the samples agree the same value a
on it, thus the leaf node is returned with a label targ attrib =
a; line 4 deals with the case no more attribute can be used to
classify targ attrib, thus a leaf node with targ attrib = a1∨
... ∨ targ attrib = am. Here we need record all the possible
values of targ attrib instead of the most possible value of
targ attrib. This change has been made for the use to classify
state space completely. Line 6 begin to make branches, line
6 picks the “best” attribute A to classify samples. In order to
make the classification best, we need calculate the entropy of
every attribute a of the data set, then partition (“split”) the set
into subsets using the attribute for which the resulting entropy



after splitting is minimized; or, equivalently, information gain
is maximum. From line 11, the algorithm makeDt is recurred
to make a decision trees by using a subset of the samples that
have the value vi for A.

B. Decision-tree based invariant learning

In our method, we first collect the reachable state set from
an explicit state-based model checker, i.e., Murphi,4 which
can enumerate all reachable states of a protocol instance. We
transform the state set into a data sheet, similar to Table II.

TABLE II: Data sheet representing RS of MutualExN with N = 2

No. s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11
n[1] I T I C T I E C T I E T
n[2] I I T I T C I T C E T E
x t t t f t f f f f f f f

t and f abbreviate true and false, respectively.

In order to verify that formula in the form of ¬f is an
invariant of the protocol instance, we call Algorithm 2, where
data is the data sheet extracted from the protocol instance.
To save time and memory, we construct a decision tree tree
to decide f , as shown in Figure 2. We only select a sub-
table data ′ which contains just columns covering vars(f) and
use it to create the decision tree, see in Line 3. We further
store the newly created tree into a store of trees stored for
further deciding a formula which has the same variable set
as vars(f). After having the sub-data sample data ′, Line 5
selects a variable v form vars(f), which has more than one
value in the data sheet S, if such a variable exists, and creates
a decision tree tree that classifies variable target . Otherwise,
there is only one data sample in data and Line 8 creates a
simple tree by randomly selecting a variable as a leaf node and
creating a single branch leading to it. In order to avoid false
invariants caused by symmetry reduction (see next subsection),
all the formulas f ′ which are symmetric to f are added to F ,
and the satisfiability of each formula in F , conjoined with a
classification rule in tree, is checked. The call path2Form(p)
in Line 16 computes a formula fp describing the classification
rule implied by the path, and elimX(fp) eliminates references
to “don’t care”-values. A SMT solver like Z3 is used for
satisfiability checking. If f ′ ∧ elimX(fp) is satisfiable, ¬f
is not an invariant. If this formula is unsatisfiable for all
p ∈ paths(tree), then ¬f is indeed an invariant.

C. Symmetry reduction

In this and the following subsections, we present two
techniques to make the data sheet as compact as possible. The
number of states in the reachable state set normally affects the
speed of learning. Symmetry reduction is the removal of states
that are symmetric to some other state; in our case, symmetry
is defined through permuting the node identities. This is able
to prune the state space dramatically, but it can lead to some
conclusions that are incorrect in the original reachable state
set. Figure. 3 illustrates the symmetry of the state space for

4http://formalverification.cs.utah.edu/Murphi/index.html

Algorithm 2: DT-decide (¬f )
Input: negative formula ¬f , a data sheet data
Output: Boolean value showing whether ¬f is an

invariant
1: Look up whether there is a tree ∈ stored for vars(f)
2: if tree has not been found then
3: data ′ ← the projection of data on vars(f)
4: if data ′ is not trivial then
5: target ← a suitable target variable in data ′

6: Create a decision tree tree from data ′ for target
7: else
8: Create a single-path tree for data ′

9: end if
10: Append tree to stored
11: end if
12: F ← {f ′|f ′ is symmetric to f}
13: isInv ← true
14: for p ∈ paths(tree) do
15: for f ′ ∈ F do
16: if sat(f ′ ∧ (elimX(path2Form(p)))) then
17: return “¬f is not an invariant”
18: end if
19: end for
20: end for
21: return “¬f is an invariant”

Example 1. The state space is partitioned into two parts, each
of which has seven states. s1 ∼ s2, s3 ∼ s5, . . . According to
symmetry reduction, only states s0, s1, s3, s4, s6, s7, s10 are
explored and will be extracted as a data sheet of reachable
states, as shown in Table III. so we can reduce the data sheet
to Table III.

TABLE III: Reduced data sheet representing RS of MutualExN with
N = 2

No. s0 s1 s3 s4 s6 s7 s10
n[1] I T C T E C E
n[2] I I I T I T T
x t t f t f f f

It is clear that the number of states has been reduced from
12 to 7. However, from the reduced Table III, we could derive
a spurious invariant n[2] = C −→ n[1] = C, because it doesn’t
find any sample which satisfies the antecedent n[2] = C. In
order to avoid this type of errors, we will check additional
symmetric formulas. The principle is to check all formulas f ′

which are symmetric to f in the reduced space. For instance,
to assert n[2] = C −→ n[1] = C, we also need to check
n[1] = C −→ n[2] = C in the reduced state space.

Example 3 Now we illustrate the above technique by a simple
mutual exclusion protocol with data manipulations with N
nodes. a is extended to be an array containing local variables
consisting of two fields: a[i].st describes the state of node
i, while a[i].d the data stored locally. Two more global data

http://formalverification.cs.utah.edu/Murphi/index.html
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Fig. 3: Symmetric state space illustration.

variables memD and auxD are used to indicate copies of
data stored in the main memory and for the most fresh data.

This mutual exclusion protocol has the following rules:

try(j) ≡ a[j].st = I B a[j].st := T
crit(j) ≡ x ∧ a[j].st = T B {a[j].st := C, x := false,

a[j].d := memD}
exit(j) ≡ a[j].st = C B a[j].st := E
idle(j) ≡ a[j].st = E B {a[j].st := I, x := true,

memD := auxD}
store(j, d) ≡ a[j].st = C B {a[j].d := d, auxD := d}

The protocol itself is defined by mutexiniN , the predicate
specifying the initial state of the protocol, and mutexrulesN,D,
the set of protocol rules or guarded commands:

mutexiniN ≡ x ∧memD = auxD ∧
N∧
i=1

a[i] = I

mutexrulesN,D = {try(j) , crit(j) , exit(j) , idle(j) ,
store(j, d) | j = 1, ..., N ; d = 1, ..., D}

MutualExN,D = (mutexiniN ,mutexrulesN,D)

and it should satisfy the invariant requirement:

mutualInvData(i1, i2) ≡ ¬(a[i1].st = C ∧ a[i2].st = C)

dataInv(i1) ≡ ¬(a[i1].st = C ∧ a[i2].d 6= auxD)

The property mutualInvData(i1, i2) is very similar to
mutualInv(i1, i2) in Example 1, while dataInv(i1) specifies
that a[i1].d always stores the most fresh copy of data auxD
when a[i].st is C. For protocol MutualExN,D when N = 2
and D = 2 the number of states in its RS without symmetry
reduction is 88, while it is only 23 after symmetry reduction.

D. “Don’t care”-values

In addition to symmetry reduction discussed in the previous
subsection, we also explore the use of “don’t care”-values.

Such a value is an abstraction of all possible concrete values.
The technique of “don’t care”-values is frequently used in STE
or Murphi. Usually, it is combined with symmetry reduction
to reduce the explored state space further. For instance, for
the simple mutual exclusion protocol with dataMutualExN,D

when N = 2 and D = 2, we can reduce the number of
explored RS to 13 if we use both symmetry reduction and
“don’t care”-values. As an example, if the data value in the
cache is irrelevant, we set it to “don’t care”: if n[1].st =
I∧n[2].st = I∧x, all data variables n[1].d, n[2].d, auxD and
memD are irrelevant, so we can compress D4 = 16 entries
in the data sheet into one.

For the FLASH protocol in our experiments, the number
of reachable states is 107,866,864, while with symmetry
reduction and “don’t care”-values it is only 857,453. The latter
is about 0.8 % of the former.

E. Extending paraVerifier with DT-decide

We extend the paraVerifier framework with this new invari-
ant learning approach based on decision trees (see Figure 4).
Essentially, we use Murphi to get the reachable state set of a
protocol instance, and transform the state set into a data sheet.
With the algorithm DT-decide, we explore the data sheet and
construct decision trees as necessary. The trees act as an oracle
to check invariant candidates received from invFinder.

IV. EXPERIMENTS

We have applied our new framework (Figure 4) to six bench-
marks. Among these protocols, Mutual Exclusion, MOESI,
MESI are small-scale protocols, while German [15] and
FLASH protocols5 are more complicated. The FLASH protocol
is much more complex and realistic than German. For a 3-
node FLASH instance, the number of reachable states is around
1500 times that of 3-node German.

Table IV gives a comparison of verification time and
memory consumption for the benchmarks between the BDD-
based oracle (from the original paraVerifier framework) and
the decision-tree-based oracle (from our new framework).6 At
first sight, for small protocols (Mutual Exclusion, MOESI,
MESI) the decision-tree-based oracle is slightly slower than
the BDD-based oracle, but requires less memory. However, for
large examples the decision-tree-based oracle performs much
better: for FLASH nodata it takes 20 minutes with 511 MB
memory while paraVerifier needs 244.67 minutes with 2.4
GB memory; for FLASH data it takes 166.67 minutes (3.2 GB
memory) which is about 50% (67%) of paraVerifier. The main
reason is that running NuSMV to obtain a BDD-based oracle
for large examples takes much more time than the decision-
tree based approach.

The experimental results that show our decision-tree based
invariant learning framework can save memory and speed
up parameterized verification for large protocols. Our results
further confirm the following statement in [6]:

5We verify the protocol with and without data modeling.
6The verification time reported in Table III [7] did not include the time of

computing the BDD reachable state spaces of the protocol instances.
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Fig. 4: Our new framework for parameterized verification: extending paraVerifier with decision-tree based invariant learning

TABLE IV: Comparison of verification time and memory consump-
tion: BDD-based oracle vs. DT-based oracle

time memory
DT BDD DT BDD

mutualEx 6.0s 3.5s 25M 7.3M
MESI 4.8s 4.6s 25M 84M

MOESI 5.0s 4.8s 25M 85M
Germanish 3.0s 2.5s 25M 90M

German 60.0s 38.6s 42M 135M
FLASH nodata 20m 244.67m 511M 2.4G

FLASH data 166.67m 248.33m 3.2G 4.8G

... as experience shows that for cache coherence
protocols explicit-state model checkers are often
superior to symbolic model checkers ....

In our work, the use of an explicit state-based model checker
Murphi, combined with symmetry reduction and decision-tree
based invariant learning, is the key to successfully prove the
correctness of large cache coherence protocols.

V. RELATED WORK

There have been a lot of studies applying machine learning
techniques in the field of formal verification. We discuss pa-
pers that are mostly relevant to our work. The most successful
work in applying decision-tree based learning techniques in in-
variant synthesis is [16], [17], they proposed the classification
concept of implication, in addition with positive and negative
samples. Then decision-tree learning algorithms are extended
to classify implication samples, and they develop several scal-
able methods to construct small decision trees using statistical
measures. An extensive study of various natural measures
for learning decision trees is also performed in [16], [17].
Some learners and an appropriate teacher are implemented
for invariant synthesis, The experimental results show that
their new algorithms are efficient and convergent for a large
suite of programs. In the context of parameterized verification,
positive samples are just the states in the research state set RS;
however, it is difficult to compute suitable negative examples,
which are not contained in RS. The number of negative states

is still much larger than that of RS. It is quite difficult to
propose good measures to sample these negative states, and
the quality of invariants depends heavily on these sample
of negative samples. Thus, we adapt a different strategy, by
extending the classical decision tree learning algorithm mainly
for partitioning reachable states, i.e., positive states. we select
a variable which has more than one value in the data sheet
and use other variables to classify the value of the target
variable. A single case corresponds to a path from the root
node to a leaf node, where all possible values of the target
variable are enumerated. The disjunction of all the cases thus
overapproximates the state space modeled by the state set.

In the last decade, how to find sufficient and appropriate
invariants automatically has gradually been an active research
area [18], [19], [20], [21], [22], [8]. The concept of “invisible
invariants” has been proposed in 2001 [23]. It is an automatic
technique for parameterized verification. In this method, aux-
iliary invariants are computed in a finite system instance to
aid inductive invariant checking. Combining this idea with
parameterized abstraction, Lv et al. used a small protocol
instance to compute candidate invariants [24]. However, the
invariants found by these works are “raw” boolean predicates,
which are hard to understand. Later, a SMT-based model
checker Cubicle has been proposed [22] and developed [25]. In
their works, the BRAB algorithm has been introduced, which
can automatically infer invariants and generate Why3-proof
certificates for SMT-solvers. It was the first tool that proves
automatically the safety properties of FLASH. Although these
works can automatically verify parametric protocols, the in-
variants they found are not easily readable and understandable.

VI. DISCUSSIONS AND FUTURE WORK

To the best of our knowledge, this work is the first one
to use decision trees to learn invariants from a data sheet
describing the reachable states of a protocol and apply the
learned invariants to accelerate parameterized verification. A
standard decision tree learning algorithm has been extended
to represent an over-approximation of the reachable states of



a protocol, and formulas can be constructed corresponding
to each path to form classification rules. In turn, we can
use these formulas as a compact knowledge base to decide
whether a formula is satisfied. Symmetry reduction and “don’t
care”-values are two essential techniques to obtain a small
reachable state set, which help achieve much smaller data
sheets. We also adapt the checking of invariant candidates to
ensure that no false invariants are learnt because symmetry
reduction skips some states. We have integrated the decision-
tree based learning technique into paraVerifier and used it
as an oracle to learn invariants for parameterized verification.
From our experiments, we observed that such an oracle is quite
effective. In most cases, more than one third of memory can
be saved in our experiments by using the decision-tree based
oracle instead of a NuSMV BDD-based oracle.

Our decision-tree based invariant learning approach can be
considered as a grey-box technique. We need to know which
candidate formulas are to be decided, these candidates are
output from invFinder by analyzing the preconditions and
guards. However, the decision-tree based oracle is completely
agnostic of the program and the specification once it has
received the formula, and it only needs to decide this formula
according to the data sheet and the learnt decision tree.

We believe our approach can be useful for checking invari-
ants of protocols whose state space are difficult to be enu-
merated by symbolic approaches. We can simulate a protocol,
collect reachable states from these simulations and transform
this information into a decision tree, from which we can
learn invariants and try to construct an inductive invariant
set. In future, we will extend our work to deal with general
safety properties (not only invariants) and liveness properties.
Another direction is to extend our work to learn loop invariants
for program verification.
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