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Abstract—This paper presents TULIP, a new architecture for a
binary neural network (BNN) that uses an optimal schedule for
executing the operations of an arbitrary BNN. It was constructed
with the goal of maximizing energy efficiency per classification. At
the top-level, TULIP consists of a collection of unique processing
elements (TULIP-PEs) that are organized in a SIMD fashion.
Each TULIP-PE consists of a small network of binary neurons,
and a small amount of local memory per neuron. The unique
aspect of the binary neuron is that it is implemented as a
mixed-signal circuit that natively performs the inner-product and
thresholding operation of an artificial binary neuron. Moreover,
the binary neuron, which is implemented as a single CMOS
standard cell, is reconfigurable, and with a change in a single
parameter, can implement all standard operations involved in
a BNN. We present novel algorithms for mapping arbitrary
nodes of a BNN onto the TULIP-PEs. TULIP was implemented
as an ASIC in TSMC 40nm-LP technology. To provide a fair
comparison, a recently reported BNN that employs a conventional
MAC-based arithmetic processor was also implemented in the
same technology. The results show that TULIP is consistently 3X
more energy-efficient than the conventional design, without any
penalty in performance, area, or accuracy.

Index Terms—Threshold logic, BNN, reconfigurable, high-
performance, area-efficient, energy-efficient, high-throughput

I. INTRODUCTION

Convolutional (Deep) Neural Networks (CNNs or DNNs)
have become a dominant algorithmic framework in machine
learning due to their remarkable success in many diverse
applications [1]–[5], etc., and even performing better than
humans in some situations [6]. DNNs are now being applied to
domains that require compute-intensive operations performed
on very large data sets, using models with millions of param-
eters [7]. Consequently, extensive ongoing efforts are being
made to improve their performance and energy efficiency.

Regardless of the hardware platform (CPU-GPU, FPGA, or
ASIC) on which DNNs are deployed, the biggest challenge
toward improving their performance and energy efficiency
has been the on-chip storage requirement. Cost and yield
considerations limit the feasible on-chip storage to be one to
two orders of magnitude smaller than what is required by many
of the popular DNN models, forcing most of the parameters
for even moderate size DNNs to be stored in off-chip DRAMs.
This results in a large energy (> 200X) and delay (> 10X)
penalties [8]. This has accelerated efforts to drastically reduce
the DRAM storage requirements and the associated access
delays. Some well-known methods include weight and synapse
pruning, quantization (i.e. reducing bit widths of inputs and
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weight), weight sharing, Huffman coding, and approximate
arithmetic, to name a few.

Quantization remains the most effective technique to reduce
memory requirements and computation latency. An extreme
form of quantization is to replace the weights and data by
binary values, which results in drastic reductions in both
storage requirements and computational latency. The resulting
networks, known as binary neural networks (BNNs) [9] have
been shown to have nearly the same accuracy as DNNs on
some small networks (MNIST, SVHN, and CIFAR10) [9],
and similar accuracy to that of larger networks (AlexNet,
GoogLeNet, ResNet) [10].

BNNs provide a good tradeoff between reduced energy
consumption and improved performance against classification
accuracy. As a result, they have generated sustained interest in
the machine learning community, among researchers in VLSI
architecture, circuits, and CAD, and leading FPGA companies
(i.e., Xilinx and Intel) [11], [12].

A DNN is a directed acyclic graph (DAG), in which the
nodes represent operations such as matrix-vector products,
thresholding applied to inner-products, computation of the
maximum of vectors, etc. In BNNs, such computations can
be implemented almost entirely with binary operations. This
makes FPGAs a particularly practical choice for implementing
BNNs. Dedicated modules for each operation can be added
to the design based on layer-specific requirements. These
modules can be pipelined to maximize the throughput of
the design. This approach amounts to mapping the nodes of
the DAG, layer by layer, to corresponding modules on the
FPGA. Often, the entire BNN can be mapped onto the FPGA.
Examples of this design strategy, referred to as a dataflow
architecture, can be found in [11], [13]–[15].

ASIC implementations of BNNs take a different approach.
In order to execute any BNN, their basic computational engine
consists of a collection of processing elements (PEs), which
are comprised of dedicated circuits to perform the operations
specific to neural networks such as convolution, max-pooling,
RELU, etc. Implementing a BNN on an ASIC next requires
scheduling the execution of the nodes of the DAG on the
PEs, while optimizing the intermediate storage and accesses
to external memory. This approach, referred to as a loopback
architecture, is the basis of many recent designs, for which
examples may be found in [16]–[18].

In this paper, we describe TULIP, a new ASIC architecture
to realize BNNs, designed with the aim of maximizing their
energy efficiency. Although TULIP falls under the category of a
loopback architecture mentioned above, its processing element
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(TULIP-PE) is radically different from the existing BNN
accelerators, which leads to new algorithms to map BNNs
onto TULIP. The key features of TULIP and the contributions
of this paper are summarized below.

1) TULIP is a scalable SIMD machine, consisting of a
collection of concurrently executing TULIP-PEs.

2) In addition to the design of TULIP, this paper describes
a new approach to map any BNN (any number of nodes
and nodes with arbitrary fanin) onto TULIP.

3) The architecture of TULIP-PE is radically different com-
pared to the PEs in other BNN accelerators. It consists of
a small, fully connected network of binary neurons each
with a small, fixed fanin. A binary neuron is implemented
as a mixed-signal circuit that natively computes the inner-
product and threshold operation of a neuron. The mixed-
signal binary neuron is implemented as a single standard
cell, that is just a little larger than a conventional flipflop.
Moreover, the mixed-signal binary neuron is easily con-
figured to perform all the primitive operations required in
a BNN. By suitably applying control inputs, a TULIP-PE
can be configured to perform all the operations required
in a BNN, namely the accumulation of partial sums,
comparison, max-pooling, and RELU operations. Hence,
exactly one such cell is needed to implement all necessary
primitive functions in a BNN.

4) Because the binary neurons within a TULIP-PE have
a fixed fanin, the function of a binary neuron with
an arbitrarily large fanin has to be decomposed into a
sequence of operations that have to scheduled on the
TULIP-PE. A novel scheduling algorithm for this purpose
is described.

5) Due to the small area and delay of a single TULIP-PE,
several of these can be used within the same area that
is occupied by a conventional MAC, and they can be
operated in parallel. This, combined with the uniformity
of the computation at the individual node and network
levels, leads to significant improvement in energy effi-
ciency, without sacrificing the area or performance.

The paper is organized as follows: Section II describes a
generic architecture of a binary neuron, which is commonly
referred to as a threshold gate. Here, only the key charac-
teristics of such an element are described and the details
of the circuit design are omitted. There are several recent
publications describing the architecture of a threshold logic
gate [19]–[21], any one of which would be suitable for
TULIP. Section III shows how the function of an arbitrarily
large binary neuron can be efficiently decomposed into a
computation tree consisting of smaller binary neurons that
are mapped to the PEs of TULIP. Section IV describes how
the novel PE is constructed and how it can be reconfigured
to perform the various operations of the BNN. Section V
compares the throughput, power, and area of TULIP against
the state of the art approaches. Finally, Section VI concludes
this paper.

Fig. 1: Threshold Logic Gate (Neuron) Architecture

II. BACKGROUND TO BINARY NEURONS

A Boolean function f(x1, x2, · · · , xn) is called a threshold
function if there exist weights wi for i = 1, 2, · · · , n and a
threshold T 1 such that

f(x1, x2, · · ·xn) = 1 ⇔
n∑

i=1

wixi ≥ T, (1)

where
∑

denotes the arithmetic sum. Thus a threshold func-
tion can be represented as (W,T ) = [w1, w2, · · · , wn;T ]. An
example of a threshold function is f(a, b, c, d) = ab ∨ ac ∨
ad ∨ bcd, with [w1, w2, w3, w4;T ] = [2, 1, 1, 1; 3]. Threshold
logic was first introduced by McCulloch and Pitts [23] in
1943 as a simple model of an artificial neuron. Since then,
there has been an extensive body of work exploring the many
theoretical and practical aspects of threshold logic [22]. The
recent resurgence of interest in neural networks has rekindled
interest in threshold logic and its circuit realizations. A binary
neuron is a threshold logic gate, and is therefore a circuit that
realizes a threshold function. Although there exist conventional
static CMOS logic implementations of threshold functions,
we do not use them in our work as they are inefficient in
performance, power, and area. Instead, the binary neuron we
consider in this paper is a mixed-signal implementation in
which the defining inequality (Eq. 1) is evaluated by directly
comparing some electrical quantity such as charge, voltage or
current [19], [24]. Interest in binary neurons continues to grow
with new architectures incorporating RRAMs, STT-MTJs,
and flash transistors, demonstrating substantial improvements
in performance, power, and area compared to their CMOS
equivalents [20], [21]

Figure 1 shows an abstract block diagram of a circuit that
serves as a template for nearly all the recent mixed-signal
implementations of binary neurons [21], [24]. It consists of
four components: a left and right input network (LIN and
RIN respectively), a sense amplifier, and a latch. The key
principle under which it operates is as follows. The outputs of
the sense amplifier are differential digital signals, with (1, 0)
and (0, 1) setting and resetting the latch respectively. The latch
state remains unchanged when its inputs are (0, 0) or (1, 1).
The weights wi that define the threshold function (Eq. 1) are
realized in ways that vary among different implementations
[19]–[21], but the common feature of all implementations is
that they determine the charge, voltage or current of the LIN

1 W.L.O.G. the weights wi and threshold T can be integers [22].



and RIN once the inputs are applied. That is, LIN and RIN
are designed so that the charge, voltage, or current of the
path that xi controls will be proportional to wi. The inputs
(x1, x2, · · · , xn) of a threshold function are mapped to the
inputs of the LIN (`1, `2, · · · , `n) and RIN (r1, r2, · · · , rn) in
such a way that for every on-set (off-set) minterm, the charge,
voltage or current of the LIN (RIN) reliably exceeds that of the
RIN (LIN) causing the sense amplifier to set (reset) the latch.
Ensuring that the inputs to the LIN and RIN are applied at a
clock edge turns the circuit into a multi-input, edge-triggered
flipflop, that computes the Boolean threshold function.

III. BINARY NEURAL NETWORK USING BINARY NEURONS

A threshold function with a large number of inputs needs to
be decomposed into a network (directed acyclic graph or DAG)
of threshold functions with bounded fanin, each of which can
be directly realized by a binary neuron. Figure 2(a) depicts
such a network, in which each layer (level in the DAG) consists
of a collection of threshold functions fij , where i is the index
of the layer and j is the index of the function within any layer
i. The conventional approach taken by all recently reported
BNN architectures is to accumulate the partial sums (i.e. the
LHS of inequality 1) using standard digital circuits using
multiply and accumulate operations are performed. The final
thresholding operation using a conventional binary comparator.
This approach does not exploit the underlying special nature
of the functions being computed, namely, the fact they are
threshold functions. Another possible disadvantage of this
approach is that it may use arithmetic operators of maximum
width, regardless of how small the results of the partial sums
are.2

There are two basic approaches to decompose a given
threshold function into a network of bounded fanin threshold
functions, several heuristic approaches [25], [26] view the
threshold function as any other logic function, and use existing
logic synthesis tools to perform a technology-independent re-
synthesis into a traditional logic network. This logic network
is searched for subgraphs that are bounded-fanin threshold
functions. An exact and more elegant algorithm for this is
presented in [27]. It directly constructs a network of bounded-
fanin threshold functions, in which each function performs
thresholding on partial sums. Unfortunately, both these ap-
proaches result in extremely large networks.

The architecture of TULIP combines both the above de-
scribed approaches in a novel way. Figure 2 depicts the design
flow and the main components of TULIP. First, a BNN is
expressed as a network of threshold functions fij (Figure 2(a)).
Next, the LHS sum of each threshold function is decomposed
into a tree of adders (Figure 2(b)) of bounded size, and each
such adder is realized by the repeated use of one configurable
binary neuron (Figure 2(b), see insets). This eliminates the
waste incurred by conventional methods of accumulation that
use operators of max-width. In Figure 2(b) the labels inside
the node show the order in which that node is executed

2In general, adders of varying width may be utilized.

on a TULIP-PE for a threshold function with 1023 inputs.
Note that although accumulation can be implemented by using
conventional adders of varying sizes, the key difference with
TULIP is that all the operations that arise in a BNN (addition,
accumulation, comparison, and max-pooling) are implemented
by the same, single configurable binary neuron in TULIP.

The main processing element in TULIP (TULIP-PE) consists
of a complete network of 4 configurable binary neurons (as
shown in Figure 2(c)). The operations in the adder tree, as
well as all the other operations in a BNN, are scheduled to be
executed on a TULIP-PE so as to minimize the storage required
for intermediate results. Each full-adder3 is implemented as a
cascade of two binary neurons (Figure 2(b), left inset). Larger
width adders are implemented using a cascade of full adders
(Figure 2(b) right inset).

Finally, the top-level structure of TULIP consists of a
number of PEs along with image and kernel buffers (Figure 6).
TULIP is scalable, i.e., the throughout can simply be increased
linearly by adding PEs and using larger image and kernel
buffers, without changing the scheduling algorithm.

IV. TULIP IMPLEMENTATION

TULIP involves the co-design and co-optimization of novel
hardware and scheduler optimizations that together perform
the operations of the BNN. In this section, the hardware
architecture of the TULIP-PE is discussed first. Then the
scheduling algorithm needed to perform various operations
such as addition, comparison, etc. is discussed. Finally, the top-
level architecture is described, which uses an array of TULIP-
PEs to realize the entire BNN.

A. Hardware architecture of TULIP-PE

A TULIP-PE (Figure 2(c)) has 4 fully connected neurons,
referred to as N1, · · · , N4, each with 16-bit local registers.
Each neuron of the TULIP-PE is shown in Figure 3. Inter-
neuron communication is implemented using multiplexers as
shown in Figure 3. Each neuron has four inputs a, b, c, and
d, with weights 2, 1, 1, and 1 respectively and a threshold
T that is modified using digital control signals. The number
of neurons in each TULIP-PE is determined based on the
computational requirements. The minimum number of neurons
needed to perform addition, comparison, maxpooling, and
RELU was found to be four, and was hence chosen for this
paper. All 4 neurons of a TULIP-PE share their inputs b
and c. This is done so that the neuron can fetch data from
its local register, and broadcast it to all other neurons. The
local registers are constructed using latches. As opposed to
global registers, the local registers allow the neurons to access
temporarily stored data faster, and also reduce the power
consumption per read/write access.

3This can be changed to implement a two-bit or three-bit carry-lookahead
addition. Doing so would simply require a binary neuron with a different
set of weights, and could increase the throughput at the expense of a small
increase in area and power. We plan to address this in future work.



Fig. 2: TULIP Flow: Each node of a BNN is decomposed into an adder-tree. Each sub-node of an adder-tree is decomposed into a network
of two-level threshold functions. The decomposed network is scheduled using reverse post-order schedule (Indicated using node numbers;
Unmarked red arrows indicate 1-bit input), on a TULIP-PE built using a cluster of four hardware neurons.

Fig. 3: The hardware neuron and its connections.

B. Decomposition and scheduling of an adder tree

In this section, we describe how a threshold function fij
in the BNN (Figure 2(a)) is computed on a single TULIP-PE
(Figure 2 (b)). The node fij computes the predicate S ≥ T ,
where S =

∑
i wixi. The adder tree shown in Figure 2(b)

is a binary decomposition of the S into partial sums, with
the leaf nodes (shown at the top) computing the sum of three
inputs. The computation of partial sums uses a reverse post
order (RPO) scheme, which schedules the computation of a
sum at a given node after both the sums associated with the
left and right subtrees rooted at its left and right nodes have
been computed. Therefore the number of bits required for the
output of a node is one more than the number of bits of its
inputs. In Figure 2(b), the numeric label shown inside a node
indicates its position in the RPO. The key property of the RPO
is that it minimizes the maximum amount of storage required
to store the intermediate results.

Consider the N-input adder tree shown in Figure 2b. The
adder-tree has blog2(N)c levels, assuming that the leaf nodes
are at level 0. Let v be a node at level i in the adder tree, and
vl and vr be its left and right subtrees (both at level i−1). Let
mi denote the maximum storage used for all computations up
to and including a node at level i. Since the node at level i
corresponds to an i + 1-input adder, the storage required for
the output of a node at level i is i + 2. Since, the adder tree
is balanced, without the loss of generality, we can assume vl

is scheduled before vr. To compute v, it is only required to
store the output of vl, which requires i+1 bits of storage. The
maximum storage used to compute vl is mi−1. Hence mi =
i+1+mi−1, with m0 = 2. Therefore, mi = (i2+3i)/2+2. As
the highest level is blog2Nc−1, the maximum required storage
will be (blog2(N)c2+blog2(N)c)/2+1. Therefore, an adder-
tree has a storage requirement complexity of O(log22(N)).

C. Addition and Accumulation Operation

For a node p in the adder tree, assume neurons N1 and N4
broadcast two operands from R1 and R4, using the threshold
function shown in Figure 4(a) bottom-right inset. Then, N2
and N3 will be used to generate the sum and carry bits of
p, over multiple cycles, using the threshold function shown in
Figure 4(a) top-right inset. Since the sum bits are computed
on N2, the final result of p will be stored in the local register
of N2, i.e. R2. Figure 4(a) demonstrates the schedule for 4-
bit addition (see node 15 of the adder-tree in Figure 2(b))
using two 4-bit operands x and y, i.e. {x3,x2,x1,x0} and
{y3,y2,y1,y0}. The final result of x+ y is stored in R2.

Now, consider nodes p, q, and r in the adder-tree, as shown
in Figure 4(b). r sums the results of p and q. Since the result
of p is stored in R2, the result of q is stored in R3 to allow
simultaneous reading of operands while computing r. r reads
R2 and R3 to generate its sum bits on N1, and carry on N4.
The memory used by the results of p and q can now be freed.
Each addition operation stores its result to a specific memory
location in the local registers so that the data in the memory
is not prematurely overwritten during RPO scheduling.

The adder-tree used in this paper handles up to 10-bit
addition on a TULIP-PE. However, this range can be further
extended by configuring the TULIP-PE for accumulation.
Numbers can be added to an accumulated term stored in
the local registers using a multi-cycle addition operation.
Figure 4(c) shows the addition of an input number p with



Fig. 4: Adder, Adder-tree and Accumulator Schedule

the accumulated term q. Since the same local register cannot
provide the operands and store the results simultaneously, the
storage of q is alternated between the R2 and R4, for each
new accumulation.

D. Comparison, Batch Normalization, Maxpooling, RELU
Operation

Comparison: A multi-cycle sequential comparator is im-
plemented using 3-input threshold functions, as shown in
Figure 5(a). To the best of our knowledge, this is the first
implementation of a sequential comparator that uses 3-input
neurons. Two n-bit numbers x and y that need to be compared
are serially delivered from LSB to MSB to the comparator that
returns the value of the predicate (x > y). In the first cycle,
the LSBs of both numbers are compared. In the ith cycle of
the comparison, if xi > yi, then the output is 1, and if xi < yi,
then the output is 0. If xi = yi, then the result of the (i−1)th

cycle is retained. The inset in Figure 5(a) shows the logic for
bitwise comparison. At the end of n cycles, the output is 1 if
x > y, and 0 otherwise. The schedule of a 4-bit comparison is
shown in Figure 5(a). The 4-bit inputs x and y are streamed
to the comparator either through the local registers or through
the input channels.

Batch Normalization: This operation performs biasing of
an input value in BNNs. For BNNs, it is realized by subtracting
the value of bias from the threshold T of the binary neuron,
as described in [28]. Therefore, batch normalization in TULIP
is implemented using the comparison operation.

Maxpooling: In a BNN, this operation is an OR operation
on a pooling window of layer outputs. This can be imple-
mented using the threshold gate shown in Figure 5(b). Each
of the neurons implement one four-input OR function, without
the need for local registers. The schedule for this operation
requires a single cycle as shown in Figure 5(b).

RELU: This implementation of RELU in TULIP is also an
extension of the comparator schedule shown above. In RELU,
if the input value is greater than threshold T, then the output
gets the value of the input, otherwise, it is 0. This is achieved
by ANDing the result of the input value with the comparator’s
result, using a 2-input threshold function [1,1;2].

E. Top Level View of the Architecture

The top-level TULIP architecture is shown in Figure 6. It
was designed to deliver high energy efficiency per operation
while matching the throughput for the state-of-the-art imple-
mentations. This architecture consists of four major types of
components: an image buffer, a kernel buffer, one or more
processing units, and a controller. The kernel buffer is a shift-
register which stores the weights of the BNN. Weights are
populated on-chip before the inputs are loaded. The image
buffer is a two-stage standard cell memory (SCM) named L2
and L1. Its use reduces off-chip communication (the SCM
schedule is based on the technique presented in [17]). In this
architecture, 32 input feature maps (IFMs)4 are loaded on-
chip into L2 on a pixel-by-pixel basis. Once L2 is loaded
with IFMs, L1 starts fetching the window of IFM pixels
needed for the convolution operation, on a window-by-window
basis. This window of input pixels is broadcasted to all the
processing units present in the design. The processing units
are responsible for performing the convolution. These units
also receive the appropriate weights from the kernel buffer.

A processing unit only triggers after necessary inputs and
weights are received. The inputs and weights are multiplied
using XNOR gates, to generate product terms. The processing
unit has two components for accumulating the product terms: a
MAC unit and eight TULIP-PEs. A TULIP-PE is used to handle
an output feature map (OFM) of the binary layers. Although
the TULIP-PEs are capable of handling the integer layers as
well, it would result in reduced throughput. This is because
the TULIP-PEs require several cycles for integer additions,
which becomes progressively worse as the size of the operands
increase. Hence, MACs are used for integer layers.

The controllers used in the MAC units are simple coun-
ters. However, for the TULIP-PEs, a reconfigurable sequence
generator is used. This sequence generator follows the RPO
schedule, and controls the local registers and the multiplexers
of the TULIP-PEs. The control signals are broadcast to all the
processing units. The design of the controller is simple and
has a negligible impact on the area and power of the overall
TULIP architecture. The TULIP architecture also incorporates

4Memory can be scaled to store fewer or more IFMs



Fig. 5: Comparator and Maxpooling Schedule

Fig. 6: TULIP Top Level Architecture: Controller configures the
processing units. Memory channels the input pixels and weights
through image and kernel buffers. The output of the processing units
is collected in the output buffers before sending back to the memory.

Hardware
Neuron [21]

Logical
Equivalent

X
Improve

Area (um2) 15.6 27 1.8X
Power(uW ) 4.46 6.72 1.5X

Worst Delay (ps) 384 697 1.8X

TABLE I: Hardware neuron versus standard cell neuron

a clock gating strategy whenever a part of the design is not
used. The necessary clock gating signals are also generated by
the controller.

Although the TULIP architecture locks its configuration to a
specific set of components for delivering weights and inputs, it
can easily be tailored for a given application. For example, if
a BNN does not have integer layers, then the MAC units can
be removed, and the multi-bit input buffers can be trimmed
to 1-bit input buffers. Various weight and input distribution
techniques, such as the one presented in [29] can also be used,
by stacking the processing units in a 2-D arrangement instead
of a 1-D configuration.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

The TULIP architecture was built based on the hardware
neuron described in [21]. The neuron was re-implemented in
a 40nm technology, programmed to [2,1,1,1;T], and charac-
terized across corners (SS 0.81V 125◦C, TT 0.9V 25◦C
and FF 0.99V 0◦C). The value of T is switched during run-

Single
PE Metrics

YodaNN MAC
(B)

TULIP-PE
(T)

Ratio(X)
(B/T)

Area(umˆ2) 3.54E+04 1.53E+03 23.18
Power(mW) 7.17 0.12 59.75

Cycles 17 441 0.038
Time period(ns) 2300 2300 1

Time(ns) 39 1014 0.038

TABLE II: Comparison of fully reconfigurable MAC unit [17]
with a TULIP-PE, for a 288 input neuron (Kernel =3x3)

time by changing the appropriate control signals of the neuron.
Table I demonstrates that this hardware neuron is substantially
better than its conventional CMOS standard cell equivalent
in terms of area, power, and delay. This is significant since
TULIP uses this neuron for all operations (computation of
partial sums, comparison, RELU, and maxpool). TULIP was
synthesized and placed using TSMC 40nm-LP standard cells
with Cadence Genus© and Innovus© (Figure 7). The VCD
file generated using real BNN workloads was used for power
analysis, to model switching activity accurately.

We compare TULIP with a recent BNN design named
YodaNN [17] which was designed in 65nm UMC technol-
ogy. To make a fair comparison, we implemented the entire
YodaNN design in the same technology as TULIP(40nm-LP
from TSMC), and synthesized, placed and routed both the
designs. Both the TULIP and YodaNN were designed for up
to 12-bit inputs, with binary weights. Therefore, for YodaNN,
we added clock gating for 11/12 input bits when binary layers
are evaluated. There are other ASIC architectures available,
such as XNORBIN [16], which use more advanced memory
techniques to improve energy efficiency. However, these ar-
chitectures do not support integer layers and are therefore not
suitable for comparison. Although [17] does not report the
throughput and energy efficiency for fully connected layers, we
estimate the throughput and power by performing an element-
wise matrix multiplication using the MAC units present in
their architecture.

B. Evaluation of TULIP-PE against MAC

In Table II, the 15-bit reconfigurable MAC unit based on
the design present in YodaNN [17] is compared against the
TULIP-PE module. The MAC unit used in YodaNN is capable
of handling 3x3, 5x5 and 7x7 kernel sizes. Note that both



Technology TSMC 40LP
Area 1.8 mm2

L2/L1/ 680K/233K/
Kernel Area 468K µm2

Processing Unit. Area 293K µm2

Controller Area 4520 µm2

# Std. Cells 656K
# Nets 647K

Wirelength (m) 23.9
# Metal Layers 6

Fig. 7: Layout of TULIP Architecture in TSMC 40nm-LP

the MAC unit and TULIP-PE are capable of handling integer
inputs and binary weights. In large BNN architectures such
as Alexnet [30], the initial layers are integer layers, while
the rest of the layers are binary. YodaNN uses MAC units
for all layers while TULIP uses TULIP-PEs for binary layers
and simplified MACs (which support only 5x5 and 7x7 kernel
windows) for integer layers. Since the computation technique
between YodaNN and TULIP differs only for binary layers,
the comparison of the MAC and the TULIP is done for the
binary layers. That is, both modules perform the weighted
sum for binary activations and binary weights of 288 inputs,
i.e. 3x3 kernel for 32 IFMs. Based on the Table II, we note
that the TULIP-PE is 23.18X smaller than the MAC unit and
consumes 60X less power. However, it consumes 27X more
time as compared to the MAC unit, since it performs bit-level
addition. The power delay product of a TULIP-PE is 2.27X
lower than the MAC unit, while at the same time being 23X
smaller than the MAC.

The use of an adder-tree based schedule helps the TULIP-
PEs deliver a better power-delay product than a conventional
MAC unit. Furthermore, since a MAC unit is not capable of
operations such as comparison, maxpooling, etc., the data is
sent to other parts of the chip for these operations in [17].
However, the TULIP-PE, is capable of preserving the data
locality and can perform the comparison and max-pooling
operations internally, without the need to move the data to
other modules, which saves additional energy.

C. Evaluation of the TULIP Architecture

The following notation is used for evaluating the TULIP ar-
chitecture. For 2-D convolution, let (x1, y1, z1) and (x2, y2, z2)
denote the dimensions of the IFMs and OFMs respectively. Let
the kernel window size be (k × k).

The number of processing units in TULIP can be scaled
to suit the application. However, for the sake of evaluation,
TULIP was designed with 32 simplified MAC units and 256
TULIP-PEs, to ensure that the chip area of Tulip matches
that of YodaNN. Note that the simplified MAC unit is not
reconfigurable, and hence consumes significantly lower area
and power than the MAC presented in YodaNN. Therefore,
for TULIP, convolution in done in batches of 32 OFMs at
a time for integer layers, and 256 OFMs at a time for binary
layers. Since the IFMs are re-fetched for each batch of OFMs,
they are fetched Z = z2/32 times for integer layers and z2/256
times for binary layers. The YodaNN architecture uses 32

Convolution
Layers Parts YodaNN TULIP

P Z P*Z P Z P*Z
1 (Integer) 4 1 3 3 1 3 3
2 (Integer) 1 2 8 16 2 8 16
3 (Binary) 1 4 12 48 8 2 16
4 (Binary) 1 6 12 72 12 2 24
5 (Binary) 1 6 8 48 12 1 12

TABLE III: Effect of input fetch requirements based on
Alexnet layers for YodaNN and TULIP. P: Number of times
partial products are computed. Z: Number of times inputs are
fetched into L2 and L1 buffers for OFM calculation.

fully reconfigurable MAC units, and occupies the same area
as TULIP. Therefore, the number of times YodaNN fetches
IFMs (Z) = z2/32. Additionally, when the kernel size is small
(k ≤ 5), the MAC units in both the designs can fetch twice
the number of IFMs. Since the TULIP can initiate more OFMs
for binary layers, it significantly reduces the number of times
an input needs to be fetched. For this paper, both the YodaNN
and TULIP architecture load 32 IFMs at a time on-chip. This
specification can however be changed to meet the application
requirements. If the total IFMs cannot fit on-chip, the OFMs
are generated in pieces of P partial results. These partial
results are later accumulated on-chip to generate the final
OFM. For both the architectures in this paper, P = z1/32.
The total number of operations is counted by considering
addition and multiplication separately. For a 2-D convolution
layer, the total multiply and accumulate operations in TULIP
are 2z1k

2x2y2z2, and for comparison of each accumulated
sum with T, it is x2y2z2. For Alexnet, Table III compares the
number of times the inputs need to be refetched (Z), and the
number of times the P partial products need to be computed
for both YodaNN and TULIP. Since both the designs use MAC
units for integer layers, there is no difference in both P and
Z. However, for binary layers, TULIP demonstrates 3X to 4X
improvement in overall input-refetch (indicated by P×Z) as
compared to the YodaNN architecture.

Table IV and Table V compare the characteristics of Yo-
daNN with TULIP. Table IV presents the results for the con-
volution layers and Table V presents the results for the entire
BNN. The TULIP architecture outperforms YodaNN in energy
efficiency by about 3X for the convolution layers. This is due
to the combined use of adder-tree based schedule, coupled
with clock gating. The energy efficiency also increases due to
better input re-use, which allows the throughput to improve
slightly. Considering all layers, TULIP’s energy efficiency is
2.4X better than YodaNN. This is because memory consumes
significantly more energy than the processing units when
executing fully connected layers, which slightly diminishes
the energy efficiency achieved in the convolution layers. The
results also show that the gains are consistent across different
neural networks.

VI. CONCLUSION

This paper is the first implementation of TULIP, a BNN
accelerator that uses current-mode binary neurons, and demon-
strates up to 3X improvement in energy efficiency against a



Conv only BinaryNet AlexNet
Dataset CIFAR10 Imagenet

YodaNN TULIP (X) YodaNN TULIP (X)
Op.(MOp) 1017 1017 (1.0) 2050 2050 (1.0)

Perf.(GOp/s) 47.6 49.5 (1.0) 72.9 79.1 ( 1.1)
Energy(uJ) 472.6 159.1 (3.0) 678.8 224.5 (3.0)
Time(ms) 21.4 20.6 (1.0) 28.1 25.9 (1.1)

En.Eff.
(TOp/s/W) 2.2 6.4 (3.0) 3.0 9.1 (3.0)

TABLE IV: Comparison of YodaNN with TULIP architecture
for accelerating convolution layers of standard datasets.

All Layers BinaryNet AlexNet
Dataset CIFAR10 Imagenet

YodaNN TULIP (X) YodaNN TULIP (X)
Op.(MOp) 1036 1036 (1.0) 2168 2168 (1.0)

Perf.(GOp/s) 37.7 35.8 (0.9) 12.3 13.1 ( 1.1)
Energy(uJ) 495.2 183.9 (2.7) 1013.3 427.5 (2.4)
Time(ms) 27.5 28.9 (0.9) 176.8 165.0 (1.1)

En.Eff.
(TOp/s/W) 2.1 5.6 (2.7) 2.1 5.1 (2.4)

TABLE V: Comparison of YodaNN with TULIP for acceler-
ating entire BNNs of standard datasets

state of the art BNN hardware accelerator [17], without using
the standard low power techniques such as voltage scaling and
approximate computing. The TULIP design uses the same area
as [17], and slightly improves the throughput. The gains are
achieved because TULIP uses an adder-tree based schedule, in-
stead of an accumulator. The gains are further boosted through
the use of processing elements (TULIP-PEs) built using a
special arrangement of hardware neurons. These TULIP-PEs
have extremely low area and power footprint compared to the
existing realizations of the same function. As a result, TULIP
can deploy an order of magnitude more PEs as compared to
a MAC-based architecture for the same chip area.
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