
PREPRINT - accepted at IEEE International Conference on Computer Design (ICCD), 2021.
1

QFlow: Quantitative Information Flow for
Security-Aware Hardware Design in Verilog

Lennart M. Reimann, Luca Hanel, Dominik Sisejkovic, Farhad Merchant and Rainer Leupers
Institute for Communication Technologies and Embedded Systems, RWTH Aachen University, Germany

{lennart.reimann, hanel, sisejkovic, merchantf, leupers}@ice.rwth-aachen.de

Abstract—The enormous amount of code required to design
modern hardware implementations often leads to critical vulner-
abilities being overlooked. Especially vulnerabilities that compro-
mise the confidentiality of sensitive data, such as cryptographic
keys, have a major impact on the trustworthiness of an entire
system. Information flow analysis can elaborate whether infor-
mation from sensitive signals flows towards outputs or untrusted
components of the system. But most of these analytical strategies
rely on the non-interference property, stating that the untrusted
targets must not be influenced by the source’s data, which is
shown to be too inflexible for many applications. To address
this issue, there are approaches to quantify the information
flow between components such that insignificant leakage can
be neglected. Due to the high computational complexity of
this quantification, approximations are needed, which introduce
mispredictions. To tackle those limitations, we reformulate the
approximations. Further, we propose a tool QFlow with a higher
detection rate than previous tools. It can be used by non-
experienced users to identify data leakages in hardware designs,
thus facilitating a security-aware design process.

Index Terms—hardware security, hardware Trojans, quantita-
tive information flow, vulnerability, confidentiality

I. INTRODUCTION

Many security issues are either caused accidentally by inex-
perienced hardware designers or by malicious modifications,
such as hardware Trojans [1] [2]. In the rest of this work, those
issues are referred to as vulnerabilities. The vulnerabilities
should be identified and removed at an early design stage,
as later modifications result in higher costs or a longer time-
to-market. They can be identified using suitable test models,
but the required test models become more computationally ex-
tensive with the increasing design complexity [3], thus not all
test cases can be elaborated in a reasonable time. Additionally,
theorem provers [4], property checkers, and formal approaches
give more certainty, but often require special expertise to be
used properly and suffer from scalability issues.

One of the critical features of hardware security is the
confidentiality of data. Vulnerabilities endangering the con-
fidentiality of sensitive signals, such as cryptographic keys,
can be implemented easily and stay undetected in common
test cases, as the trigger might not be present in the pro-
gram code and data. Therefore, we focus on protecting the
confidentiality in this work. Information flow analysis is an
evolving research area and used as a method to detect hardware
vulnerabilities concerning the confidentiality of data carried
by digital circuits. A variety of solutions exist working on
virtual prototypes [5] or Register-Transfer Level (RTL) [6]–[8]
to analyze the flow of information of marked signals, either
dynamically (tracking) or statically (analysis). As dynamic
elaborations analyze the information flow at runtime, they can
only guarantee the security of a hardware design for given test

cases [5]. Most of these tools rely on analyzing the flow of
information for the non-interference property. But this prop-
erty, which forbids the communication between trusted and un-
trusted hardware components, can often not be implemented,
as many applications rely on such a communication. State-
of-the-art methods, such as QIF-Verilog [9], use Quantitative
Information Flow (QIF) analysis, which allows a quantification
of the actual leakage using developed metrics that have been
shown to be suitable to detect leakages in digital systems
[10] [11]. This analysis allows a new classification of leakage
paths supporting the identification of data leakages. However,
in this work, QIF-Verilog is shown to be unreliable in the
identification of certain design vulnerabilities. Therefore, we
introduce a more suitable methodology, QFlow, capable of
detecting even the new vulnerabilities.

The major contributions of this paper are: i) An operational
tool that uses a suitable QIF metric, called QModel, to quantify
the trustworthiness of a Verilog hardware description regarding
the protection of its sensitive signals, e.g., cryptographic keys
or user data, ii) A secure approximation of state-of-the-art
QIF formulas that removes the possibility of false negative
predictions, while only enabling false positives, as shown
empirically and iii) User-adjustable input probabilities for the
information theory equations on bit level.

II. PRELIMINARIES
A. Attack Model

We focus on vulnerabilities that are implemented during the
RTL-design process. Those vulnerabilities can be exploited
by an adversary after production. In this work, we assume
that the attacker can observe the outputs and the non-secret
inputs of the selected hardware modules at a random moment
in time. These outputs might leak signals carrying sensitive
information, such as user data, via leakage paths. Whether
those observations are obtained by physical access to the
design or via other untrusted hardware in the System-on-Chip
(SoC) is not considered. Additionally, the intruder cannot set
any of the input values of the module under attack. During the
attack, the complete design structure is known to the adversary.

B. Information Flow Analysis

The designer is interested in protecting certain parts of the
hardware carrying sensitive data. For this purpose, previous
works used labels to classify the sensitivity of hardware
models and the data that is carried in them [12]. In most
information flow models the system of interest is separated
into two partitions: High (H) and Low (L). The H label
is commonly used to describe trusted hardware components
processing sensitive data. When labeling the hardware com-
ponents, the trusted components would be labeled H, while

ar
X

iv
:2

10
9.

02
37

9v
2

 [
cs

.C
R

]
 2

2
D

ec
 2

02
1

PREPRINT - accepted at IEEE International Conference on Computer Design (ICCD), 2021.
2

the remaining components are labeled L. These are abstract
labels, but the labels are commonly applied by marking the
component’s hardware description with their respective label
[6]. The labels H and L are propagated throughout the system
related to the dependency of the signals.

C. Quantitative Information Flow

In many previous works [13] [14], the vulnerability, a metric
for the weakness or simplicity to guess the secret, has shown
to be a reliable function when quantifying the information
flow. The Bayes Vulnerability represents a special case of the
g-vulnerability, when the adversary has only a single guess
of the secret after one observation of the outputs and is only
rewarded for a correct guess [15] [10]. For a secret H with a
probability distribution of πH , the vulnerability is

V1[πH] = max
h∈H

πh, (1)

where πh is the probability of the symbol h ∈ H . In this work,
we are interested in the leakage caused by an information flow
from a secret H to the outputs of a system O. Therefore,
the Posterior Bayes Vulnerability V1[πH . C] (PBV) has to
be considered as well. The posterior vulnerability shows the
vulnerability after observing the outputs O, if the secret bits
H have been applied to the deterministic channel C (πH .C):

V1[πH . C] =
∑
o∈O

max
h∈H

Jo,h. (2)

Here, J represents the joint distribution for the variables in the
index. The channel is an abstract definition of the hardware
system. When combining the two Bayes Vulnerabilities, the
so-called Multiplicative Bayes Leakage L×1 is computed as:

L×1 :=
V1[π . C]

V1[π]
. (3)

As the leakage computation for a complete hardware de-
scription would be infeasible, approximations are needed.

III. QFLOW
A. Basic Functionality

Our QIF-metrics are used to quantify the information flow
from the ’High’ sources, the marked signals, via all the
operations that are applied on the secret, to the ’Low’ targets.
All output ports of the top design are automatically marked as
’Low’. In contrast to QIF-Verilog, we preprocess the abstract
syntax tree to allow a bit-wise analysis to track the information
flow in more detail. We compute the leakages in several steps.
First we build channels consisting of Boolean equations repre-
senting the partitioned hardware. Next, the input probabilities
and PBV for the channels are computed and combined with
the input leakages of the channel to compute the total leakages
for every single secret bit.

B. Approximation Assumptions

Certain assumptions are needed to reduce the amount of
computations needed to determine leakage values for the
secrets: i) The secret and known bits are independent of
each other, ii) Compute Probabilities: The inputs of every
channel are independent of each other, iii) Compute Posterior
Vulnerability: The inputs of every channel are independent
of each other. Additionally for COMPARISON, ADDITION,

and SUBTRACTION operations, the high inputs are assumed
to be uniformly distributed and iv) Compute Leakage: The
dependency of input leakages is appraised with Eq. (8). As
the low inputs can be observed by the adversary as well, they
need to be integrated into the equation for the PBV.

C. QModel

The assumptions and appraisals lead to our mathematical
model, called QModel, implemented in our tool QFlow. This
model is further explained below. As mentioned before, we
modified the equation for the PBV (Eq. (2)) to include the low
input signals L. They are added to the equation as additional
observable parameters—similar to the outputs O:

V1[π . C|L] := V1[H|L,O] :=
∑
o∈O
l∈L

max
h∈H

Jo,l,h, (4)

with the joint probability distribution Jo,l,h,
Jo,h,l = πo|h,l · πh,l. (5)

A feasible way to compute the leakage in a channel cascade
is needed. Thus, we derived the following statement for the
leakage LX→Z (in bit) of a Markov chain:

LX→Z := LX→Y ·
LY→Z
LY→Z,max

. (6)

For a Markov chain of channels X → Y → Z, the input values
X are converted to the output Z with Y as an intermediate
value. The data processing inequality states that no processing
of Y can increase the information that Y has about X [15].
Thus, we weigh the leakage of channel X → Y with the
leakage of the second channel, scaled with its maximum possi-
ble leakage. When inserting the multiplicative Bayes Leakage
(Eq. (3)) and the maximum leakage for the second channel,
the reciprocal of the Prior Bayes Vulnerability (Eq. (1)), we
derive the following equation:

LX→Z = LX→Y ·
V1(πY BCY →Z)

V1(πY)

1
V1(πY)

= LX→Y · V1(πY B CY→Z).

(7)

The input leakage into a channel (now in bit) can be further
approximated as stated before in the Section III-B using [16]

L ≤
∑

i∈Inputs

Li, (8)

resulting in our final equation for the leakage of a secret bit
Hj in a channel cascade LC,Hj

. The probability distribution
of the secret channel inputs is represented by πHI and is used
to compute the overall PBV of that channel:

LC,Hj :=
∑

i∈Inputs

Li,Hj · V1(πHI B C). (9)

D. Toolflow

The general toolflow of QFlow is illustrated in Fig. 1.
1) ParseArgs: Some parameters and the Verilog code are

passed to the program. The signal that is supposed to stay
secret is marked as ’High’.

2) QIF-Parser: The QIF-parser integrates the open-source
tool PyVerilog, which is responsible for parsing Verilog and
returning a graph of binds. A bind in such a graph mostly
represents a single line of RTL code with terminal symbols,

PREPRINT - accepted at IEEE International Conference on Computer Design (ICCD), 2021.
3

Parse

args

QIF-

Parser

PyVerilog

Compute

dependencies

& merge

Compute

probabilities

Compare with

two

thresholds

List of

unleaked

bits

List of

bits that
might be

leaked

Leaked

bits

Compute

leakage

vulnerabilities
&

Outputs

QFlow

Verilog Descriptions Additional ArgumentsInputs

Fig. 1: General toolflow of QFlow.

such as signals and constants as its leaves. As we intend to
work on the bit level of the design, we need to process the
bind tree. Then, each tree has an output bit as the root and
only input signals and constants can be leaves. An example
for such a tree can be found in Fig. 2. For the given circuit in
Fig. 2a, the tree structure is illustrated for the first bit of the
output in Fig. 2b. The leaves (green) consist of the inputs of
the circuit and constants. Operations (yellow) are connected to
their outputs (orange) until an output, the root (red), is reached.

3) Compute Dependencies & Merge: Afterwards, the tool
computes the dependencies and starts merging nodes. The
dependencies are needed to find loops in the tree structure
to avoid merging them infinitely. Merging is done to increase
the channel sizes, thus reducing the number of channels that
are cascaded. Every cascade of channels introduces an error
in the computed leakage, due to the approximations done
with the equations presented before. A negative error can be
introduced due to the assumption of independent channel in-
puts, whereby the simple addition of input leakages introduces
a positive error. In this paper, it is shown empirically that
the positive error outweighs the negative one. The merging
is stopped when the maximum number of input bits in the
Boolean expression (max_channel_inputs) is reached.
This is done to reduce the complexity for the next step,
computing the probabilities. Furthermore, sequential branches
are not merged as this may result in a security risk and
misinterpretation of hardware vulnerabilities, which introduces
an additional positive error. The example’s tree was merged
with max_channel_inputs=3, as shown in Fig. 2c.

4) Compute Probabilities: The merged trees are forwarded
to the ’Compute Probabilities’ function. Here, the output
probabilities of every channel input bit are computed. The
probability of the outputs is calculated by multiplying the input
probabilities for a given case because of the assumed indepen-
dence. An example for the computation of the probabilities is
shown in Fig. 2c with uniform input probabilities.

5) Compute Vulnerability & Leakage: All the computed
probabilities are written into the respective nodes. Next, it
is possible to compute the posterior vulnerabilities for every
channel using Eq. (4). All the example’s computed proba-
bilities are illustrated in Fig. 2c. For the computation of the
PBV, the joint probability distributions need to be computed
with Eq. (5) for every channel. Furthermore, the leakage of
the input bits is set for every secret bit. If multiple inputs
hold information about a secret bit, their leakage is added

module example (
High i n p u t [1 : 0] i ,
i n p u t low ,
o u t p u t [1 : 0] o) ;

w i r e k , s , t , u ;

a lways @(*) b e g i n
k = i [1] & low ;
t = ˜ low ;
s = i [0] & k ;
u = i [0] & i [1] ;
o [0] = s ˆ t ;
o [1] = u | 0b1 ;
end
endmodule

(a) Verilog code.

low

t

NOT

s

AND

o[0]

XOR

ki[0]

AND

i[1]low

(b) Parsed bind tree.

low
s

BF1

o[0]

BF2

i[0] i[1]

BF1: s = i[0] & low & i[1]

BF2: o[0] = s ^ (~low)

low

(c) With probabilites.

low
s

BF1

o[0]

BF2

i[0] i[1]

BF1: s = i[0] & low & i[1]

BF2: o[0] = s ^ (~low)

low

(d) With vulnerab. & leakages.

Fig. 2: Example for the computational steps for a small circuit.

beforehand to appraise possible dependencies. From that point
on, the leakage of every secret bit is multiplied with the PBV
of the current channel. For every output bit, the leakages for
all secret bits that influence it are computed by using the
Eq. (9) over all channels starting at the leaves. Finally, the
total leakage for every secret bit is computed by adding their
leakage from every output bit.

6) Compare with two Thresholds: Now that the leakage
values for the different secret input bits are computed, we
need to determine, which of the data paths are actually a
vulnerability in the system. We determine a threshold and
compare our computed value for every secret bit to it.

7) Classification: After the accumulated leakages for every
bit that is labeled with ’High’ is computed and they have been
compared to the thresholds, the leakage paths can be written
out. This is done in three groups: Paths that leak (higher than
detection threshold), paths that might leak (warning threshold),
and paths that do not leak (below both thresholds). For the
example, this is shown with the red connections in Fig. 2d.

IV. EVALUATION

For the evaluation, multiple open-source benchmarks were
used to show the efficiency and flexibility of QFlow in
detecting security vulnerabilities concerning the confidentiality
of data. During the design process, the hardware designer
is capable of elaborating the security of certain signals by
marking them with ’High’ inside his code. A second parameter
that we alternate during the experimentation is the probability
of the high input bits. This is done to show the influence of
the probability on the leakage and illustrates the capability
of the tool to emphasize the detection of hardware Trojans
using controllable triggers. The same benchmarks are used to
elaborate QIF-Verilog as well, thus they allow a comparison.
In the beginning, the required thresholds were determined by

PREPRINT - accepted at IEEE International Conference on Computer Design (ICCD), 2021.
4

0 2 4 6 8
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

max_channel_inputs

L
ea

ka
ge

(b
it)

mean
min

(a) Minimum and mean leakage.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

probability of all secret bits being 1s

L
ea

ka
ge

(b
it)

(b) Leakage over probabilities.

Fig. 3: Leakage for two pipelined AES rounds varying
max_channel_inputs (left). Leakage for AES-T100 AES
varying probabilities max_channel_inputs=5 (right).

applying QFlow to two pipelined rounds of AES. This was
done for uniformly distributed inputs, as they allow the highest
leakage, leading to a more general threshold, while vary-
ing max_channel_inputs. For most of the elaborations,
AES and RSA benchmarks from Trust-Hub [17] are used,
which offer cryptographic accelerators in Verilog (and VHDL
[18]). They offer a variety of Trojans using either triggers or
continuously write out the keys over additional output ports.
Furthermore, we implemented additional benchmarks to prove
QFlow’s functionality compared to QIF-Verilog.

A. Results

At first, we analyzed a single AES benchmark for varying
high input probabilities to illustrate the flexibility of QFlow
and show the meaning of leakage. For the analysis, the
probability of the 128-bit key was altered from 0 to 1 for all
secret bits equally. The results (Fig. 3b) show that although
the leakage for the system is 0 for the higher and lower
probabilities, the attacker can still guess the keys as the
Prior Bayes Vulnerability is at 1 bit. Even a solid hardware
implementation cannot protect an insecure secret.

As mentioned before, the threshold was determined by
applying QFlow to a Verilog implementation of two pipelined
rounds of AES (by reducing one of the AES benchmarks).
Two complete rounds of AES are supposed to lead to a
full diffusion [19]. Fig. 3a shows the minimum and average
value of the 128-bit leakages for the keys with a varying
max_channel_inputs value. As expected, the leakage
drops, when more operations are merged into a single channel,
reducing the error introduced by Eq. (8) and the assumed
independence of inputs. The smallest mean and min leakages
that were computed were chosen as the threshold for the
warning (min, 2.89154·10−3) and threat (mean, 1.53939·10−2)
for the toolflow. The leakage did not drop after setting the
maximum number of input values during the merge to 5.
Thus, the value for max_channel_inputs is set to 5 for
all following elaborations. After the threshold was determined,
the first analyses on the AES benchmarks were conducted. The
results of these experiments can be seen in Fig. 4, illustrating
the computed leakage for two different Trojans over the 128-
bit key. The T-1200 benchmark leaks the first 8 bit of the key,
which was XOR-ed with a value that can be determined by the
intruder value. Thus, the XOR is not reducing the information
content. Additionally, the Trojan is triggered continuously.

0 127
10−3
10−2
10−1
100

Secret bitsL
ea

ka
ge

(b
it)

(a) Leakage of the AES-T1200 key bits.

0 127
10−3
10−2
10−1
100

Secret bitsL
ea

ka
ge

(b
it)

(b) Leakage of the AES-T1600 key bits.

Fig. 4: Leakages (Thresholds: Det. (Red) and Warn. (Orange)).

This behavior is shown in Fig. 4a. The first 8 bits are leaked
completely, while the other bit’s leakages are low, due to the 10
rounds of AES. A second Trojan leaks the entire 128-bit key
sequentially, when a certain condition is set. This condition
and the sequential communication, reduces the likelihood of
the attacker to gain information reducing the leakage to around
0.22 bits. For both benchmarks all leakages are detected and
can be assigned to the actual secret bits. Table I gives a
summary of the experimental results for the AES and RSA
benchmarks each containing a variety of Trojans. All leakages
are detected, but one false positive detection and warning are
given out for the RSA benchmarks. A short runtime of around
145 to 250s supports the claim that QFlow can assist designers
in combination with their electronic design automation tools
to allow a fast, yet security-aware design process. If secret
bits are leaked entirely, it is detected as such with a leakage
value of 1. If additional operations are executed on the values,
or triggers reduce the probability of them being leaked, their
leakage value also reduces, as they are less likely to be leaked,
posing a smaller threat for the given attack scenario.

B. Additional Benchmarks

As mentioned before, we implemented some benchmarks
and used the designs of the AES-T series from Trust-Hub as
a basis. The modifications to the designs are explained in Fig.
5, staying with the naming convention and introducing T2100,
T2200, and T2300. As QIF-Verilog ignores data dependencies
and increases its uncertainty value depending on what opera-
tion is conducted on the secret, disregards which signals are
combined, certain vulnerabilities are introduced. We rebuilt
QIF-Verilog [9] and tested it on those benchmarks. The results
can be seen in Fig. 5 d). Trojans that use operations that
deconcatenate the key with itself followed by a concatenation,
are not detected, as the tool identifies the operation as an
increase in the uncertainty caused by the deconcatenation,
although the value is not changed at all. The other Trojans are
not explained further but are described in detail in Fig. 5a-c.
QFlow was able to detect all those Trojans using the adapted
equations and the merging approach to identify dependencies
and quantify the leakage more accurately. Limitations: As
mentioned before, the attack model for the designed QIF-
model states that the attacker cannot set any input values,
but can only observe the output once at a random moment.
Knowing that the designer is not aware or certain about
the design’s vulnerability, they cannot know the inputs or

PREPRINT - accepted at IEEE International Conference on Computer Design (ICCD), 2021.
5

TABLE I: AES- and RSA-Trojan benchmark leakages [20] [17](”AL” = Average leakage).

Benchmark #Detected Avg. Det. #FP Det. #FP Warn. #Unleaked Avg. Sec. Time Trojan Type
/#Actual Leakage /AL /AL /# Actual Leakage (s) leaking information

AES-T100 8/8 1 0/- 0/- 120/120 2.66 · 10−4 246 Trigger:always; Payload:covert channel
AES-T200 8/8 1 0/- 0/- 120/120 2.66 · 10−4 214 Trigger:always; Payload:covert channel
AES-T400 128/128 0.183 0/- 0/- 0/0 - 245 Trigger:input; Payload:RF signal
AES-T700 8/8 1 0/- 0/- 120/120 2.66 · 10−4 236 Trigger:input; Payload:covert channel
AES-T800 8/8 1 0/- 0/- 120/120 2.66 · 10−4 232 Trigger:input; Payload:covert channel
AES-T900 8/8 1 0/- 0/- 120/120 2.66 · 10−4 231 Trigger:counter; Payload:covert channel
AES-T1000 8/8 1 0/- 0/- 120/120 2.66 · 10−4 232 Trigger:input; Payload:covert channel
AES-T1100 8/8 1 0/- 0/- 120/120 2.66 · 10−4 238 Trigger:input; Payload:covert channel
AES-T1200 8/8 1 0/- 0/- 120/120 2.66 · 10−4 233 Trigger:counter; Payload:covert channel
AES-T1600 128/128 0.222 0/- 0/- 0/0 - 234 Trigger:input; Payload:RF signal
AES-T1700 128/128 0.295 0/- 0/- 0/0 - 148 Trigger:counter; Payload:RF signal
RSA-T100 33/32 0.5 1/0.023 1/0.006 30/32 6.3 · 10−5 196 Trigger:input; Payload:via Ciphertext
RSA-T300 33/32 0.5 0/0.023 1/0.023 30/32 6.3 · 10−5 191 Trigger:counter; Payload:via Ciphertext

/ / I n TSC . v
module TSC(
i n p u t r s t ,
i n p u t c lk ,
i n p u t [127 : 0] key ,
o u t p u t [63 : 0] l o a d
) ;
r e g [63 : 0] l o a d ;
r e g [63 : 0] tmp0 , tmp1 ,

tmp2 , tmp3 ;

g en va r i ;
g e n e r a t e
f o r (i =0 ; i < 6 4 ; i = i +1)
b e g i n
a lways @ (posedge c l k)
b e g i n

tmp0 [i] <= key [i] ;
tmp1 [i] <= tmp0 [i] ;
tmp2 [i] <= tmp1 [i] ;
tmp3 [i] <= tmp2 [i] ;
l o a d [i] <= tmp3 [i] ;

end
end
e n d g e n e r a t e

endmodule

(a) AES-T2100

/ / I n TSC . v
module TSC(
i n p u t r s t ,
i n p u t c lk ,
i n p u t [127 : 0] key ,
o u t p u t [63 : 0] l o a d
) ;

r e g [63 : 0] l o a d ;
r e g [63 : 0] tmp0 , tmp1 ;
r e g [63 : 0] tmp2 , tmp3 ;
r e g [63 : 0] tmp4 , tmp5 ;

a lways @ (posedge c l k)
b e g i n

tmp0 <= key [63 : 0]
& key [63 : 0] ;

tmp1 <= key [63 : 0]
| key [63 : 0] ;

tmp2 <= tmp0 ˆ tmp1 ;
tmp3 <= tmp0 | tmp1 ;
tmp4 <= tmp2 ˆ tmp3 ;
tmp5 <= tmp3 & tmp3 ;
l o a d <= tmp4 | tmp5 ;

end
endmodule

(b) AES-T2200

/ / I n t o p . v
TSC T r o j a n (r s t , c lk ,

key , s t a t e ,
C a p a c i t a n c e) ;

/ / I n TSC . v
module TSC(
i n p u t r s t ,
i n p u t c lk ,
i n p u t [127 : 0] key ,
i n p u t [127 : 0] in ,
o u t p u t [63 : 0] l o a d
) ;
r e g [63 : 0] l o a d ;
r e g [127 : 0] tmp0 , tmp1 ;
r e g [127 : 0] tmp2 , tmp3 ;
r e g [127 : 0] tmp4 ;

a lways @ (posedge c l k)
b e g i n

tmp0 <= i n ˆ key ;
tmp1 <= tmp0 ˆ i n ;
tmp2 <= tmp1 ˆ i n ;
tmp3 <= tmp2 ˆ i n ;
tmp4 <= tmp3 ˆ i n ;
l o a d <= tmp4 [63 : 0] ;

end
endmodule

(c) AES-T2300

AES-Benchmarks
T2100 T2200 T2300

QIF-Verilog (rebuilt)
Time (s) 24.2 23.7 22.1

Accu. Uncertainty 379 320 384.0
Threshold 318.72 318.72 318.7

Detec.? No No No
QFlow

Time (s) 298 297 292
Total Leakage 64.03 64.03 64.03

Detec.? Yes Yes Yes

(d) Leakages of new benchmarks.

Fig. 5: New benchmarks to show the vulnerabilities in QIF-Verilog. Three Trojans leaking 64 bit.

triggers that make the circuit most vulnerable. This reduces
the computed leakage compared to the actual leakage for
highly unlikely leakage paths. Furthermore, hardware Trojans
or unintentional vulnerabilities that leak a low amount of
information over a longer period of time might not be detected.

V. CONCLUSION

In this publication, we introduced QFlow, a tool allowing
the hardware designer to create a more security-aware design
process using Quantitative Information Flow. It was shown that
by using a suitable approximation, the hardware design can be
separated into several channels to reduce the computational
complexity, when independence of the channel’s inputs is
assumed. However, this dependency needs to be considered
for merging leakage paths. The tool was proven to be more
reliable for the defined attack model than the state-of-the-art
tools. A simple usage and the acceptable computation time,
support the claim that QFlow allows a security-aware design
process that can be conducted by inexperienced users.

REFERENCES

[1] S. Bhunia et al., “The hardware trojan war: Attacks, myths, and
defenses,” Springer International Publishing, 2018.

[2] D. Šišejković et al., “Scaling logic locking schemes to multi-module
hardware designs,” in Architecture of Computing Systems – ARCS 2020.

[3] T. Marchok et al., “Complexity of sequential ATPG,” 1995, pp. 252–261.
[4] X. Guo et al., “Scalable SoC trust verification using integrated theorem

proving and model checking,” in 2016 IEEE HOST, 2016, pp. 124–129.

[5] M. Hassan et al., “Early SoC security validation by VP-based static
information flow analysis,” in IEEE/ACM ICCAD, 2017, pp. 400–407.

[6] D. Zhang et al., “A hardware design language for timing-sensitive
information-flow security,” SIGARCH Comput. Archit. News, 2015.

[7] X. Li et al., “Sapper: A language for hardware-level security policy
enforcement,” SIGPLAN Not., 2014.

[8] X. Li et al., “Caisson: A hardware description language for secure
information flow,” SIGPLAN Not., 2011.

[9] X. Guo et al., “QIF-Verilog: Quantitative information-flow based hard-
ware description languages for pre-silicon security assessment,” HOST
’19.

[10] G. Smith, “On the foundations of quantitative information flow,” in
Foundations of Software Science and Computational Structures, 2009.

[11] M. S. Alvim et al., “Measuring Information Leakage using Generalized
Gain Functions,” in Computer Security Foundations. IEEE, 2012.

[12] A. Ferraiuolo et al., “Verification of a practical hardware security ar-
chitecture through static information flow analysis,” SIGARCH Comput.
Archit. News, 2017.

[13] S. H. Hussein, “Refining a quantitative information flow metric,” 2012
5th NTMS, May 2012.

[14] J. Zhu et al., “Poster: on quantitative information flow metrics.” 2011.
[15] M. S. Alvim et al., The Science of Quantitative Information Flow, ser.

Information Security and Cryptography, 2020.
[16] M. Boreale, “Quantifying information leakage in process calculi,” in

Automata, Languages and Programming, M. Bugliesi et al., Eds., 2006.
[17] B. Shakya et al., “Benchmarking of hardware Trojans and maliciously

affected circuits,” Journal of Hardware and Systems Security, 2017.
[18] “Vhd2vl,” visited 2021-05-27. [Online]. Available: https://github.com/

ldoolitt/vhd2vl
[19] J. Daemen et al., The Design of Rijndael: AES - The Advanced

Encryption Standard, 1st ed. Springer, 2002.
[20] H. Salmani et al., “On design vulnerability analysis and trust bench-

marks development,” in 2013 IEEE 31st ICCD, 2013.

https://github.com/ldoolitt/vhd2vl
https://github.com/ldoolitt/vhd2vl

	I Introduction
	II Preliminaries
	II-A Attack Model
	II-B Information Flow Analysis
	II-C Quantitative Information Flow

	III QFlow
	III-A Basic Functionality
	III-B Approximation Assumptions
	III-C QModel
	III-D Toolflow
	III-D1 ParseArgs
	III-D2 QIF-Parser
	III-D3 Compute Dependencies & Merge
	III-D4 Compute Probabilities
	III-D5 Compute Vulnerability & Leakage
	III-D6 Compare with two Thresholds
	III-D7 Classification

	IV Evaluation
	IV-A Results
	IV-B Additional Benchmarks

	V Conclusion
	References

