2209.04766v3 [cs.LG] 24 Feb 2023

arxXiv

Towards Sparsification of Graph Neural Networks

Hongwu Peng*®, Deniz Gurevin*®, Shaoyi Huang*, Tong Geng f, Weiwen Jiang ¥, Omer Khan*,
and Caiwen Ding*
*University of Connecticut, CT, USA. TUniversity of Rochester, NY, USA. iGeorge Mason University, VA, USA.
*{hongwu.peng, deniz.gurevin, shaoyi.huang, khan, caiwen.ding} @uconn.edu,
Ttgeng@ur.rochester.edu, iwjiangS@gmu.edu

Abstract—As real-world graphs expand in size, larger GNN
models with billions of parameters are deployed. High parameter
count in such models makes training and inference on graphs
expensive and challenging. To reduce the computational and
memory costs of GNNs, optimization methods such as pruning the
redundant nodes and edges in input graphs have been commonly
adopted. However, model compression, which directly targets
the sparsification of model layers, has been mostly limited to
traditional Deep Neural Networks (DNNs) used for tasks such
as image classification and object detection. In this paper, we
utilize two state-of-the-art model compression methods (1) train
and prune and (2) sparse training for the sparsification of weight
layers in GNNs. We evaluate and compare the efficiency of both
methods in terms of accuracy, training sparsity, and training
FLOPs on real-world graphs. Our experimental results show
that on the ia-email, wiki-talk, and stackoverflow datasets for
link prediction, sparse training with much lower training FLOPs
achieves a comparable accuracy with the train and prune method.
On the brain dataset for node classification, sparse training uses
a lower number FLOPs (less than 1/7 FLOPs of train and prune
method) and preserves a much better accuracy performance
under extreme model sparsity. Our model sparsification code
is publicly available on GitHub'.

Index Terms—graph, GNN, sparsification, model compression,
sparse training, Surrogate Lagrangian Relaxation (SLR)

I. INTRODUCTION

Graph learning is an emerging branch in deep learning
research that aims to reduce human effort in making tac-
tical real-time decisions in applications, such as computer
vision [1], traffic forecasting [2], autonomous systems [3],
drug discovery [4], and social influence [5]. Graph learning
architectures that combine the node embeddings of a graph
into neural network models have been studied and proposed,
such as GNNs [6], Graph Convolutional Networks (GCN) [7],
GraphSAGE [8], and Graph Attention Networks (GAT) [9].
An example of GCN is given in Fig. 1, the input of GCN
is the graph structure and embedding. Each layer of GCN
will aggregate the node’s adjacent embedding and conduct
a linear transformation with non-linear activation. The GCN
final output is the prediction result for tasks.

Increasing real-world graph sizes lead to the deployment of
large GNN models with billions of parameters [10], [11]. For
example, Pinterest’s PInSAGE [12] and Alibaba’s AliGraph
[13] operate on graphs with billions of user/item embeddings
(e.g., 492 million vertices, 6.8 billion edges for AliGraph). As
model sizes continue to grow, GNN training has an outsize

YH. Peng and D. Gurevin contributed equally to this work.
Uhttps://github.com/HarveyP123/ICCD_SpTrn_SLR

Input GCN layer 1 GCN layer 2 Output

Graph structure Graph structure

i

Prediction

-

Fig. 1: Graph convolution network structure.

Embedding

4
i

computational cost. Training such large-scale GNNs require
high-end servers with expensive GPUs. that are difficult to
maintain. The computational challenges of training massive
GNNs with billions of parameters on large-scale graphs is
an important and emerging problem in the machine learning
community. Sparsifying parameters in such large GNN models
can reduce the computational and memory cost in the training
and inference stages.

There are currently two main approaches for reducing GNN
training and inference complexity by sparsification: simplifying
the input graph and sparsifying the model. The first approach,
which utilizes pruning or sampling of the nodes or edges in
input graphs, has been explored extensively [14]-[17]. On
the other hand, while model compression (or sparsification)
is well-studied for traditional Deep Neural Networks (DNN5s)
[18]—[35], it is an under-explored area in the context of GNNss.
To the best of our knowledge, recent work by Chen et al. [36]
was the first to propose a framework for GNNs, called Unified
GNN Sparsification (UGS), that pruned the input graph as
well as the model weights using the well-studied lottery
ticket hypothesis weight pruning method [19]. In this paper,

A Density

(1) Dense training (2) Reweighted training

Train and prune (3) Sparsified
—— Sparse training training
[===+ P& - - = P - - - > *--———-- >
AT prow & Grow 2T Al i AT
Epoch”

Fig. 2: Overview of two sparsification methods for neural
networks: (1) train and prune and (2) sparse training.

https://github.com/HarveyP123/ICCD_SpTrn_SLR

we explore GNN sparsification using state-of-the-art model
compression techniques for model weights, and evaluate their
performance with both sparse and dense node embeddings.

In general, two classes of model sparsification methods
(shown in Figure 2) are frequently employed to achieve high
scalability, performance, and energy efficiency for neural net-
works: (1) train and prune (green line) and (2) sparse training
(red line). The train and prune method [20], [21], [23], [25]-
[27], [37], [38] first trains a dense model until it converges
(step 1) and uses top-k weight pruning (step 2). Since the
model accuracy usually drops after this top-k pruning stage,
other optimization techniques, such as iterative pruning with
fine-tuning and masked retraining on the sparsified model,
have been employed (step 3) to recover model accuracy
[39], [40]. Model parameters are dense in the first training
step and sparse only in the retraining stage (one-third of
the overall training time [23]). Although the final masked-
retraining process is known to increase the overall run-time
cost of the weight pruning pipeline [23], the initial dense
training in this approach can lead to higher accuracy due to
the availability of more model parameters.

The second model sparsification method is sparse training,
which starts the sparsification process of the neural network
layers directly from the beginning of training, using even
fewer training iterations compared to dense training. Sparse
training fixes the model sparsity at the beginning of the
training and uses drop and grow policy to explore the sparse
model architecture that yields the highest accuracy. It is the
core of sparse training as a large number of weights are
switched between zero and non-zero. Such frequent memory
write and read operations heavily impact system performance.
A “proper” drop and grow policy could significantly improve
the temporal and spatial locality. Moreover, having a fixed
sparsity throughout the training allows sparse training to
reduce the computation and memory footprint of both training
and inference stages, i.e., the weight parameters are sparse
throughout the training process. The application and evaluation
of the sparse training method have so far been limited only to
classical DNNs for image classification tasks.

In this paper, we apply and compare (1) train and prune and
(2) sparse training model sparsification methods in the context
of graph learning. In our GNN sparsification framework,
we sparsify the weights of representative Feed-forward Neu-
ral Network architecture and Graph Convolutional Networks
(GCN) which propagate external node embeddings through
its layers for link prediction and node classification tasks on
graphs. We combine and evaluate weight pruning with both
dense and sparse input embeddings. In our evaluation, we com-
pare both of the train and prune and sparse training methods
in terms of accuracy, achieved sparsity, and performance.

In summary, our contributions are as follows

o We formulate two sparsification frameworks for GNNs

based on (1) train and prune and (2) sparse training.

e We evaluate and compare the trade-offs of the two

evaluated sparsification methods in terms of accuracy,
sparsity, and training FLOPs.

o To the best of our knowledge, to date, this is the first
attempt that applies sparse training on graphs.

e For the brain, Cora, and CiteSeer dataset, we achieve a
much higher accuracy using the sparse training method
with much lower training FLOPs compared to the train
and prune method.

II. BACKGROUND
A. Graph Learning

Graphs are ubiquitous data structures that describe complex
systems with entities (nodes) and their interactions (edges).
Large-scale and complex graph data makes machine learning
tasks on graphs challenging due to having inefficient repre-
sentations and requiring task-specific domain expertise.

Graph representation learning (GRL) aims to address these
challenges by encoding graph structure into a low-dimensional
embedding space. GRL translates the similarity between nodes
in the original graph into closeness in the embedding space.
This way, graph data is represented in a lower dimensional
space that reflects the underlying graph structure efficiently.

One such GRL technique is based on performing random
walks on a graph [41], [42]. Random walks capture the
node properties by randomly visiting adjacent nodes. Random
walks are then fed to word2vec’s skip-gram model [43],
which is a natural language processing (NLP) technique, to
capture node embeddings. These node embeddings are fed into
downstream graph learning tasks such as link prediction or
node classification.

Graph learning is a well studied problem and there are many
different techniques for it. GNNs [6], GCN [7], GraphSAGE
[8], and Graph Attention Networks (GAT) [9] are some of
the techniques for learning inductive node embeddings that
combine external node features into neural network models.

SPARSIFY

GRL

Propagate Node Embeddings

Fig. 3: Sparsification of a 2-layer FNN. Given a graph, the
GRL algorithm computes the embeddings of node « and feeds
it to the input layer of the FNN. The FNN then propagates the
node embeddings through its layers to output a prediction L,,.
We specifically focus on weight matrices sparsification.

Different architectures can be employed for graph prediction
tasks. In this paper, we consider a commonly deployed Feed-
forward Neural Network (FNN) and GCN as representative
networks for graph learning. We focus on compression, or
sparsification, of the weight matrices of an FNN architecture
that propagates node embeddings through its layers as shown
in Figure 3. However, our proposed sparsification framework
can be applied to other GNN architectures.

B. Sparsification Methods

The machine learning community has recently investigated
many model compression methods for Deep Neural Networks
(DNNs). These methods include weight pruning, quantization,
sparsity regularization, and clustering [18]-[21], [23], [25],
[26], [44]. The model compression techniques can reduce the
learning noise and even increase the prediction accuracy [45].
The sparsified model may also increase the model robustness
and has the potential to defend against adversarial attacks [46].

Generally, there are two major types of model sparsification
methods. The first is to train the model until it converges
and then prune, in which the model is pruned using top-k
(threshold-based) weight pruning [20], [21]. This method has
also been optimized by employing iterative pruning with fine-
tuning for weight dropping and accuracy retraining [39], [40].
The second one, sparse training [47], gives up the hypothesis
that the dense model could guide the sparsification process
[19] and directly trains a model with fixed sparsity.

In this paper, we focus on these two methods of model
sparsification: (1) the train and prune and (2) sparse training.

1) Train and Prune: Weight pruning is one of the most
common model compression methods. Several prior works
have observed that a portion of weights in neural networks
are redundant. Weight pruning aims to remove the redundant
components in the model and achieve similar accuracy with
the original model [25], [26], [44], [48].

Earlier work in weight pruning is mostly based on heuristic
approaches [49], [50]. Later, to overcome the heuristic nature,
a systematic DNN weight pruning framework based on the
Alternating Direction Methods of Multipliers (ADMM) tech-
nique [51] has been proposed in [21]. This work formulated
the DNN weight pruning problem as a mathematical optimiza-
tion problem and improved weight pruning by achieving 21 x
compression on AlexNet and 71.2x on LeNet-5.

However, ADMM does not guarantee the satisfaction of all
constraints because of the non-convex objective function [52].
For this reason, ADMM-based weight pruning usually follows
a final masked retraining process to further improve the
model accuracy since the accuracy dramatically degrades after
pruning. However, the retraining phase significantly increases
the overall run-time cost of the pipeline.

To partially overcome this problem, a systematic weight
pruning optimization approach based on Surrogate Lagrangian
Relaxation (SLR) [53] has been proposed [23]. Within the
SLR-based method, Lagrangian multipliers approach their
optimal values faster as compared to those in the ADMM
technique, and therefore, provide faster convergence during
the training step and reduce final retraining cost. SLR weight
pruning technique has so far been limited to classical DNNs
for image classification and object detection tasks.

2) Sparse Training: The train and prune method aims to
reduce the computation and memory footprint at inference
stage [54] (e.g., for a typical three-stage (training-pruning-
retraining) pruning process, the weight parameters are dense
in the first two stages (two third of the training time [23]))
and are sparse in the retraining stage. Sparse training reduces

the computation and memory footprint in both training and
inference stages, i.e., the weight parameters are sparse (with
fixed mask tensors) throughout the training process.

Static mask sparse training Single-Shot Network Pruning
(SNIP) [55] was the first static mask training method to train
sparse sub-networks at initialization. Later, GraSP [56] consid-
ered the weights less important if removing them would result
in the least drop in the gradient norm. Saliency criteria [57] is
proposed to help decide weight importance and employed to
increase the accuracy of a sparse neural network. SynFlow [58]
observed that the SNIP pruning method may lead to a layer
collapse phenomenon and adopts gradient-based score to avoid
layer collapse. The mask static training methods explores
unstructured sparse training, which is restricted to be deployed
on hardware platform and get acceleration. Taking advantage
of hardware-aware design, Pixelated Butterfly [59] integrated
the structured fixed sparsity butterfly format and low-rank
decomposition to capture the global and local information.
However, with the static masks, there is limited flexibility to
preserve the important weights, so the accuracy is restricted.

Dynamic mask sparse training Dynamic sparse training
is the process of training with a fixed number of nonzero ele-
ments in each neural network layer. Every AT iteration (AT
is the drop-and-grow frequency), a proportion of weights with
least magnitude values will be dropped or set to zero, and then
new weights will be randomly or greedily added to the layer in
the same amount as the previously removed. Different sparse
training methods usually use the same dropping method (i.e.,
magnitude dropping), while the growth method vary. Sparse
Evolutionary Training (SET) [60] randomly grew back the
previously dropped weights. RigL [47] grew back the weights
with top-k largest gradients. SNFES [61] utilized momentum to
find the important weights and layers. ITOP [62], [63] found
that the benefit of dynamic mask training come from its ability
to cover all possible parameter positions.

III. SPARSIFICATION FRAMEWORKS FOR GNNS

In this section, we formulate the model sparsification for
GNNs using (1) train and prune and (2) sparse training.
Specifically, for the train and prune, we use the SLR-based
weight pruning method. For sparse training, we follow a
similar drop and grow method that was proposed in RigL [47]
to explore the sparse model architecture during the sparse
training process.

A. Weight Pruning Using SLR

Consider a GNN with [V layers, where the weights at layer
n are denoted by W, forn € {1,2, ..., N}. In the ADMM and
SLR training, the loss function can be defined as f (Wn) +
2,27:1 9n(W,,), for each layer n. The first term represents the
nonlinear smooth loss function and the second term represents
the non-differentiable “cardinality” penalty term [21] which
ensures that the number of nonzero weights are less than or
equal to the predefined number [,, within each layer n.

The objective of SLR training is to minimize the loss
function. However, because the loss function is subject to

constraints on the cardinality of weights, it cannot be solved in
its entirety. SLR technique decomposes the loss problem into 2
smaller subproblems by introducing duplicate variables W,, =
Z,, and rewriting the problem as r‘glvin f (Wn) +Z,27=1 9n(Zy).

The Augmented Lagrangian function [21], [51] of this prob-
lem can be written as:

N
Ly(Wo, Zn, An) = F(Wo) + Y gn(Zn)
n=1
N v (1)
+ D AL (Wo = Za)[+ D DI W = Zn .
n=1 n=1

where A, are dual variables corresponding to constraints
W, = Z,. The positive scalar p is the penalty coefficient,
tr(-) denotes the trace, and || -||2. denotes the Frobenius norm.
After the decomposition of the problem, the subproblems
are solved iteratively in 2 steps:
1) Solve “Loss Function” subproblem for W,, by using
stochastic gradient descent.
2) Solve ”Cardinality” subproblem for Z,, through pruning
by using projections onto discrete subspace.
At iteration k, for given values of multipliers AZ, the first
subproblem tries to minimize the Lagrangian function, while
keeping Z,, at previously obtained values Z%~1 as

win Ly (W, Zy ' A). (2)

the subproblem can be solved by stochastic gradient descent
(SGD) since the loss function of the FNN and the regularizer
are differentiable .

However, an additional “surrogate” optimality condition
[53] for updating the multipliers is used as follows

Lp(Wi 2o h A) < L, (WL Zi7 AL B)
If this condition is satisfied, multipliers are updated as
AFTL = AR 4 ¢k(WE — ZF=1) with an additional stepsize
parameter s [23]:
s s [WE k)
W= Z5T]

S

The stepsize parameter can be defined as o* = 1—(1/(M x
EA=7))) for M > 1,0 <r < 1.

The second subproblem for cardinality is solved with re-
spect to Z,, while fixing other variables at values W as

win L, (W}, Z,, A",). 4

The globally optimal solution of this can be derived using
the Euclidean projection of W%+l and UK onto the set
S, ={W,, | card(W,,) <l,},n=1,...,N. This achieved
through pruning using the Euclidean projection of W and
A’ffl onto discrete subspace. Again, in order to ensure
that the multipliers’ updating directions are proper, another
”surrogate” optimality condition needs to be satisfied:

L, (Wi 25 A T) < L(WEZ3L AT ()

If this condition is not satisfied, then both subproblems
are solved again by using the latest available values for W,
and Z,,. However, if the condition is satisfied, multipliers are
updated as AR .= A’F 1ok (WE_ZF) where the stepsizes
are calculated as follows

h kslkHkal _ Zk71||
a [Wh—2ZF|| 7

Overall, SLR allows efficient subproblem solution coordi-
nation using (1) stepsizes approaching zero and (2) the sat-
isfaction of surrogate optimality conditions ensuring updates
to multipliers are assigned along correct directions. Since it
supports independent and systematic adjustment of the penalty
coefficient and stepsizes, model parameters obtained by SLR
are much closer to their optimal values compared to ADMM,
which does not support the adjustment of stepsizes without
leading to slower convergence. The SLR weight pruning
method has been shown to have faster convergence compared
to ADMM and therefore, reduce the overall training time [23].

After this SLR training process which adjusts the weights,
the redundant weights whose values are closer to zero are
pruned using Top-k pruning. This can be followed by a fine-
tuning step, which masks the zero weights while training, for
accuracy optimizations.

B. Sparse Training

Drop-and-grow Schedule. Dynamic sparse training is the
process of training with fixed number of nonzero weights in
each neural network layer. In Fig. 4, we use a toy example to
illustrate the sparse training dataflow. For simplicity, we use
the matrix with a size of 4 x 4 to represent a weight tensor
in the neural network. The sparse training is comprised of 4
steps as follows. @ The weight tensor is random sparsified as
WO at a given sparsity S = 0.5, which means 50% of weights
will be deactivated (set as zeros) and others remain activate
(non-zero). @ The sparsified tensor will be trained AT — 1
iterations, where AT is the drop-and-grow frequency. During
the AT — 1 epochs, the non-zero elements in weight tensor
are updated following the standard training process, while the
zero elements will remain as zero. At the i-th iteration, the
weight tensor is denoted as W*, while the gradient is denoted
as G'. @ At the AT-th ietration, we first drop k weights that
are closed to zero or set the weights that have the least &
absolute magnitude as zeros (k = 2). Then, @ we grow the
weights with the highest & absolute gradients back to nonzero
(updating the weights with the highest k£ absolute gradients to
nonzero in the following weights updating iteration). During
the process, the number of activated weights are kept the
same, i.e., the newly activated (non-zero) weights are the same
amount as the previously deactivated (zero) weights. @@
will be repeated till the end of the training.

Sparse Training Forward Propagation and Back Prop-
agation. Consider a GNN with L layers. At training step ¢
and activation a, the collection of weights parameters of the
I-th layer is denoted by W', respectively. The aim of sparse
training is to keep the sparsity S of weight parameters as

rifot2fo 1.8/ 0 [2.1] 0 25[0]0:2] 0 2.8/ 0[0] 0] Repeat
Model |@[o[18[0o]0o| @ [o330[o] @ [o[29/0]0 (4] 0[3.1] 025) | Sparse
archi 0 [0.61.2[1.9 0 [0.5[0.7[2.3 0 [03[1.5)2.9 /\ 0|0 [1.7)2:2] every AT | model
3.10.9 0] 0 28[110 [0 0.7[1.6] 0 | 0| Fradient\ [09]13[1.8] 0 | epoch
we wt weT 0 [0.90.72.3 weT
icRandom sparse model initialization i 081 0 0669
' @ Training AT — 1 steps ;0401010
| to oo 6222

i @ Drop weights with least 2 absolute magnitude

1
1
o= cococoo—oocoo=—o—o—-—c———c—-oc—-occ—o—oooo—ooo=—

GAT@(MAT== 0)
Select growth candidates

Fig. 4: Tterative drop & grow based sparse training process.

S € [0,1] during the whole training process. We drop the
« percent of weights that are closest to zero (i.e., smallest
positive weights and the largest negative weights).

The forward propagation could be formulated as

ad=c(Z)=c(f ®at +b), (6)

where z and b represent output and biases before activation.
® is convolution operation. o (-) is the activation function and
a is the activation. At each step, we define ﬁl as a subset of
weights from W, and set the rest with zeros.

{

where we define A’ as the indices of active parameters in a
sparse subset. The initial selection of A’ element could be a
random process [47] or restricted to the top-K proportion of
weights by magnitude [64].

During backward propagation, we obtain the gradient of the
active parameters update the weights [65].

Wl
0

if i € A,
otherwise.

Bt

6 = 6! @ 180°rotation(5' 1) © o' (),
Gl _ al*l ® 5l

)
®)

where 180°rotation represents to rotate the weight tensor 3/**
180 degrees. &' is the error in the I-th layer. G' are gradients.
@ are dot-product. ¢’ represents the derivative of activation.

C. Training FLOPs Analysis

We first evaluate the case where the input is dense and the
model is dense or sparsified. We assume the forward path for
a dense model has fp total number of float point operations
(FLOPs) for a single epoch, and the sparsified model has fg
total number of FLOPs. fs and fp can be the connected
throughput sparsity p: fs = fp * (1 — p). Then, for each
training epoch, the dense model consumes 3fp FLOPs for
forward and backward path [47], sparse model consumes 3 fg
FLOPs for forward and backward path. For the SLR training
process, assuming there are 73 epochs for dense training, 75
epochs for re-weight training, and 75 epochs for sparsified
training. The total training process of SLR training will have

Ty % fp + 15 * fp + T35 * fs FLOPs. Assuming there are 7
epochs for the sparse training process, the training process will
have T * fg FLOPs.

For some of the tasks, the input embedding can also be
sparsified to reduce the total number of FLOPs further. The
sparse embedding introduces a SpGEMM operation [66] into
the DNN model if the weight matrix is also sparse. Assuming
the sparsity of embedding is p. and weight sparsity if p. For
SpGEMM operation, the probability of index matching (both
locations of embedding and weight matrix have element) is
(1 —pe) - (1 — p). The FLOPs of the first FC layer is scaled
by (1 —pe)- (1 —p) times compared to the dense counterpart.
Assuming the embedding dimension is de.,p, then the proba-
bility of a location of output matrix of first layer has element
is po1 = (1 — (1 —p,)- (1 —p))%em>, which corresponds to the
sparsity of SpGEMM output matrix. With the same derivation,
the second layer FLOPs is scaled by (1 —po1) - (1 — p) times
compared to the dense case. The output sparsity of second
layer is given as py,2 = (1 — (1 — p) - (1 — p))¥i2, and the
dp;q2 1s the hidden dimension of second layer.

IV. METHODOLOGY
A. Experimental Setup

We conduct our DNN training on an Intel Xeon Gold 5218
machine at 2.30 GHz with Ubuntu 18.04 using an Nvidia
Quadro RTX 6000 GPU with 24 GB GPU memory.

In our experiments, we firstly evaluate FNN architectures for
2 ML tasks on graphs: link prediction and node classification.
We use real-world temporal graph datasets. For the link predic-
tion task, we use wiki-talk [67]-[69], ia-email [70], [71] and
stackoverflow [67], [68] datasets. For the node classification
task, we use brain dataset [72], [73]. The details of these
datasets can be seen in Table I. We also evaluate 2-layer GCN
architectures with 16 hidden dimension for node classification
task on graph. Cora [74], Pubmed [75], and CiteSeer [76]
datasets are used for evaluating the GCN performance.

B. Graph Learning

For the graph learning tasks, we use an open-source C++
implementation® by Talati et al. [77]. We use this framework

Zhttps://github.com/talnish/iiswc21_rwalk

https://github.com/talnish/iiswc21_rwalk

ia-email wiki talk

84.0 82

83.5 81

t)583.0 \‘*1 380

< <

82.5 79 \\v

826).00 0.25 0.50 0.75 1.00 7(?.00 0.25 0.50 0.75 1.00
Sparsity Sparsity

Fig. 5: GNN accuracy v.s. sparsity on different datasets. —Blue line: SLR & dense embedding.
: SLR & sparse embedding. —Red line: sparse training & sparse embedding.

& dense embedding.

TABLE I: Parameters of the datasets used for experiments.

Task Dataset #Nodes #Edges
ia-email [70], [71] 87,274 1,148,072

Link Prediction wiki-talk [67]-[69] 1,140,149 7,833,140
stackoverflow [67], [68] | 6,024,271 | 63,497,050

Node Classification brain [72], [73] 5,000 1,955,488

for link prediction and node classification tasks on temporal
graphs. The purpose of the node classification task is to
classify a previously unseen node in a correct label/category.
The link prediction task aims to predict the presence/absence
of a previously unseen edge formed between 2 nodes. The
link prediction is performed as a classification task: the edges
present in the graph are classified as positive edges, and the
edges absent in the graph are classified as negative edges.
2-layer FNN with 128 hidden dimension is used for link
prediction. For node classification, a 3-layer FNN with hidden
dimensions as 256 and 128 is used. Node embeddings are
inputs for link prediction and node classification tasks. We
use dense and sparse embedding for training as input. For
the sparse embedding, we select the top-k% values in the
embedding matrix [78] and prune the rest. The k& selection
considers the trade-off between embedding sparsity and infor-
mation loss. We set k£ = 1.38, 3.28, 26.2, 46.9 for wiki-talk,
ia-email, stackoverflow and brain datasets, respectively.

For the 2-layer GCN on the node classification datasets, we
set the hidden dimension as 16 to evaluate the performance.
All datasets are divided as 60%, 20%, and 20% for training,
validation, and testing, respectively.

C. Model Sparsification Setup

The SLR training follows (1) the standard dense training, (2)
re-weighted training through SLR and (3) sparsified training.
The re-weighted training utilizes SLR algorithms to find the
proper sparse model architecture from the dense model. After
the sparse model architecture is determined, the sparsified
training is applied to further retain the model accuracy for
a given sparse model.

For link prediction, we set p = 0.01, s = 0.01, » = 0.1,
M = 200 for SLR training. For node classification, we set
p =10.02s =002 r=0.1 M = 200 for SLR training.
The initial learning rate is 0.05 for link prediction and 0.005
for node classification. We set the dense training to 20 epochs

85 stackoverflow 50

|

Acc. (%)
4
4

Acc. (%)

N

o

j

—

X .
83\-—\,_,—4\,_.{ 30 \
\
g |
&00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Sparsity Sparsity

: sparse training

with an exponentially decayed learning rate, and the re-weight
training has 10 epochs for sparse model convergence. The final
sparsified training has 10 epochs. The batch size is set as 1024.

For sparse training, we set the total number of epochs to 40
to match the total number of epochs with SLR training. We
use the cosine annealing learning rate scheduler with the initial
rate of 0.1. The batch size is set as 128 for link prediction and
512 for node classification. We set the death rate as 0.5 and
drop-and-grow frequency as 1000 batch iterations.

V. EXPERIMENTAL RESULTS

A. Training FLOPs Evaluation

We set the model parameter sparsity as 0.125, 0.25, 0.375,
0.5, 0.625, 0.75, 0.875, 0.906, 0.938, 0.969 to evaluate the
performance of the SLR and sparse training method. We first
evaluate the FLOPs of those two methods based on sec-
tion III-C. By using dense training as the base, the normalized
training FLOPs of SLR and sparse training can be found in
Table II. When the model sparsity is 0.906, the SLR requires
more than 8 x more FLOPs than the sparse training.

We also evaluate the embedding sparsification influence on
training FLOPs in Table II. For the link prediction tasks, the
model is a 2-layer FNN, and the first layer occupies 94.1%
of total FLOPs, and thus the embedding sparsification can
significantly reduce the total training FLOPs. For ia-email and
wiki-talk datasets with link prediction task, the embedding
sparsification brings more than 10 x training FLOPs reduction.
However, for the brain dataset with node classification task,
the model is 3-layer FNN, and the first layer contributes to
32.5% of the total FLOPs. In this case, the FLOPs reduction
using embedding sparsification is not significant.

TABLE II: Normalized training FLOPs (sparsity = 0.906)

Training FLOPs SLR Sparse training
Embedding Dense Sparse Dense Sparse
ia-email 0.773 x | 0.056 x | 0.094 x | 0.0067 x
wiki-talk 0.773 x | 0.069 x | 0.094 x | 0.0084 x
stackoverflow 0.773 x | 0.236 x | 0.094 x | 0.0286 X
brain 0.773 x | 0.640 x | 0.094 x | 0.0776 X

B. Accuracy Evaluation

We further evaluate the accuracy performance of the SLR
training and sparse training for different model sparsity and

Cora Pubmed CiteSeer

08] ————— o8 . ———
3 3 506
goe 2o :
0.4 9 ot
< < 0.6 <04

0.2 ’ l

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Sparsity

Sparsity

Sparsity

Fig. 6: GCN accuracy vs. sparsity on Cora [74], Pubmed [75], and CiteSeer [76] datasets. —Blue line: SLR training.
: Sparse training. Sparse embeddings are used in the experiments.

embedding sparsity setups. The full comparison is given in
Fig. 5 and Fig. 6. Most of the accuracy-sparsity curve has the
Occam’s Hill [79] property where the accuracy first increases
with increasing sparsity and then decreases. The learned noise
can be reduced with proper sparsity, which further enhances
the model performance.

For both ia-email, wiki-talk, and stackoverflow datasets
which are not sensitive to model parameter sparsity, sparse
training has a comparable performance to the SLR method in
terms of accuracy. However, for a more complex task such
as node classification on the brain dataset, the sparse training
will have much higher accuracy under extreme sparsity.

For ia-email dataset, the embedding sparsification with
98.62% decreases the model accuracy by 0.5% with the SLR
method and sparse training evaluation. As shown in Table II,
the embedding sparsification for ia-email dataset contributes
to more than 10 x total FLOPs reduction for both training
methods. For the wiki-talk dataset, the sparsified embedding
has a positive impact on training accuracy and concurrently
reduces training FLOPs more than 10 x. For stackoverflow
dataset, the sparse embedding reduces FLOPs more than 3 X,
with less than 1% accuracy drop on average. For brain dataset
with node classification task, the embedding sparsification
only brings approximately 1.1 x FLOPs reduction and causes
3% accuracy degradation on average. Thus, the embedding
sparsification is not favorable for this specific task. For most of
the evaluated datasets and tasks, the embeddings sparsification
technique provides a significant training FLOPs reduction
benefit and has little impact on accuracy.

The GCN sparsification performance on Cora [74], Pubmed
[75], and CiteSeer [76] is similar to the FNN performance. In
most cases, the sparse training-based sparsification method has
a better accuracy under high sparsity. The 2-layer GCN only
has 16 hidden dimensions, which makes the pruning unstable
under high sparsity.

84 stackoverflow brain
— — o
) /’\J K40 /_W\/ \//\—\/)\
¥ o] |
g 82 g 30 l
0 10 20 30 40 0 10 20 30 40
Epoch Epoch

Fig. 7: Accuracy v.s. epoch. —: SLR method.

We further provide the accuracy-epoch evaluation for stack-
overflow and brain datasets under 0.906 model sparsity with
dense embedding. The comparison is shown in Fig. 7. There is
a significant accuracy drop at epoch 20 for the SLR algorithm
as the re-weighted training starts and the parameters are
pruned. For the stackoverflow dataset, the SLR-based training
converges at a higher accuracy than the sparse training. How-
ever, the stackoverflow dataset has a much faster convergence
rate as the accuracy remains stable for the last 20 epochs. The
sparse training has a better convergence rate and accuracy than
the SLR method on the brain dataset.

VI. CONCLUSION

In this work, we explore the reduction of the computational
and memory costs of GNNs. We compare two types of model
sparsification methods: (1) the train and prune method and (2)
the sparse training method. For the train and prune, we utilize
the SLR optimization method to select the proper sparse model
architecture. We randomly initialize the sparse model for the
sparse training approach and explore the architecture during
training. The experimental results show that the sparse training
method preserves much lower total FLOPs than the train
and prune method, and has comparable accuracy to the train
and prune method as well as a much higher accuracy under
extreme sparsity. Sparse training method requires less training
time than the SLR method. In the future, we will explore other
methods for DNN sparsification, such as LTH. And we’ll also
explore the system speed-up of various sparsification methods
for training and inference tasks.

REFERENCES

[11 W. Shi and R. Rajkumar, “Point-gnn: Graph neural network for 3d object
detection in a point cloud,” in CVPR, 2020, pp. 1711-1719.

[2] W. Jiang and J. Luo, “Graph neural network for traffic forecasting: A
survey,” Expert Systems with Applications, p. 117921, 2022.

[3] X. Sun ef al., “Formal verification of neural network controlled au-
tonomous systems,” in HSCC, 2019, pp. 147-156.

[4] P. Bongini et al., “Molecular generative graph neural networks for drug
discovery,” Neurocomputing, vol. 450, pp. 242-252, 2021.

[5] Z. Guo and H. Wang, “A deep graph neural network-based mechanism
for social recommendations,” IEEE Transactions on Industrial Informat-
ics, vol. 17, no. 4, pp. 2776-2783, 2020.

[6] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, pp. 61-80, 2009.

[71 T. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” ArXiv, vol. abs/1609.02907, 2017.

[8]
[9]
[10]

[11]

[12]
[13]
[14]

[15]

[16]
[17]

(18]

[19]
[20]

[21]

[22]
[23]

[24]

[25]
[26]
[27]

[28]

[29]

[30]

[31]

[32]
[33]
[34]
[35]
[36]
[37]

(38]

[39]

W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in NIPS, 2017.

P. Velickovic et al, “Graph attention networks,”
abs/1710.10903, 2018.

A. Sriram et al., “Towards training billion parameter graph neural
networks for atomic simulations,” ArXiv, vol. abs/2203.09697, 2022.
D. Manu et al., “Co-exploration of graph neural network and network-
on-chip design using automl,” in Proceedings of the 2021 on Great Lakes
Symposium on VLSI, 2021, pp. 175-180.

R. Ying et al., “Graph convolutional neural networks for web-scale
recommender systems,” KDD ’18, 2018.

R. Zhu et al, “Aligraph: A comprehensive graph neural network
platform,” KDD 19, 2019.

J. Chen et al., “Fastgen: Fast learning with graph convolutional networks
via importance sampling,” ArXiv, vol. abs/1801.10247, 2018.

S. Yu, A. Mazaheri, and A. Jannesari, “Gnn-rl compression: Topology-
aware network pruning using multi-stage graph embedding and rein-
forcement learning,” ArXiv, vol. abs/2102.03214, 2021.

Y. Cao, Z. Liu, C. Li, Z. Liu, J.-Z. Li, and T.-S. Chua, “Multi-channel
graph neural network for entity alignment,” in ACL, 2019.

C. Chen et al., “Dygnn: Algorithm and architecture support of dynamic
pruning for graph neural networks,” DAC ’21, pp. 1201-1206, 2021.
C. Ding et al., “Circnn: accelerating and compressing deep neural
networks using block-circulant weight matrices,” in MICRO-50, 2017,
pp- 395-408.

J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” in /CLR, 2018.

A. Kusupati et al., “Soft threshold weight reparameterization for learn-
able sparsity,” in /ICML. PMLR, 2020, pp. 5544-5555.

T. Zhang et al., “A systematic dnn weight pruning framework using
alternating direction method of multipliers,” in ECCV, 2018, pp. 184—
199.

S. Huang et al., “An automatic and efficient bert pruning for edge ai
systems,” in ISQED '22. 1EEE, 2022, pp. 1-6.

D. Gurevin et al., “Enabling retrain-free deep neural network pruning
using surrogate lagrangian relaxation,” in IJCAI, 2021.

H. Peng et al., “Optimizing fpga-based accelerator design for large-
scale molecular similarity search (special session paper),” in ICCAD
’21. 1IEEE, 2021, pp. 1-7.

T. Chen et al., “A unified lottery ticket hypothesis for graph neural
networks,” in ICML. PMLR, 2021, pp. 1695-1706.

H. Tessier et al., “Rethinking weight decay for efficient neural network
pruning,” Journal of Imaging, vol. 8, no. 3, p. 64, 2022.

S. Huang et al., “Sparse progressive distillation: Resolving overfitting
under pretrain-and-finetune paradigm,” in ACL, 2022, pp. 190-200.

H. Peng et al., “A length adaptive algorithm-hardware co-design of
transformer on fpga through sparse attention and dynamic pipelining,”
in DAC ’22. 1EEE, 2022.

P. Qi et al., “Accelerating framework of transformer by hardware design
and model compression co-optimization,” in /[CCAD ’21. 1EEE, 2021,
pp. 1-9.

S. Huang et al., “Hmc-tran: A tensor-core inspired hierarchical model
compression for transformer-based dnns on gpu,” in GLSVLSI, 2021, pp.
169-174.

H. Peng et al., “Accelerating transformer-based deep learning models
on fpgas using column balanced block pruning,” in ISQED '21. IEEE,
2021, pp. 142-148.

D. Xu et al., “Rethinking network pruning—under the pre-train and fine-
tune paradigm,” in NAACL 21, 2021, pp. 2376-2382.

T. Chen et al., “Coarsening the granularity: Towards structurally sparse
lottery tickets,” ICML, 2022.

J. Li et al., “Towards acceleration of deep convolutional neural networks
using stochastic computing,” in ASP-DAC. 1EEE, 2017, pp. 115-120.
A. Ren et al., “Sc-denn: Highly-scalable deep convolutional neural
network using stochastic computing,” ASPLOS, 2017.

T. Chen, Y. Sui, X. Chen, A. Zhang, and Z. Wang, “A unified lottery
ticket hypothesis for graph neural networks,” in /CML, 2021.

H. Peng et al., “Binary complex neural network acceleration on fpga,”
in ASAP '21. IEEE, 2021, pp. 85-92.

P. Qi et al., “Accommodating transformer onto fpga: Coupling the
balanced model compression and fpga-implementation optimization,” in
GLSVLSI, 2021, pp. 163-168.

Z. Liu, M. Sun et al., “Rethinking the value of network pruning,” in
ICLR, 2019.

ArXiv, vol.

[40]

[41]
[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]

(51]

[52]
(53]
[54]
[55]
[56]
[57]
(58]

[59]

[60]

[61]

[62]

[63]
[64]
[65]

[66]

[67]

[68]
[69]

[70]

S. P. Singh and D. Alistarh, “Woodfisher: Efficient second-order approx-
imation for neural network compression,” ICLR, vol. 33, pp. 18 098—
18 109, 2020.

B. Perozzi et al., “Deepwalk: online learning of social representations,”
KDD ’14, 2014.

G. H. Nguyen et al., “Continuous-time dynamic network embeddings,”
WWW 18, 2018.

T. Mikolov et al., “Efficient estimation of word representations in vector
space,” arXiv preprint arXiv:1301.3781, 2013.

S. Yu, A. Mazaheri, and A. Jannesari, “Auto graph encoder-decoder for
neural network pruning,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 6362-6372.

A. Krizhevsky, I. Sutskever, G. E. Hinton, F. Pereira, C. Burges, L. Bot-
tou, and K. Weinberger, “Advances in neural information processing
systems,” 2012.

Y. Guo, C. Zhang, C. Zhang, and Y. Chen, “Sparse dnns with improved
adversarial robustness,” ICLR, vol. 31, 2018.

U. Evci, T. Gale, J. Menick, P. S. Castro, and E. Elsen, “Rigging the
lottery: Making all tickets winners,” in /CML. PMLR, 2020, pp. 2943—
2952.

G. Yuan et al., “Improving dnn fault tolerance using weight pruning and
differential crossbar mapping for reram-based edge ai,” in ISQED ’21.
IEEE, 2021, pp. 135-141.

Y. He et al, “Channel pruning for accelerating very deep neural
networks,” ICCV 17, pp. 1398-1406, 2017.

H. Mao et al., “Exploring the regularity of sparse structure in convolu-
tional neural networks,” ArXiv, vol. abs/1705.08922, 2017.

S. P. Boyd et al., “Distributed optimization and statistical learning via
the alternating direction method of multipliers,” Found. Trends Mach.
Learn., vol. 3, pp. 1-122, 2011.

H. Li ef al., “Admm-based weight pruning for real-time deep learning
acceleration on mobile devices,” GLSVLSI, 2019.

M. A. Bragin et al., “Convergence of the surrogate lagrangian relaxation
method,” J. Optim. Theory Appl, vol. 164, no. 1, pp. 173-201, 2015.
S. Chen et al., “Et: re-thinking self-attention for transformer models on
gpus,” in SC '21, 2021, pp. 1-18.

N. Lee et al., “Snip: Single-shot network pruning based on connection
sensitivity,” in /CLR, 2019.

C. Wang, G. Zhang, and R. Grosse, “Picking winning tickets before
training by preserving gradient flow,” ICLR, 2020.

M. C. Mozer et al., “Skeletonization: A technique for trimming the fat
from a network via relevance assessment,” ICLR, vol. 1, 1988.

H. Tanaka et al., “Pruning neural networks without any data by itera-
tively conserving synaptic flow,” NeurIPS, vol. 33, pp. 6377-6389, 2020.
B. Chen, T. Dao, K. Liang, J. Yang, Z. Song, A. Rudra, and C. Re,
“Pixelated butterfly: Simple and efficient sparse training for neural
network models,” ICLR, 2022.

D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen, M. Gibescu, and
A. Liotta, “Scalable training of artificial neural networks with adaptive
sparse connectivity inspired by network science,” Nature communica-
tions, vol. 9, no. 1, pp. 1-12, 2018.

T. Dettmers and L. Zettlemoyer, “Sparse networks from scratch: Faster
training without losing performance,” arXiv preprint arXiv:1907.04840,
2019.

S. Liu, L. Yin, D. C. Mocanu, and M. Pechenizkiy, “Do we actually need
dense over-parameterization? in-time over-parameterization in sparse
training,” in ICML. PMLR, 2021, pp. 6989-7000.

X. Ma et al., “Effective model sparsification by scheduled grow-and-
prune methods,” in /CLR, 2022.

S. Jayakumar, R. Pascanu, J. Rae, S. Osindero, and E. Elsen, “Top-kast:
Top-k always sparse training,” ICLR, vol. 33, pp. 20 744-20 754, 2020.
G. Yuan et al., “Mest: Accurate and fast memory-economic sparse
training framework on the edge,” ICLR, vol. 34, 2021.

N. Srivastava et al., “Matraptor: A sparse-sparse matrix multiplication
accelerator based on row-wise product,” in MICRO ’20. IEEE, 2020,
pp. 766-780.

J. Leskovec and A. Krevl, “{SNAP Datasets}: {Stanford} large network
dataset collection,” 2014.

A. Paranjape et al., “Motifs in temporal networks,” WSDM 17, 2017.
S. Cunningham and D. Craig, “Creator governance in social media
entertainment,” Social Media + Society, vol. 5, 2019.

R. A. Rossi and N. Ahmed, “The network data repository with interactive
graph analytics and visualization,” in AAAI, 2015.

[71]
[72]
[73]

[74]

[75]

[76]

(771

(78]

[79]

J. Shetty and J. Adibi, “The enron email dataset database schema and
brief statistical report,” 2004.

D. Xu et al., “Spatio-temporal attentive rnn for node classification in
temporal attributed graphs,” in IJCAI, 2019.

M. G. Preti et al., “The dynamic functional connectome: State-of-the-art
and perspectives,” Neurolmage, vol. 160, pp. 41-54, 2017.

A. K. McCallum et al., “Automating the construction of internet portals
with machine learning,” Information Retrieval, vol. 3, no. 2, pp. 127-
163, 2000.

P. Sen et al., “Collective classification in network data,” Al magazine,
vol. 29, no. 3, pp. 93-93, 2008.

C. L. Giles et al., “Citeseer: An automatic citation indexing system,” in
Proceedings of the third ACM conference on Digital libraries, 1998, pp.
89-98.

N. Talati et al., “A deep dive into understanding the random walk-based
temporal graph learning,” IISWC ’21, pp. 87-100, 2021.

N. Tonellotto and C. Macdonald, “Query embedding pruning for dense
retrieval,” in Proceedings of the 30th ACM International Conference on
Information & Knowledge Management, 2021, pp. 3453-3457.

C. Rasmussen and Z. Ghahramani, “Occam’s razor,” ICLR, vol. 13,
2000.

	I Introduction
	II Background
	II-A Graph Learning
	II-B Sparsification Methods
	II-B1 Train and Prune
	II-B2 Sparse Training

	III Sparsification Frameworks for GNNs
	III-A Weight Pruning Using SLR
	III-B Sparse Training
	III-C Training FLOPs Analysis

	IV Methodology
	IV-A Experimental Setup
	IV-B Graph Learning
	IV-C Model Sparsification Setup

	V Experimental Results
	V-A Training FLOPs Evaluation
	V-B Accuracy Evaluation

	VI Conclusion
	References

