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Abstract—With the ever-growing popularity of Graph Neural
Networks (GNNs), efficient GNN inference is gaining tremen-
dous attention. Field-Programming Gate Arrays (FPGAs) are
a promising execution platform due to their fine-grained paral-
lelism, low-power consumption, reconfigurability, and concurrent
execution. Even better, High-Level Synthesis (HLS) tools bridge
the gap between the non-trivial FPGA development efforts and
rapid emergence of new GNN models. In this paper, we propose
GNNHLS, an open-source framework to comprehensively evalu-
ate GNN inference acceleration on FPGAs via HLS, containing a
software stack for data generation and baseline deployment, and
FPGA implementations of 6 well-tuned GNN HLS kernels. We
evaluate GNNHLS on 4 graph datasets with distinct topologies
and scales. The results show that GNNHLS achieves up to 50.8×
speedup and 423× energy reduction relative to the CPU baselines.
Compared with the GPU baselines, GNNHLS achieves up to
5.16× speedup and 74.5× energy reduction.

Index Terms—field-programmable gate arrays, graph neural
networks, high-level synthesis

I. INTRODUCTION

Graphs are widely adopted to model the relational-
structured data in social networks, bioinformatics, etc [26].
Machine learning (ML) on graphs has experienced a surge of
popularity in the past decade, since traditional ML models,
which are designed to process Euclidean data with regular
structures, are ineffective at performing prediction tasks on
graphs. Due to their simplicity and superior representation
learning ability, Graph Neural Networks (GNNs) [6], [12],
[19], [23], [25] have achieved impressive performance on
various graph learning tasks, such as node classification, graph
classification, etc.

To implement GNNs, a set of widespread libraries, such
as PyTorch Geometric (PYG) [8] and Deep Graph Library
(DGL) [20], are built upon general-purpose ML frameworks
(e.g. PyTorch [17]) targeting CPU and GPU platforms. How-
ever, the performance and energy consumption of GNN im-
plementations are hindered by both hardware platforms and
software frameworks: (1) Distinct from traditional NNs, GNNs
combine the irregular communication-intensive patterns of
graph processing and the regular computation-intensive pat-
terns of NNs. This feature can lead to ineffectual computation
on CPUs and GPUs. (2) Since these frameworks assemble
functions in a sequential way, one function will not start
until the previous one finishes. This execution model leads

This manuscript has been subsequently published [27].

to extra memory accesses, footprint, and implicit barriers for
intermediate results, limiting the potential performance, energy
consumption and the scale of graph datasets.

Field-Programmable Gate Arrays (FPGAs) are potentially
an attractive approach to GNN inference acceleration. FPGAs’
massive fined-grained parallelism provides opportunities to
exploit GNNs’ inherent parallelism. They also deliver better
performance per watt than general-purpose computing plat-
forms. In addition, FPGAs’ reconfigurability and concurrency
provide great flexibility to solve the challenges of hybrid
computing patterns and ineffectual execution. Most of the prior
works investigating FPGAs focus on accelerating a specific
GNN model implemented using Hardware Description Lan-
guages (HDL). AWB-GCN [9], as one of the eariest FPGA-
based works, proposes a GCN accelerator using HDL to solve
the workload imbalance problem due to the distinct sparsity
of different components. BoostGCN [24] proposes a graph
partition algorithm in a preproessing step to address workload
imbalance issues. Despite these promising results, HDL design
methodology is not suitable for widespread adoption for GNN
implementations due to the conflict between the non-trivial
development efforts with HDL and the rapid emergence of
new GNN models. To address this challenge, High-Level
Synthesis (HLS) tools are proposed to create GNN kernels
using popular languages such as C/C++. With the help of HLS,
development time is substantially shortened relative to HDL
designs. Lin et al. [15], as one of the first works, proposes an
HLS-based accelerator for GCN with separated sparse-dense
matrix multiplication units and dense matrix multiplication
units which are connected by shared memory and execute
sequentially. GenGNN [1] proposes a framework to accelerate
GNNs for real-time requirements where the whole graph
and corresponding intermediate results are stored in on-chip
resources on the FPGA. Despite these promising results, this
work is limited to small-scale graphs with low edge-to-node
ratio due to on-chip memory usage being proportional to graph
scale and feature dimensions.

Distinct from pure software programming, HLS develop-
ers need to adopt multiple optimization pragmas and follow
certain coding styles to achieve best performance and energy
cost. As reported in [3], the performance difference between
a well-optimized version and a non-optimized version of the
same kernel can be two to three orders of magnitude. This
invites an open question: how effectively can modern HLS tools
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accelerate GNN inference?
In this paper, we introduce GNNHLS1 an open-source

framework for comprehensive evaluation of GNN kernels on
FPGAs via HLS. GNNHLS contains a software stack extended
from a prior GNN benchmark [7] based on PyTorch and
DGL for input data generation and conventional platform
baseline deployments (i.e., CPUs and GPUs). It also contains
six well-optimized general-purpose GNN applications. These
kernels can be classified into 2 classes: (1) isotropic GNNs
in which every neighbor contributes equally to the update
of the target vertex, and (2) anisotropic GNNs in which
edges and neighbors contribute differently to the update due
to the adoption of operations such as attention and gating
mechanisms. In this paper, we make several contributions:

• We propose GNNHLS, a framework to evaluate GNN
inference acceleration via HLS, containing: (a) a software
stack based on PyTorch and DGL for data generation
and baseline deployment, and (b) FPGA implementation
including 6 well-tuned GNN HLS kernels with host and
configuration files which can also be used as benchmarks.

• We characterize the GNN kernels in terms of locality
scores and instruction mix to obtain insight into their
memory access and computational properties.

• We provide a comprehensive evaluation of our GNN
HLS implementations on 4 graph datasets, assessing both
performance improvement and energy reduction.

Our evaluation results show that GNNHLS provides up to
50.8× speedup and 423× energy reduction relative to the
multicore CPU baseline. Compared with the GPU baselines,
GNNHLS achieves up to 5.16× speedup and 74.5× energy
reduction.

II. FRAMEWORK DESCRIPTION

A. GNNHLS Overview

The GNNHLS framework, as depicted in Figure 1, com-
prises two primary components: data generation and HLS
FPGA. The former is designed to generate input and output
files and measure baselines on a CPU and a GPU, while the
latter is designed to implement the optimized HLS applications
on an FPGA. The data generation component mainly consists
of the training system and the inference system, which are
based on PyTorch and DGL. To account for the impact of
graph topology on GNN model performance, it uses graph
datasets with various topologies, including those from Open
Graph Benchmarks [11]. In addition, six commonly used DGL
GNN models obtained from a previous GNN benchmark [7]
are incorporated. Thus, realistic model parameters, generated
in the training phase, are utilized in inference.

The HLS FPGA component implements the GNN kernels
on the FPGA. These kenels match the functionality of the
DGL baselines and are optimized with several optimization
techniques [4]. The optimized HLS kernels, with associated

1Released as a benchmark suite [28] and also available at https://github.
com/ChenfengZhao/GNNHLS
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Fig. 1. Diagram of the GNNHLS framework.

host files, data header files, and configuration files, are com-
piled by Vitis and executed on the FPGA. The optimization
techniques applied in GNNHLS are described as follows:

Pipeline: Enable instruction-level concurrent execution to
improve overall throughput. Loop Merge: Optimize the finite
state machine (FSM) of nested loops to remove the impact of
inner loop latency on the overall throughput. Burst Memory
Access & Memory Port Widening: access large chunks
of data in contiguous addresses and increase memory port
width to improve memory bandwidth. Loop Unroll: Leverage
instruction-level parallelism by executing multiple copies of
loop iterations in parallel to increase throughput at the cost of
resource utilization. Dataflow: Enable task-level parallelism
by connecting multiple functions with FIFOs to form a
pipeline-style architecture and executing them concurrently.
Multiple Compute Units (CUs): Execute multiple kernel
instances as CUs in parallel for different data portions at the
cost of resource usage.

Figure 2 illustrates the Dataflow diagrams of the GNNHLS
kernels, in which memory and computation operations are
divided and pipelined based on the complexity of each kernel.
To mitigate the cost of Dataflow, we also (1) tune the location
of FIFO accesses to achieve better throughput, (2) apply
vectors for FIFO widening and associated operations, and (3)
split loops to optimize the FIFO properties of loop indices.

B. Graph Convolutional Network (GCN)

Graph Convolutional Network (GCN) [12] is one of the
earliest GNN models and has a simple structure. It updates
node features by aggregating neighboring node features and
performing linear projection. The formula is given as follows:

hl+1
i = ReLU

U l
∑
j∈Ni

hl
j

 (1)

Where U l ∈ Rd×d is the learnable weight matrix of the
linear projection, which performs vector-matrix multiplication.
hl
i ∈ Rd×1 is the feature vector of vertex i in layer l, and Ni

represents the neighboring vertices of vertex i.
Based on the above equation, we create the GCN HLS

implementation, the Dataflow diagram of which is depicted
in Figure 2(a). In addition to the memory access modules for
input graphs and h, we split the computation operations into

https://github.com/ChenfengZhao/GNNHLS
https://github.com/ChenfengZhao/GNNHLS
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Fig. 2. Dataflow diagrams of GNN HLS kernels in GNNHLS.

two modules: Aggregation of neighbor node vectors hj and
vector-matrix multiplication (VMM) for linear projection. We
perform all the optimization techniques described previously
to the GCN kernel. The memory burst length vector h is d,
limited by the irregularity of the graph topology. The initiation
interval (II) of the aggregation module is 4 |Ni| + 2. Since
Vitis is not good at synthesizing tree-structured floating-point
operations, we separate VMM into 2 functions in the Dataflow
scope for grouped VMM and sum, respectively. The II of
VMM is thereby reduced from d2 to d+36. All these modules
are reused in the following GNN models. Due to its simplicity,
we create 2 CUs to process distinct vertices in parallel.

C. GraphSage (GS)

GraphSage (GS) [10] introduces an inductive framework to
improve the scalability over GCN by aggregating information
from the fixed-size set of neighbors via uniform sampling,
explicitly incorporating feature vectors of both the target
vertex and its source neighbors. The mathematical expression
of GraphSage with a mean aggregator is formulated as follows:

hl+1
i = ReLU

U lConcat

hl
i,

1

|Ni|
∑
j∈Ni

hl
j


= ReLU

V lhl
i +W l 1

|Ni|
∑
j∈Ni

hl
j

 (2)

Where Ni is the set of source neighbors of vertex i, and hl
i ∈

Rd×1 is the feature vector of vertex i in layer l. The learnable
weight matrix of the linear projection, U l ∈ Rd×2d, is stored
in on-chip memory. Given that distinct weight parameters are
used for the target vertex and source neighbors, U l is divided
into V l ∈ Rd×d and W l ∈ Rd×d, enabling parallel execution
of both paths to hide the latency of linear projection for the
target vertex. Figure 2(b) illustrates the Dataflow structure of
GraphSage. The memory read accesses and linear projection
of the target feature, and neighbors’ feature aggregation are
executed simultaneously, and then summed up to update hi.

D. Graph Isomorphism Network (GIN)

Graph Isomorphism Network (GIN) [23] employs the
Weisfeiler-Lehman Isomorphism Test [22] as its foundation
to investigate the discriminative ability of GNNs. The formula
of GIN is described as follows:

hl+1
i = ReLU

U lReLU

V l

(1 + ϵ)hl
i +

∑
j∈Ni

hl
j


(3)

where ϵ is a learnable scalar weight, U l and V l ∈ Rd×d denote
learnable weight matrices of cascaded VMM modules, hl

i ∈
Rd×1 again refers to the feature vector of vertex i in layer l,
and Ni is again the source neighbors of vertex i. In contrast
to GraphSage, GIN illustrated in Figure 2(c) first sums up
the aggregated vector of neighbors hj and the target vertex
vector hi, hiding the latency of reading hi, then performs two
cascaded VMM modules with weight matrices U l and V l,
respectively. This framework avoids the generation of long
critical paths and achieves a higher clock frequency.

E. Graph Attention Network (GAT)

Graph Attention Network (GAT) [19] is an anisotopic GNN
model that uses self-attention mechanisms to weight and learn
representations of neighbor vertices unequally. The equation
is described as follows:



hl+1
i = ConcatKk=1

ELU

∑
j∈Ni

αk,l
ij U

k,lhl
j

 (4)

αk,l
ij = Softmax(ek,lij ) =

exp(ek,lij )∑
j′∈Ni

exp(ek,lij′)
(5)

ek,lij = LeakyReLU(⃗aTConcat(Uk,lhl
i, U

k,lhl
j))

= LeakyReLU(ak,lsrcU
k,lhl

i + ak,ldestU
k,lhl

j) (6)

where αl
ij ∈ RK is the attention score between vertex i and

vertex j of layer l, Uk,l ∈ Rd×d and a⃗ ∈ R2d are learnable
parameters. Note that the weight parameter a⃗T is decomposed
into alsrc and aldest ∈ Rd in the DGL library, because it is
more efficient in terms of performance and memory footprint
by transferring VMM between Uk,l and hl from edge-wise to
node-wise operations, especially for sparse graphs where the
edge number is larger than the vertex number.

Figure 2(d) depicts the Dataflow framework of GAT. Due
to the unbalanced workload of the numerator and the denom-
inator in (5), the results of exp(eij), size O(|Ni|), need to be
temporarily stored prior to being accumulated. Considering the
irregularity and large maximum |Ni| of graphs, we divide the
GAT model into 2 HLS kernels linked to the same memory
banks for shared intermediate results: kernel 1 is designed to
perform VMM with U and h, and multi-headed element-wise
multiplication (MHEWM) with asrc and adest, respectively,
in (6). After being optimized, the II of MHEWM is k + 112.
The intermediate results are written back to memory and then
read by kernel 2 to implement (4) and (5). Note that eij is
computed twice in parallel to avoid performance degradation
and deadlock issues. The II of aggregation, softmax, and
MHEWM is k · |Ni| + 2k + 38, k · |Ni| + k + 17, and
k · |Ni|+ k + 14, respectively.

F. Mixture Model Networks (MoNet)

Mixture Model Networks (MoNet) [16] is a general aniso-
topic GNN framework designed for graph and node classifica-
tion tasks using Baysian Gaussian Mixture Model (GMM) [5].
The model is formulated as follow:

hl+1
i = ReLU

 K∑
k=1

∑
j∈Ni

wk(uij)U
k,lhl

j


= ReLU

 K∑
k=1

Uk,l
∑
j∈Ni

wk(uij)h
l
j

 (7)

wk(uij) = exp

(
−1

2
(ul

ij − µl
k)

T (
∑l

k)
−1(ul

ij − µl
k)

)
(8)

ul
ij = Tanh(V lpseudolij + vl) (9)

pseudolij = Concat(deg−0.5
i , deg0.5j ) (10)

where vl ∈ R2, V l ∈ R2×2, µ ∈ RK×2, (
∑l

k)
−1 ∈ RK×2,

and U l ∈ Rd×d are learnable parameters of GMM. vl and

V l represent the pseudo-coordinates between the target vertex
and its neighbors, µ ∈ RK×2 and (

∑l
k)

−1 ∈ RK×2 denote the
mean vector and covariance matrix. Uk,l is the weight matrix.

The Dataflow diagram of MoNet is depicted in Figure 2(e).
In our HLS implementation, pseudoij of each edge is pro-
cessed by a small VMM module with V l and vl in (9)
and the Gaussian Weight Computation module with µ and
(
∑l

k)
−1 in (8). Meanwhile, hj is read from memory for the

subsequent MHEWM with aggregation, MHVMM with U ,
and MH Aggregation modules. Note that we perform the MH
VMM with U after aggregation in (7), transferring it from an
edge-wise to node-wise operation to reduce its occurrence.
After optimization, the II of the VMM for uij , Gaussian
computation, MHEWM with aggregation, MHVMM with U ,
and MH Aggregation are 1, 1, 4, d + k + 28, and 7k + 10,
respectively. We create 2 CUs for the HLS kernel to process
vertices with distinct indices.

G. Gated Graph ConvNet (GatedGCN)

The Gated Graph ConvNet (GatedGCN) [2] is a type of
anisotropic graph neural network (GNN) model that employs
a gating mechanism to regulate the flow of information during
message passing, allowing the model to emphasize relevant
information and filter out irrelevant one. The gating mecha-
nism utilizes gate functions (e.g., sigmoid) to control the flow
of messages at each layer. The mathematical expression for
GatedGCN is provided below:

hl+1
i = ReLU

(
Alhl

i +

∑
j′∈Ni

Blhl
j′ ⊙ σ(el+1

ij′ )∑
j′∈Ni

σ(el+1
ij′ ) + ϵ

)
(11)

el+1
ij = Elhl

i +Dlhl
j + Clelij (12)

where Al, Bl, Dl, El and Cl ∈ Rd×d are learnable matrix
parameters, elij ∈ R1×d denote the edge features from vertex
i to j layer l, hl

i represents node features of vertex i in layer l,
⊙ denotes Hadamard product, σ denotes the sigmoid function,
and ϵ is a constant for numerical stability.

Since the soft attention of GatedGCN shown in (11) is
distinct from GAT, performing accumulation operations for
eij on both the numerator and denominator, we implement a
single pipeline to build the HLS kernel. Figure 2(f) illustrates
the Dataflow framework of GatedGCN. To hide the latency of
multiple VMM modules in GatedGCN, we perform all of them
in parallel with parameters A, B, D, E, and C, respectively.
Then the soft attention module is implemented to update hi.
After optimization, the II of the soft attention and sum modules
to generate hl+1

i are 10 · |Ni|+ 72 and 31, respectively.

III. EXPERIMENTAL METHODOLOGY

Datasets: Table I shows the graph datasets used in our
evaluation. All these graphs are collected from Open Graph
Benchmark [11], a widely-used graph library for GNNs, and
have a wide range of fields and scales. These graphs represent
two classes of graphs with distinct topologies used in the
GNN community: MH and MT consist of multiple small dense
graphs, while AX and PT each consist of one single sparse



TABLE I
GRAPH DATASETS.

Dataset Node # Edge # Max. Avg.
Deg. Deg.

OGBG-MOLTOX21 (MT) 145459 302190 6 2.1
OGBG-MOLHIV (MH) 1049163 2259376 10 2.2
OGBN-ARXIV (AX) 169343 1166243 13155 6.9
OGBN-PROTEINS (PT) 132534 79122504 7750 597.0

graph. The maximum and average degree shown in Table I
indicates their varying distributions ranging from regular-like
to powerlaw-like. In addition, we set feature dimensions for
the kernels: GCN, GraphSage, and GIN have the same input
and output dimensions at 128. The input, head, and output
dimensions of GAT and MoNet are (128, 8, 16) and (64, 2,
64), respectively. All the dimensions of GatedGCN are 32.
Evaluation methods: To perform evaluation, we use a Xil-
inx Alveo U280 FPGA card, provided by the Open Cloud
Testbed [13], to execute the HLS kernels. This FPGA card
provides 8 GB of HBM2 with 32 memory banks at 460 GB/s
total bandwidth, 32 GB of DDR memory at 38 GB/s, and 3 su-
per logic regions (SLRs) with 1205K look-up tables (LUTs),
2478K registers, 1816 BRAMs, and 9020 DSPs. We adopt
32-bit floating point as the data format. We use Vitis 2020.2
for synthesis and hardware linkage with the power-profile
option enabled to perform power profiling during runtime,
and Vitis Analyzer to view resource utilization, execution time
and power consumption. We compare our HLS implementation
with CPU and GPU baselines with PyTorch and the highly-
optimized DGL library. We perform CPU baseline runs on an
Intel Xeon Silver 4114 at 2.2 GHz with 10 cores, 20 threads,
and 13.75 MB L3 cache. The GPU baseline is implemented
on an Nvidia RTX 2080 Ti with 2994 CUDA cores at 1.5 GHz
and 8 GB GDDR6 at 448 GB/s total bandwidth. We measure
the energy consumption of the CPU and GPU baselines using
the same technique as prior work [15].

IV. CHARACTERIZATION

To capture insight into the properties of GNNHLS, we
first characterize the GNN kernels using instruction mix,
spatial locality, and temporal locality. We use Workload ISA-
Independent Characterization (WIICA) [18], a workload char-
acterization tool, to capture ISA-independent properties by
generating and parsing a dynamic trace of runtime information.
Due to the limits of disk and processing time, profiling the the
full trace is impractical. Thus we use uniform random node
sampling [14] to select a sequence of 500 nodes for evaluation.

A. Instruction Mix

We first take a look at the dynamic instruction mix, par-
titioning instructions into 3 classes: branch, memory and
compute. Figure 3 shows the instruction mix of the HLS
kernels on the 4 datasets. We observe that the instruction
breakdown shows a consistent tendency: (1) The computation
instructions make up largest fraction (about 40%−50%) of
total instructions, implying that these pipeline-style GNN HLS
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Fig. 3. Instruction breakdown of all the HLS kernels.
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kernels are computation-intensive. (2) Memory instructions
consume the second largest fraction (about 30% 35%), indi-
cating the total number of memory accesses is still nontrivial
even if all the kernels are in a pipeline style. (3) While branch
instructions take 25%−30% of the total, most of them are
due to conditional statements of for loops and irregularity
of graphs. We also observe that denser graphs (e.g., AX
and PT) induce a higher fraction of compute instructions
for anisotropic kernels (i.e., GAT, MN, and GGCN) due to
their edge-wise operations. In contrast, denser graphs induce
a higher fraction of memory instructions for isotropic kernels
(i.e., GCN, GS, and GIN) because their edge-wise operations
are less computation intensive than node-wise update.

B. Spatial and Temporal Locality

We use spatial locality and temporal locality scores de-
veloped by Weinberg et al. [21] to quantitatively measure
the memory access patterns. Spatial locality characterizes the
closeness of memory references among consecutive memory
accesses. For HLS accelerators, it represents the potential
opportunity to optimize the efficiency of prefetching and
memory burst transfer. Temporal locality measures the fre-
quency of memory instructions accessing the same memory
address. It represents the latent efficiency of cacheing data
elements so that they can be accessed repetitively with lower
cost. Therefore, the higher the temporal locality, the more
performance improvement due to cacheing mechanisms in the
accelerators. Both return a score in the range [0, 1].

Figure 4 illustrates the spatial and temporal locality scores.
Focusing first on the spatial locality, we observe the score
stays consistently low (about 0.23−0.25) across all the kernels
and datasets. It is because the irregularity of graph topology



TABLE II
RESOURCE UTILIZATION OF HLS GNN MODELS.

Target Actual LUT FF BRAM DSP
Freq. Freq.

GCN 300 MHz 250 MHz 264485 413197 41 2880
GS 250 MHz 204 MHz 253608 358722 33 2766
GIN 300 MHz 190 MHz 278251 421915 55 3264
GAT 300 MHz 255 MHz 168559 248424 81 1718
MN 300 MHz 250 MHz 289208 428917 212 2236
GGCN 300 MHz 270 MHz 151497 235484 124 1036

induces non-contiguous memory references, limiting memory
burst transfer and prefetching to the length of feature sizes.
Next examining the temporal locality, we observe that the
score stays in the range of 0.5− 0.7, indicating the potential
performance benefit of cacheing mechanisms, regardless of the
graph topology. In addition, we observe anisotropic kernels
show a higher temporal locality than isotropic kernels, due to
them having more edge-wise operations.

V. EVALUATION

A. Resource Utilization

We first examine the resource utilization and clock fre-
quency after place & route. FPGA resources include look-
up tables (LUT), flip-flops (FF), BRAM, and digital-signal-
processors (DSP). Table II shows these results. From the table,
we observe that the frequency of all the kernels is lower than
the target frequency, which is not unusual in FPGA designs.
Among these kernels, GraphSage achieves a low frequency
due to some critical paths which are unresolvable by the tool.
In addition, we observe that the resources on the FPGA are
not over-utilized.

B. Performance

We next examine the performance improvement by showing
the overall speedup, defined as the execution time of the GNN
HLS kernels relative to CPU-DGL (using all 10 cores on the
CPU), in Figure 5. Table III shows the execution time of
baselines and HLS kernels. Note that GPU results of GAT,
MN, and GGCN on PT cannot be obtained because of running
out of memory (OoM). Examining each kernel in Figure 5, we
observe that the HLS implementation is not always outper-
forming corresponding CPU baselines. Compared with DGL-
CPU, the speedup ranges from 0.47× to 50.8×.

Among isotropic GNN kernels, GCN achieves better per-
formance than GraphSage and GIN, ranging from 1.08× to
1.98× because its simpler structure enables us to create two
CUs to leverage spatial data parallelism. In contrast, we can
only create one CU for GraphSage and GIN each because of
their complex structure and heavy resource usage. In addition,
we observe that the execution time of GraphSage and GIN are
close. Thus, we conclude that the distinction on the structure
of these two GNN models will not substantially affect HLS
implementation results.

Among anisotropic kernels, MoNet achieves highest per-
formance improvement ranging from 6.04× to 50.8× due

to (1) its single pipeline structure with computation order
optimization where the node-wise operations are placed behind
the edge-wise operations, and (2) well-designed MHVMM
modules with lower II, especially MHVMM whose II is
O(d+k) instead of O(dk). In spite of the 2-pipeline structure
of GAT, we observe that it still achieves 4.31× to 6.61×
speedup relative to multi-core CPU baselines. In addition,
since the feature size of GatedGCN is smaller, leading to
more performance improvement for CPU baselines with time
complexity of O(d2), its speedup is not comparable to other
anisotropic kernels, ranging from 0.5× to 1.16×.

Turning our attention to how the performance benefit of
HLS implementations varies across graph datasets, we observe
that the speedup of isotropic kernels relative to DGL-CPU
on regular-like graphs (i.e., MT and MH) is higher than
powerlaw-like graphs (i.e., AX and PT) because (1) the edge-
wise operations are less computation-intensive than node-
wise operations in these kernels, making the baselines more
computationally efficient on powerlaw-like graphs containing
more edges than nodes; and (2) the edge-wise aggregation
operations in HLS implementations are executed sequen-
tially without leveraging edge-level parallelism, making these
HLS kernels less computationally efficient for powerlaw-
like graphs. Distinct from isotropic kernels, the speedup of
anisotropic kernels on powerlaw-like graphs is higher than
regular-like graphs because the edge-wise operations of these
kernels are more computation-intensive than isotropic kernels,
making baselines less efficient on powerlaw-like graphs.

Focusing on the second and the third bar, we observe that
DGL-GPU outperforms HLS implementations in many cases,
due to the high-performance fixed-function accelerators in
the GPU. The speedup of HLS kernels relative to the GPU
baselines ranges from 0.13×−5.16×. In spite of the promising
GPU performance, there are still some drawbacks of GPU
compared with HLS implementations. For the execution of
isotropic GNN models, DGL-GPU achieves lower speedup
than HLS on small-scale graphs such as MT and AX. It is
speculated that the GPU is designed to achieve high throughput
in the cost of latency which plays a more important role
for small-scale graphs than large-scale graphs. In addition,
compared with HLS implementations on FPGA, GPU is also
not suitable for the execution of anisotropic GNN models on
large-scale, especially powerlaw-like graphs (e.g., PT) due to
(1) the non-trivial memory footprint caused by its sequential
execution paradigm to store intermediate results of edge-wise
operations, and (2) insufficient memory capacity on the GPU
board. That is why we failed to execute anisotropic GNNs
on PT with GPU. It is solved by the HLS implementations’
pipeline structure not storing the intermediate results.

Since GenGNN [1] also discusses 3 of the GNN models
included in this paper (GCN, GIN, and GAT), we can make
a limited comparison of our GNN HLS implementations with
theirs. The two are not directly comparable for a number of
reasons: (1) the feature dimensions of our GNN HLS kernels
are higher, (2) we use off-chip memory instead of on-chip
memory, (3) our general-purpose GNN HLS kernels focus
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Fig. 5. Speedup of HLS kernels relative to DGL-CPU. The higher the better.

TABLE III
EXECUTION TIME (SEC) OF DGL-CPU, DLG-GPU, AND GNN HLS IMPLEMENTATION ON 4 GRAPH DATASETS.

MT MH AX PT
DGL-CPU DGL-GPU HLS DGL-CPU DGL-GPU HLS DGL-CPU DGL-GPU HLS DGL-CPU DGL-GPU HLS

GCN 0.11 0.28 0.05 0.69 0.35 0.39 0.31 0.34 0.21 16.09 6.29 14.85
GS 0.21 0.30 0.13 1.42 0.38 0.98 0.43 0.42 0.52 16.45 5.68 34.29
GIN 0.15 0.29 0.13 0.93 0.35 0.98 0.34 0.41 0.52 16.11 5.15 34.29
GAT 0.91 0.12 0.21 6.52 0.24 1.51 3.10 0.27 0.67 186.93 OoM 28.28
MN 0.32 0.11 0.05 2.37 0.18 0.32 1.18 0.21 0.05 89.71 OoM 1.77

GGCN 0.12 0.11 0.17 0.62 0.26 1.26 0.36 0.26 0.54 38.93 OoM 33.55

more on throughput rather than real-time latency, and (4) the
FPGAs are from the same family, but are not same part. The
performance of our HLS kernels exceeds that of GenGNN,
achieving overall speedup of 35×, 5×, and 6× over GCN,
GIN, and GAT, on MT, respectively.

C. Optimization Techniques

As described in Section II, we apply multiple optimization
techniques to the HLS kernels. In order to evaluate the efficacy
of these techniques, we use GraphSage on MT as a case
study. Table IV presents the execution time of GraphSage
with the combined impact of optimization techniques applied.
The reported execution time of each technique represents the
effect of both the current technique and above techniques
listed in the table. In the table, No Pragma means we don’t
intentionally apply any pragmas to the HLS code, except
for those automatically applied by Vitis (i.e., Pipeline, Loop
Merge, and Memory optimizations). Dataflow denotes that we
apply dataflow pragma and FIFO streams to exploit the task-
level parallelism of each application. Loop Unroll means we
apply loop unroll pragmas to completely or partially unroll
for loops, keeping II as low as possible while exploiting
instruction parallelism. Vectorization means using vector data
types to widen the width of FIFO streams and corresponding
operations to decrease the cost of FIFO accesses. Split Loops
means splitting the outer-most node loop and putting it inside
each function connected by streams to further optimize FIFO
properties inferred from loop indices.

We observe that Loop Unroll achieves the highest perfor-
mance improvement. Therefore, exploiting instruction paral-
lelism is still the primary choice for GNN HLS optimization.
In order to further improve performance, exploiting task-level

TABLE IV
EXECUTION TIME OF VARIOUS OPTIMIZATION TECHNIQUES FOR

GRAPHSAGE ON MH.

Optimizations Execution Time (s) Speedup
No Pragmas 129.59 1.00×
Dataflow 65.11 1.99×
Loop Unroll 11.11 11.7×
Vectorization 4.44 29.2×
Split Loops 0.98 132×

parallelism is necessary. Focusing on the first and second row
in the table, we observe that only performing the dataflow
pragma and streams in a naive way obtains 1.99× performance
improvement. By applying Vectorization and Split Loops as
complementary techniques of Dataflow, performance is further
improved by 2.5× and 3.9×, respectively. After applying
all the optimization techniques together we observe that the
performance of GraphSage is improved by 132×.

D. Energy Consumption

We next present a quantitative analysis of the energy
consumption. Figure 6 displays the energy reduction of both
DGL-GPU and HLS implementations relative to DGL-CPU
in logarithmic scale. Energy reduction is calculated as the
energy consumption of DGL-GPU or HLS divided by that of
DGL-CPU. Examining the final bar of each application and
dataset, we observe that HLS implementations consume less
energy than CPU and GPU baselines in all cases. The energy
reduction ranges from 2.95× to 423× relative to DGL-CPU
and from 2.38× to 74.5× relative to DGL-GPU. It is because
of the low power of FPGA logic, low clock frequency, and
efficient pipeline structure of HLS implementations.
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Fig. 6. Energy consumption reduction of HLS kernels relative to DGL-CPU (logarithmic scale). The higher the better.

TABLE V
ENERGY CONSUMPTION (J) OF DGL-CPU, DGL-GPU, AND GNN HLS IMPLEMENTATION ON 4 GRAPH DATASETS.

MT MH AX PT
DGL-CPU DGL-GPU HLS DGL-CPU DGL-GPU HLS DGL-CPU DGL-GPU HLS DGL-CPU DGL-GPU HLS

GCN 9.06 59.67 0.80 58.38 75.25 5.85 25.93 73.38 3.10 1367.75 1352.67 208.77
GS 17.95 64.60 1.68 120.97 80.63 12.73 36.74 89.54 6.69 1397.99 1221.69 439.91
GIN 13.12 63.20 1.77 79.25 75.04 13.40 29.10 89.11 7.10 1369.04 1107.06 464.29
GAT 77.45 25.37 2.79 554.10 50.53 20.50 263.09 57.74 8.83 15889.04 OoM 344.14
MN 27.46 24.32 0.80 201.19 38.70 6.48 100.59 45.59 0.75 7625.48 OoM 17.22

GGCN 9.84 23.82 1.62 53.12 55.47 12.05 30.76 55.32 5.00 3309.16 OoM 323.44

Focusing on the first and last bar, we observe a similar
tendency in energy reduction as in performance: for isotropic
GNN models, denser graphs result in lower energy reduction,
whereas for anisotropic GNN models, denser graphs result
in higher energy reduction. This leads us to conclude that
improving GNN applications generally will require some
degree of graph topology awareness.

VI. CONCLUSIONS

In this paper, we propose GNNHLS, an open-source frame-
work to comprehensively evaluate GNN inference acceleration
on FPGAs via HLS. GNNHLS consists of a software stack for
data generation and baseline deployment, and 6 well-tuned
GNN HLS kernels. We characterize the HLS kernels in terms
of instruction mix and memory locality scores, and evaluate
them on 4 graph datasets with various topologies and scales.
Results show up to 50.8× speedup and 423× energy reduction
relative to the multi-core CPU baselines. Compared with GPU
baselines, GNNHLS achieves up to 5.16× speedup and 74.5×
energy reduction. In the future, we will extend GNNHLS to
more GNN models and graph datasets. It can also be useful
as a benchmark or baseline for HLS researchers to explore
the potential of HLS tools on GNN inference acceleration.
GNNHLS has been released for use as a benchmark suite [28].
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