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Abstract—We propose architectural contracts that specify the
allowable limits of speculative execution to enable both software
safety guarantees and hardware verification. Transient-execution
attacks have presented a major threat in recent years, driving
deployment of software mitigations and research into hardware
solutions. Recent work on hardware/software contracts for se-
cure speculation recognizes the need for cooperation between
hardware guarantees and software analysis, and demonstrates
that speculative execution models can enable formal analysis
of programs with respect to transient-execution vulnerabilities.
Therefore, we have extended these limited models into com-
prehensive architecture-level contracts that can be verified at a
microarchitecture level. We define a set of speculation contracts
for translation (TSC) and branching (BSC), and for memory
ordering (MOSC). We also develop a set of directed-random
test routines that reproduce all known contract violations in a
prototype out-of-order processor, most of which represent known
transient-execution vulnerabilities. We also extend the RiscyOO
processor to enforce each contract and evaluate performance,
demonstrating the practicality of the chosen contracts with
an overhead between -1.2% and +1.8% for this prototype.
These general-purpose contracts set the stage for specification of
speculative execution for complete instruction-set architectures,
and particularly for new security-focused ISA extensions.

Index Terms—transient-execution attacks, instruction-set ar-
chitectures, computer security, hardware-software contracts, test-
ing, microarchitecture

I. INTRODUCTION

Transient-execution attacks [1]–[4] have greatly impacted
the computer security landscape. Transient-execution attacks
aim to encode secrets in microarchitectural state changes,
which are then made visible via side channels (e.g., cache
timing attacks [5]) to leak information between protection
domains. While some transient-execution vulnerabilities are
fixable in hardware [1], [6], others require long-term software
mitigations. In both cases, instruction-set architectures (ISAs)
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suffer from a specification vacuum with respect to behavior
in speculation. On the one hand, hardware designers are
unclear to what degree they are responsible for transient-
execution side-channel attacks. On the other hand, software
mitigations are being developed around ad hoc mental models
of speculative execution [7]. These mental models are unlikely
to be complete for any one microarchitecture, and certainly
not for all current and future implementations. This leads to
mitigations that fail in unexpected ways [8].

Speculation contracts have been proposed to define pro-
gram safety with respect to transient-execution side-channel
attacks [9]. This work has demonstrated that a well-defined
(if limited) execution model can support reasoning about the
visibility of state to observers of transient execution. We
propose a complete speculation model for execution, in the
form of a set of contracts for the instruction-set architecture,
forcing implementations to confine speculation within limits
that allow software analysis. These ISA-level contracts do
not categorically prevent side channels, but enable sound
reasoning about software with respect to safety against classes
of transient-execution attacks. We propose:

1) The Translation Speculation Contract (TSC) to constrain
which virtual addresses may be used to speculatively
access memory.

2) The Branching Speculation Contract (BSC) to constrain
which control-flow paths may execute in speculation.

3) The Memory Ordering Speculation Contract (MOSC)
to constrain which values may be speculatively loaded
from an address.

These architectural speculation contracts must allow for
practical hardware verification in order to be meaningful to
microarchitectural design. To prove that our contracts are
testable, we have developed an automated testing framework
to discover speculation contract violations in processors.

In this work, we answer the following research questions:

1) Is it possible to define useful architectural speculation
contracts? In Section IV, we define exemplar architec-
tural speculation contracts to support reasoning about
translation, control flow, and memory ordering.

2) How can we test architectural speculation contracts?
We show in Section VIII that testing implementations
against architectural speculation contracts is practical.



We develop a portable testing strategy with an automated
tool for directed-random testing for conformance to
the above speculation contracts. Our tests flag multiple
violations that uncover challenges in implementing even
straightforward contracts.

3) Can we enforce speculation contracts? In Section IX, we
demonstrate that architectural speculation contracts can
be enforced in modern microarchitectures. We imple-
ment contract enforcement mechanisms in a superscalar,
out-of-order processor and identify common mecha-
nisms that could be useful in other microarchitectures.

4) Can speculation contracts be enforced with reasonable
performance? In Section X, we demonstrate that archi-
tectural speculation contracts can be implemented with
near-zero overhead in SPEC2006 [10].

II. THE ARCHITECTURAL THREAT MODEL

Security design requires a clearly defined threat model. We
can consider security design in computer systems at three
levels: software, instruction-set architecture, and processor
microarchitecture. While software programs often have clear
use cases with defined threat models, instruction-set architec-
tures are necessarily general. Consequently, the most wide-
spread ISA-level threat models are simple: preserve privilege
rings and isolate address spaces. At the bottom of the stack,
processor microarchitectures have required almost no security
design beyond implementing the ISA specification; security
vulnerabilities were simply architecturally-visible bugs.

Transient-execution attacks have greatly disturbed security
design in computer systems by assigning blame to processor
microarchitects for non-architectural timing behavior, which
was indeed used to bypass architectural privilege rings and
address space isolation. To maintain an orderly chain of trust,
we suggest that instruction-set architectures now consider
threats from attackers who can wield transient execution, and
take up the burden of defining the limits of safe speculation.
These architectural limits should be proven capable of prevent-
ing transient side-channel threats with reasonably structured
software. This full definition of the limits of speculative
execution would allow microarchitects to return to a threat
model that can be reduced to an ISA test suite.

For the instruction-set architecture itself, we now require
a more nuanced threat model. While architectures previously
required that secret values must not be accessible through
memory or through an architectural register, in this work we
will assume that any value that can enter the core (defined
in Section IV-A) in speculation is accessible through a side-
channel. This allows us to avoid consideration of the multitude
of side-channel mechanisms, which are comparatively harder
to specify than speculative memory accesses and execution
paths that can be expressed in terms of the architecture.

III. BACKGROUND AND MOTIVATION

Recent history with transient-execution side channels proves
the need for clear specification of the limits of speculative

execution to support both software reasoning and hardware
development.

A. Hardware Side-Channel Defense

Early work on mitigating transient-execution attacks in
hardware focused on closing cache timing side-channels [11].
This was followed by Speculative Taint Tracking [12] and
Speculative Privacy Tracking [13], which tracked and limited
speculation to avoid exposing transient data to side-channels.
These protections incur substantial overhead, begging the
question of what minimal properties software requires to
be provably safe. In a precursor to speculation contracts,
SpecTerminator [14] improves on previous work by defining
allowed speculation in one case. This shows the need for
general ISA-level contracts that enable software to reason
about its security guarantees.

B. Speculation in Current Architectures

While speculative behavior is generally left unspecified in
current instruction-set architectures (ISAs), common archi-
tectures do provide rudimentary barriers. The x86-64 ISA
specifies that the lfence instruction prevents speculative out-
of-order execution [15], and Arm defines speculation barriers,
e.g., the SSBB instruction [16]. Furthermore, Arm proposes
architectural extensions to allow software to entirely disable
categories of speculation or to keep speculation in one context
exclusively [17]. These speculation barriers and mechanisms
have provided a crucial handle in ISA specifications that allow
software mitigations for transient-execution attacks. However,
the lack of general guarantees on speculative execution poses
great risks, and will inevitably result in overly conservative
hardware and software. Barriers in hardware must prevent
all speculation, and these barriers will be used liberally by
software to prevent esoteric potentialities, as the ISA provides
no other guarantees on behavior in speculation. This conun-
drum is similar to memory-consistency models, where lack
of specification results in overuse of memory barriers [18].
Memory model specification may at first appear unneces-
sary in an ISA, but has been proven to be necessary for
portable concurrent algorithms. In the same way, portable,
high-performance mitigations of transient-execution attacks
require some guaranteed limits on speculation.

C. Contracts for Secure Speculation

Hardware-Software Contracts for Secure Speculation [9]
have proposed a framework comprised of execution models
and side-channel observers. This framework facilitates pro-
gram analysis to identify transient-execution side channels
in the combination of processor speculation and program
structure [19]. We complement this work by extending from
simplistic speculation models to full architectural speculation
contracts to provide a foundation for reasoning about program
safety using their proposed style of software analysis and
vulnerability discovery.



IV. SPECULATION CONTRACTS

Our architectural speculation contracts target the overlap
between high-performance processor design and reasonable
semantics for specification. As introduced in Section II, our
contracts focus on speculative-execution possibilities rather
than side-channel prevention.

A. Common Vocabulary

Our contracts are presented in prose for accessibility. How-
ever, we must clearly define our use of the following terms:
A compartment is a unit of software decomposition expressed
architecturally to be enforced by hardware. Examples might
be privilege level (expressed in rings) or address spaces
(expressed in process IDs or page table roots). Future archi-
tectures might allow more fine-grained compartments. Many
system might do compartmentalization on a process-level,
where each process becomes an own compartment as well
as making the kernel its own compartment. When doing
a compartment switch, e.g., a system call changing from
a user space compartment to the kernel compartment, the
microarchitecture needs to be made aware of the compartment
change. Future research needs to investigate ways of perform-
ing microarchitectural compartment changes.
We define the core as reaching from the execution pipeline
to the load/store queue, but not to the L1 caches. This model
assumes unused bytes of cache lines cannot leak, and that
the cache itself, including any prefetching, does not perform
data-dependent operations sufficient to create side-channels.
We also ignore asynchronous agents like the page-table walker
and DMA engines.
An instruction is fetched if it is in the front-end of the pro-
cessor. The front-end is characteristically in-order and flushed
at lower cost than the out-of-order back end. Instructions that
are merely fetched need not modify predictor state.
An instruction is executed when data-dependent action is taken
using its operands, potentially producing a new data value in
the core. In this stage, the instruction might modify predictor
state and access data caches.
A branch is an instruction that conditionally affects control
flow. This includes conditional branches to static targets and
jumps to dynamic addresses, but not exceptions or interrupts.
An event is non-speculative if all previous branches have been
executed.
An event is transient if it occurred speculatively but did not
commit. A non-speculative event may still be transient.

B. Architectural Independence of Contracts

The contracts presented in the following subsections are
architecture-independent and can be mapped to any ISA.
Our contracts argue about general architectural principles not
specific to any particular ISA. In the following subsections, we
perform the step of mapping the contracts to RISC-V, and give
examples of which scenarios are allowed and disallowed. It is
future research to map our contracts onto other architectures.

C. Translation Speculation Contract
The Translation Speculation Contract (TSC) guarantees that

architectural memory translation and page permissions are
enforced continuously in the microarchitecture, including all
speculative execution. This ensures that no unmapped memory
access is issued from the core. Stated precisely:

Translation Speculation Contract (TSC)

All instruction and data-memory operations issued in
speculation must be mapped in the page table, and allowed
by current page permissions.

The Meltdown vulnerability [1] violates TSC, and was
considered an egregious violation of programmers’ expecta-
tions. Meltdown has not been considered endemic of high-
performance microarchitectures; many high-performance im-
plementations do not share this vulnerability and newer imple-
mentations avoid it without performance penalty [6]. There-
fore, we conclude that the Meltdown vulnerability could be
attributed purely to a lack of this architectural speculation
contract.

D. Branching Speculation Contract
Control flow is the biggest challenge for a complete defi-

nition of speculative behavior. Instruction Fetch is the earliest
stage of the pipeline and must operate with minimal knowl-
edge of the instructions that are ostensibly directing it. Branch
prediction is therefore traditionally the most speculative aspect
of microarchitecture.

In order to define useful constraints for speculative control
flow, we strategically limit which instructions will be executed
rather than merely fetched. Side channels from speculative
execution are useful when they can exfiltrate an illegal value;
the production of an illegal value generally happens in the
Execute stage of the pipeline, e.g., when a load is actually
performed. This allows the front-end of the pipeline to spec-
ulate freely until decoding the instruction stream. Allowing
wild instruction fetch assumes that it is not possible to leak
the contents of memory through the front-end of the pipeline.
This should at least require constant-time decoding. After
Instruction Decode, the microarchitecture can intelligently
enforce architectural speculation contracts with knowledge of
the instructions that would be executed.

The Branching Speculation Contract (see definition) is de-
signed to allow reasoning about the possibilities of speculative
execution within a compartment, and also to provide guaran-
tees between compartments.

BSC item 1 only allows execution to follow the correct
target of a direct jump. In this case the target is known in
Decode and mispredictions can be flushed before execution.
This allows basic blocks to span direct jumps. For example:

1 labelA:
2 jal x0, labelB
3 ...
4 labelB:
5 ...



Branching Speculation Contract (BSC)

1) Direct jumps (unconditional with immediate target)
will be followed in speculative execution only by
the jump target.

2) Direct branches (conditional with immediate target)
will be followed in speculative execution only by
one of the two possible targets.

3) Instructions that cause exceptions will be followed
in speculative execution only by the non-faulting
path.

4) Indirect branches (register target) will be followed in
speculative execution only by previous architectural
indirect-branch targets from the current compart-
ment.

5) Returns will be followed in speculative execution
only by the instruction after a previous call from
the current compartment.

The direct jump can proceed only to labelB – no other
speculatively executed path is allowed.

Item 2 precludes the processor from conducting wild target
speculation for direct branches. For example:

1 blt x6, x7, labelA
2 ...
3 labelA:
4 ...

After the conditional branch, speculative execution can
proceed only to the next instruction, or to the instruction
at labelA. This constraint is also foundational for current
Spectre mitigations, which assume that control flow at a direct
branch might take the wrong path due to a misprediction
in the Pattern History Table (PHT), but will not select an
arbitrary target from the Branch Target Buffer (BTB). Direct
branches are nevertheless likely to use a simple BTB for all
early branch predictions, but microarchitectures should not
proceed to execution with a conditional branch prediction
that is not one of the two allowed targets.

Item 3 guarantees that exception paths will never be specu-
latively initiated by the processor, and that the straightforward
non-faulting path will always be taken in speculative execu-
tion. While it could be tempting to speculate on exceptions
such that repeated exceptions will train the processor to
speculatively enter the exception handler, we recommend this
simpler constraint. Exceptions are not a common case, and
mixing instructions of different privilege levels in speculative
execution increases the reasoning burden for software.

With item 4, only previously committed targets from this
compartment may be predicted, allowing reasoning about the
complete set of potential speculative targets of an indirect
branch. Predicting targets learned from transient execution
would make static analysis impossible. In fact, we find in
Section X that excluding transient targets in the BTB can

improve performance. Item 4 also prevents indirect branches
from defaulting to straight-line prediction, which has been a
source of transient-execution attacks [20].

Item 5 describes standard call stack prediction using the
return stack buffer (RSB), but allows training only from non-
speculative function calls. This is expected behavior, and forms
the basis of the broadly deployed Retpoline Spectre-BTB
mitigation recommended by Intel [21]. Nevertheless, this ex-
pectation is not specified architecturally; both Intel and AMD
processors use BTB predictions for the call stack in certain
cases, allowing Retpoline mitigations to be bypassed [8].

Constraining speculation training to non-speculative jumps
from the same compartment, as specified in items 4 and 5,
enables full analysis of possible speculative paths in a com-
partment, and also guarantees non-interference between com-
partments.

V. DATA-VALUE SPECULATION

Data-value speculation is used in modern processors in vari-
ous forms. Memory is the most important target for data-value
speculation, and speculatively reordering loads and stores is
a basic feature of modern out-of-order cores. For this initial
work, we present the Memory Ordering Speculation Contract
(MOSC) as a complete data-value speculation contract; no
other form of data-value speculation is allowed.

Memory Ordering Speculation Contract (MOSC)

Speculatively executed loads will return a value that has
been held in that address while in this compartment.
Speculatively stored values may be loaded from this
compartment; only committed (non-transient) values may
be loaded from other compartments.

These semantics of MOSC are a compromise between ar-
chitectural semantics and microarchitectural freedom. MOSC
allows the most natural form of speculative memory reorder-
ing without compromising compartmentalization as long as
software is careful about memory initialization.

VI. SECURITY EVALUATION

Architectural speculation contracts embrace an ISA threat
model that includes transient-execution attacks in the effort to
improve architecture-wide security guarantees. In this section,
we evaluate the security guarantees of our proposed contracts
in the face of transient-execution attacks. We follow the
classification of attacks from Canella et al. [22].

A. Spectre Defense

Spectre-like attacks are classified based on the prediction
mechanism they exploit: Spectre-PHT, Spectre-BTB, Spectre-
RSB, and Spectre-STL (Store-to-Load forwarding).

Whereas BSC limits direct branch-direction prediction to
the two architectural possibilities via constraint 2, it does
not natively prevent Spectre-PHT attacks that use a transient



Intra-Compartment Inter-Compartment

Spectre-PHT 7 7
Spectre-BTB 3(limited) 3
Spectre-RSB 3(limited) 3
Spectre-STL 7 3

TABLE I: Spectre security evaluation for intra-compartment
and inter-compartment attacks.

wrong path to bypass security checks. However BSC does
guarantee that common software mitigations, such as pointer
masking, will be effective.

BSC limits the speculative targets of indirect jumps, calls,
and returns to committed targets from the same compartment
as a defense against Spectre-BTB and Spectre-RSB. Attackers
can only train the Branch Target Buffer (BTB) and Return
Stack Buffer (RSB) with architectural targets, so cannot redi-
rect control flow to arbitrary targets. Furthermore, BSC does
not allow an attacker to train their own targets into another
compartment. However, BSC constraints 4 and 5 do not forbid
wrong target speculation as long as a jump to that target has
been committed previously in this compartment. While an
attacker cannot inject their own targets, an attacker might still
mistrain another compartment, e.g., through BTB conflicts, to
misspeculate to local targets that may reveal secrets. Nev-
ertheless, BSC does enable a compartment to enumerate all
potential speculative targets of an indirect branch, by analyzing
only its own code.

Spectre-STL attacks mistrain the memory disambiguation
predictor, with the goal of transiently loading secret data
to be exfiltrated via a side channel. MOSC prevents inter-
compartment Spectre-STL attacks if secrets are cleared before
memory is shared between domains.

As summarized in Table I, our contracts limit the inter-
compartment attack surface for Spectre attacks.

B. Meltdown Defense

Meltdown-US illegally reads secrets from kernel pages that
are still mapped in the page table – despite permissions
prohibiting the access. TSC is an architectural formalization
of hardware Meltdown-US protections and fully mitigates
Meltdown-US attacks. TSC also prevents Foreshadow [23],
a variant of Meltdown targeting Intel SGX encrypted pages.

Many ISA-specific Meltdown-like attacks have also been
developed [22], e.g., Meltdown-NM [24] for x86 floating
point. Most of those attacks are specific to one ISA and
particular specific subsets of it. Our contracts are instruction-
set architecture independent so do not consider such ISA-
specific attacks. Including ISA-dependent contracts in our set
would pollute the architectural interface.

C. Microarch. Data Sampling Defense

Microarchitectural data sampling (MDS) attacks harvest
secrets by exfiltrating undefined data returned in the microar-
chitecture during failed speculation [25], [26]. Both TSC and
MOSC prevent MDS attacks. TSC prevents MDS attacks

against data forbidden by memory translation or permissions.
MOSC also prevents MDS attacks by excluding all data-
value speculation (including undefined data) besides memory
reordering, which must return data belonging to the same
address and compartment.

VII. RISCYOO MICROARCHITECTURE

To verify that these contracts could be implemented and
tested, we used the RiscyOO processor. RiscyOO is a con-
figurable out-of-order superscalar core in the Bluespec Sys-
temVerilog language [27]. We have built on the Toooba fork of
RiscyOO, which adds compressed instructions and debug sup-
port. We tested RiscyOO in the SMALL configuration, which
can fetch and commit two instructions per cycle and has an
out-of-order window of 64 instructions. This configuration has
two integer pipelines, one memory pipeline, and one floating-
point pipeline, each fed from a 16-entry issue queue. The
memory queues track 38 outstanding memory transactions; the
L1 caches are 32 KiB and 8-way associative, and the L2 cache
is 1 MiB and 16-way associative.

Transient-Vulnerability Profile: All basic Spectre attacks
are possible on RiscyOO [28], [29], and the reorder window
proved more than sufficient for a side-channel gadget to exe-
cute while waiting for slow-to-resolve misspeculation. Despite
our SMALL configuration, we found that an indirect branch
that is waiting on its target to return from memory can allow
more than 28 predicted instructions to execute before flushing
on misprediction. This enables exploits that inject cache side-
channel gadgets using the BTB and RSB, as well as simpler
attacks using the PHT.

RiscyOO is also vulnerable to BTB aliasing attacks, partic-
ularly when using hashed BTB tags.

The PHT of RiscyOO is also vulnerable to mistraining, but
only to one of the legitimate targets of the branch [2], [28],
[29].

RiscyOO’s sophisticated memory subsystem is also vulner-
able to Spectre Store-To-Load (STL).

The range of Meltdown attacks could not be reproduced
in RiscyOO, because page permissions are checked before
issuing to memory (Meltdown-US [1]) – as is common [16],
and because system register permissions are checked in the
Rename stage before instructions are issued (Meltdown-GP).

VIII. TESTING SPECULATIVE CONTRACTS

As with all components of an ISA, architectural speculation
contracts should be verifiable.

The IntroSpectre verification effort shows the difficulty
faced by the current state of the art [30]; IntroSpectre uses
debug tracing in simulation and directed-random test genera-
tion to discover leakage of state between privilege levels. The
IntroSpectre approach is inconclusive (because the expected
behavior is undefined) and also non-portable (because it relies
on non-architectural debug trace of one implementation).

We intend to provide a clear set of contracts against
which to test, and a portable testing strategy. For a portable
testing approach, we relied on the RISC-V Formal Interface



(RVFI), a standard architectural tracing format used by the
TestRIG framework for RISC-V processors [31]. Furthermore,
we used the Hardware Performance Monitoring (HPM) ex-
tension to detect microarchitectural events; HPM counters
provide a portable bridge between architectural state and the
speculative behavior guaranteed by our contracts. Whereas
arranging scenarios where counters reliably indicate violations
was sometimes complex, this approach is portable to a family
of implementations that share the same architectural contracts.

A. Translation Speculation Contract Testing

The Translation Speculation Contract requires that transient
execution respects page-table mappings and permissions. Our
TSC generator populates a page table with one code and
one data page, and arranges for the data-cache miss counter
to register any accesses outside of these pages. Random
memory instructions then attempt to access disallowed pages.
As expected from the results of previous research [28], [29],
our generator did not detect a TSC violation.

B. Branching Speculation Contract Testing

BSC consists of five constraints that we test via two
generators: branches and jumps (constraints 1, 2, 4 and 5),
and exceptions (constraint 3).

Branches and Jumps Violations: Our branch-and-jump test
generator seeks to detect violations of BSC constraints 1, 2,
4, and 5. This ensures that direct jumps speculate only to
the intended target; direct branches speculate only to one
of the two possible targets; indirect jumps speculate only
to a previous jump target; and returns speculate only to
previous calls. Testing these properties in RiscyOO required
implementing specialized counters using a small amount of
state.

We detect direct-jump and direct-branch violations using
custom assertions with counters in the Execute stage; these
assertions register an event if the predicted nextPC is an
implausible target.

For indirect jumps, we implemented a searchable vector of
previously committed indirect jump targets and count wild
predictions that are not found in this set. For returns, we
similarly record previous call sites and count predicted return
targets that are not in this set.

To prevent overflow of our structures, our generators en-
sure a limited number of jump targets by creating cycles of
instructions with jumps, branches, or targets at fixed offsets.

Any branch that does not conform to our expectations for
BSC is considered a wild jump, and is counted in our wild-
jump counter. Our generator produced the following branch
target buffer (BTB) speculative training violation:

1 csrci mcountinhibit (0x320), 8
2 jalr x1, x10, 21
3 srliw x28, x29, 1

The CSR Clear Immediate (csrci) instruction is a system
instruction that causes a pipeline flush in RiscyOO. jalr
speculatively executes after the csrci, but is flushed from
the pipeline when csrci commits. Since the first execution

Fig. 1: Microarchitectural event coverage by generator.

of jalr does not commit, it does not produce a bonafide
previous architectural target. Nevertheless, the transient jalr
trained the BTB such that the srliw target executes specu-
latively after the flush, violating BSC constraint 4.

A return that violates BSC is considered a wild return, and
is counted in our wild-return counter. Our generator produced
one class of counterexamples, which is caused by return stack
buffer (RSB) training in speculation.

Exception Violations: BSC requires exceptions to speculate
the non-faulting path. We added a counter for faulting instruc-
tions that predict a PC other than next instruction, but did not
record any events; BSC constraint 3 is held by RiscyOO.

C. Memory Ordering Speculation Contract Testing

MOSC requires that loads only return values that have
been previously held in that address. We introduced a small
amount of state to track past stores, and count a wild load if
a load returns an unseen value. We initially fill memory with
zeros so that we can allow either zero or a recorded previous
store value. Our generator creates random sequences of loads
and stores intermixed with instructions from other classes.
This generator did not find a counterexample, indicating that
RiscyOO upholds MOSC.

D. Evaluation of Test Generators

We traced microarchitectural events triggered by each test
(Figure 1). For example, we found that 91.56% of the
TSC tests triggered a memory exception due to insufficent
privileges, and 9.32% of all BSC Jump tests generated a
BTB misprediction. At least 94.96% of BSC exception tests
raised an exception, and these are categorized into front-end,
Rename, ALU, or memory exceptions.

IX. SPECULATIVE CONTRACT ENFORCEMENT

RiscyOO natively enforced TSC at full performance(see
Section VIII-A). Enforcing the Branching Speculation Con-
tract (BSC) on RiscyOO required delaying predictor training
until the relevant branch was non-speculative, i.e., all previous
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Fig. 2: Changes made to the RiscyOO front-end to enforce BSC constraints.

branches have executed. To prevent mistraining predictors
during an exception, we would use coarser measures (such
as flushing) that are a secondary concern for common-case
performance. In comparison with more direct side-channel
prevention techniques such as those facilitated by Speculative
Taint Tracking [12], this limitation is quite subtle and can
yield a performance improvement. Waiting for state to be non-
speculative is both high-performance and convenient for this
implementation.

Our BSC enforcement in RiscyOO was facilitated by the
SpecFIFO component from the RiscyOO code base, which
holds a queue of speculative state along with tags that indicate
which in-flight branches this state depends on. A branch reso-
lution broadcast network ensures that metadata in SpecFIFOs
are updated such that state belonging to failed speculation
immediately disappears from all queues. A tag value of 0
indicates when this state is no longer speculative.

BSC constraints 1, 2, and 3 were already enforced in
RiscyOO. A misprediction of a direct jump is detected in
Decode when its target is fully known. Direct branches use a
dedicated direction predictor in Decode to predict one of only
two valid targets. If Decode detects an implausible prediction,
it flushes the fetch pipeline and redirects to a legal target.

BSC constraint 4 mandates that all speculative indirect
jump targets must have been previously targeted by committed
jumps. This requires the Branch Target Buffer (BTB) to be
trained only from non-speculative state. To enforce this, we
converted the branch training queue into a SpecFIFO. This
is a component in the RiscyOO base, which holds a queue
of speculative state along with tags that indicate which in-
flight branches this state depends on. This branch training
SpecFIFO, shown in Figure 2a, is dequeued only when the

head is non-speculative. This mechanism guards not only the
BTB, but also the direction data in the Pattern History Table
(PHT). Protecting direction prediction is not essential for BSC,
and could have both positive and negative effects on branch
accuracy due to delaying training and eliminating training
from transient state. Further research needs to show the precise
effect of BSC on branch predictor accuracy.

In addition, BSC constraint 4 forbids indirect jumps to
default to straight-line prediction. Unfortunately, RiscyOO
defaults to straight-line prediction for indirect jumps when
no valid prediction was found in the BTB, which was found
to be an exploitable vulnerability in commercial processor
implementations [20]. To resolve this, we respond to a missing
prediction by pausing fetch until we receive an actual redirec-
tion from Execute, as depicted in Figure 2a.

BSC constraint 5 requires that all speculative returns arrive
at a previous non-speculative jump target. RiscyOO both
pushed and popped the Return Stack Buffer (RSB) in Decode
from the speculative instruction stream. That is, when a Jump
and Link was encountered in Decode, PC+4 was pushed to
this stack, and when a return was encountered, the top of the
stack was popped and predicted as the next PC. This violates
BSC constraint 5, as jumps that have pushed to the RSB might
be flushed due to misprediction, introducing non-architectural
targets to transient execution. In addition, performance was
lost, as flushed transient instructions could cause the RSB
stack to become desynchronized with the actual instruction
stream. We resolved this with two mechanisms, illustrated
in Figure 2b. First, we roll-back the RSB stack pointer on
redirection; this reduced RSB mispredictions by roughly 90%
in CoreMark. Second, we can delay RSB writes in the training
SpecFIFO so that only non-speculative targets are written to



Fig. 3: Performance cost of enforcing the Branching Speculation Contract (BSC).

the RSB stack. This is the most expensive aspect of our BSC
enforcement, and is therefore listed separately in Figure 3.

Separate from training data, redirections themselves also
needed protection to enforce BSC constraints 4 and 5. A
redirected instruction stream in RiscyOO was able to reach
execution while the instruction that caused the redirection was
still speculative. This allows illegal transient targets to execute
despite not populating either the BTB or the RSB.

The most straightforward solution would be to store the
redirection itself in a SpecFIFO until the mispredicted branch
that triggered the redirection had become non-speculative.
However, this approach would have increased the mispredic-
tion penalty in many cases. Because BSC guarantees only
the semantics of speculative execution, as opposed to fetch,
Instruction Fetch is allowed to proceed with a speculative
redirection, but Decode is blocked until the instruction that
caused the redirection has become non-speculative (see Fig-
ure 2c). This is enforced by a zero-data SpecFIFO that holds
the speculative state of the last redirection. This mechanism
appears to block only very rarely, as performance is hardly
affected by this change.

We tested these BSC enforcement mechanisms using the
generators described in Section VIII, which helped identify
stray violations and also helped ensure the test routines
themselves were flagging appropriate violations. This exercise
demonstrated that architectural speculation contracts of this
style can be productively tested during development.

X. PERFORMANCE EVALUATION

Figure 3 gives the performance overhead of enforcing BSC
on SPECInt2006 benchmarks [10]. We have measured both
with and without the Return Stack Buffer (RSB) push delay,
as this incurs the greatest overhead.

Without the RSB push delay, BSC protections reduce exe-
cution time by 1.2%. The performance improvement is due
to reduced redirections from more accurate predictions, as

seen in the lower graph. These more accurate predictions are
due to BSC protections preventing prediction state from being
polluted by transient instructions. While transient training
sometimes provides positive hints for future behavior, in these
cases they more often hurt performance, and there is a mean
6.9% reduction in redirections without the RSB push delay.

With RSB push delay enabled, there is a mean 1.8%
cycle overhead. This feature increases redirections due to
mispredicted short function calls, as mentioned in Section IX.

We were able to enforce the primary constraints of BSC in
RiscyOO with near-zero overhead. Given the success of these
rudimentary enforcements, we expect this result to generalize
to more mature efforts in other microarchitectures.

CONCLUSION

This paper proposes architectural speculation contracts for
instruction sets as a foundation for reasoning about the
transient-execution vulnerability of programs. The contracts
we have developed resolve the most egregious transient-
execution vulnerabilities, and enshrine assumptions required
by software mitigations in clear architectural requirements.
Despite specifying clear semantics, our contracts avoid lim-
iting performance; the benchmark results for our prototype
enforcements in RiscyOO incurred only 1.2% performance
overhead. Crucially, we have also demonstrated that these
contracts can be verified with microarchitectural tests.

Speculation contracts are particularly necessary for security
architectural extensions, such as x86 SGX, CET, MPK, and
SEV; ARM’s MTE and PAC; and upcoming extensions such
as CHERI [32].

We hope this work inspires further exploration of the trade-
off between architectural speculation constraints and software
mitigations. Cross-layer design and optimization will require
expertise from multiple fields, as well as thorough evaluation
of each design point. Architectural speculation contracts will
be a key tool leveraged by future software countermeasures.



These contracts will allow software to provide verifiable
transient-vulnerability safety without expensive and conser-
vative software constructs caused by a lack of architectural
specification.
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