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Abstract—One of the main problems in applying deep learning
techniques to recognize activities of daily living (ADLs) based
on inertial sensors is the lack of appropriately large labeled
datasets to train deep learning-based models. A large amount
of data would be available due to the wide spread of mobile
devices equipped with inertial sensors that can collect data to
recognize human activities. Unfortunately, this data is not labeled.
The paper proposes DISC (Deep Inertial Sensory Clustering),
a DL-based clustering architecture that automatically labels
multi-dimensional inertial signals. In particular, the architecture
combines a recurrent AutoEncoder and a clustering criterion to
predict unlabelled human activities-related signals. The proposed
architecture is evaluated on three publicly available HAR datasets
and compared with four well-known end-to-end deep clustering
approaches. The experiments demonstrate the effectiveness of
DISC on both clustering accuracy and normalized mutual infor-
mation metrics.

Index Terms—Human Activity Recognition, Unsupervised
learning, Deep learning, AutoEncoder

I. INTRODUCTION AND BACKGROUND

Automated recognition of activities of daily living (ADLs)
based on inertial data is popular in various fields, such as
surveillance, health care, and delivery [1]–[3]. Nowadays,
supervised classification of ADLs is mainly based on deep
learning (DL) approaches, which are well known to be data
hungry [4]. Many labeled datasets are available in the litera-
ture, however to scale-up the use of these methods in several
domains, a very large amount of data is required [5].

One way to speed up the labeling of ADL samples is to take
advantage of the clustering analysis that is an unsupervised
strategy to group similar data into clusters [6]. Its applications
include automatic data labeling for supervised learning and
pre-processing for data visualization and analysis.

Most common methods consist of a two-stages process:
stage 1) a deep neural network (DNN) procedure for learning
deep representative features and stage 2) a Machine-Learning
(ML)-based clustering algorithm for data grouping [7]–[9].

Deep Embedded Clustering (DEC) [10] learns a mapping
from the observed space to a low-dimensional latent space
leveraging Stacked AutoEncoders (SAE), which can obtain
feature representations and cluster assignments simultane-
ously.

Improved Deep Embedded Clustering (IDEC) [11] is a
modified version of DEC that incorporates an under-complete
AutoEncoder to preserve the local structure. The preservation
of the local structure prevents the embedded space from

being distorted by fine-tuning, thus ensuring embedded spatial
features’ representativeness.

Deep Convolutional Embedded Clustering (DCEC) [12]
improves IDEC by replacing Stacked AutoEncoders (SAE)
with Convolutional AutoEncoders(CAE) to preserve the local
data structure.

Recently, Balanced Deep Embedded Clustering
(BDEC) [13] has been proposed to address the inherent
vulnerability of DEC to data imbalance by utilizing a pre-
processing step that uses a scalable representative algorithm
to extract a balanced subset and use it for training.

Finally, Deep Sensory clustering (DSC) [6] is a recent
clustering architecture that employs a Recurrent AutoEncoder
(RAE) and a clustering criterion to learn clustering-friendly
representations from inertial sensory readings. DSC can be
considered the first approach using deep clustering on inertial
signals.

The paper proposes Deep Inertial Sensory Clustering
(DISC), a deep-learning-based clustering architecture that au-
tomatically performs unsupervised learning and label anno-
tation by analyzing multi-dimensional inertial signals. The
architecture combines a recurrent AutoEncoder and a clus-
tering criterion to predict unlabelled human activities-related
signals. As for previous approaches in the state of the art, our
architecture consists of two parts. The first part covers stage
1. It consists of an AutoEncoder that tries to reconstruct two
outputs from the input signals: the inverse input and the future
sequence of the input. The second part covers stage 2 and is
devoted to clustering the dimensionally reduced signals from
stage 1.

The main contribution of the paper with respect to the state
of the art is the use of ConvGRU layers (Convolutional Gate
Recurrent Unit [14]) that allow spatio-temporal features to
be extracted. The recursive layers (LSTM, GRU) have been
shown to be useful in extracting temporal features, while the
convolutional layers in extracting spatial features.

The achieved architecture has been compared with four
state-of-the-art techniques (DEC [10], IDEC [11], DCEC [12],
and DCS [6]) on three publicly available HAR datasets (UCI
HAR [15], Skoda [16], and MHEALTH [17]). Results show,
on average, its effectiveness in the inertial sensory clustering
task.

The paper is organized as follows. Section II introduces the
architecture; Section III describes the implementation details
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of the architecture, the metrics used to validate the approach,
and the datasets used in the evaluation. SectionIV discusses
the results obtained. Finally Section V presents the conclusions
and the future directions.

II. ARCHITECTURE

This section presents our proposal Deep Inertial Sensory
Clustering (DISC). The neural architecture of our proposal
is sketched in Figure 1. The first subsection shows the ar-
chitecture used to implement stage 1 (i.e., the Multi-Task
AutoEncoder employed), and the second the architecture for
stage 2 (i.e., the Clustering Criterion adopted).

A. Stage 1: Multi-Task AutoEncoder
The architecture leverages a Recurrent Neural Network

(RNN)-based autoencoder (RNN-AE) since RNN architectures
have been proved to be powerful for handling sequential data,
such as text, sounds, and HAR signals [18], [19].

The RNN-AE architecture consists of three RNNs: a re-
current encoder ConvGRU [14] (Encθ) and two conditional
decoders GRU [20] (Decφ).

The input is a window x of length T which contains
x1, ..., xT elements. Each xt element includes one or more
values according to the number of channels N .

1) Recurrent Encoder (Encθ): The recurrent encoder Encθ
learns a compacted representation of the spatio-temporal fea-
tures that characterizes the activities of daily living (ADLs).

In particular, a bi-directional Convolutional Gated Recurrent
Unit (ConvGRU) [14]1 reads a windows x in both forward and
backward directions and updates its hidden internal state for
each xt ∈ x.

Equations from 1 to 4 define the update rule.

gt = σ(Wg ?m [ht−1;xt] + bg) (1)

rt = σ(Wr ?m [ht−1;xt] + br) (2)

h̃t = tanh(Wc ?m [xt; gt � ht−1] + bc) (3)

ht = (1− rt)� h̃t + rt � ht−1 (4)

where ht is the output for xt−1; gt and rt are the update
and the forget gates respectively, σ is the sigmoid function,
?m represents a convolution with a kernel of size m x m,
b’s are bias terms, � denotes element-wise multiplication (or
Hadamard product), and Wg,r,c are 2D-convolutional kernels.

After processing the entire sequence x, the final hidden state
hT of 512 dimensions is reduced through a fully connected
layer to 256 dimensions.

The resulting low-dimensional feature z ∈ Rd of equation 5
encodes information about the ADL through a representation
of the spatio-temporal dependencies that are present in the
input sequence x. The size of the feature space is d = 256.

z = Encθ(x) (5)

The hidden states of the convolutional GRU is initialized
with zeros.

1A RNN that combines Gated Recurrent Units (GRUs) [20] with the
convolution operation.

2) Conditional Recurrent Decoders (Decφ): The decoder is
based on gated GRU and it is in charge of reconstructing back
the input sequence x from z by using a multi-task strategy
that includes two different decoders Decφ. This strategy
minimizes two different Mean Square Error (MSE) losses: one
to optimize the reconstruction of a time-flipped version of the
input sequence, and the other to optimize the reconstruction
of a future (anticipated) sequence.

In the proposed architecture, both recurrent decoders are
conditional. In fact, the decoder GRU needs two inputs at stage
t: the input sequence xt and the hidden state ht. At the decoder
stage we do not have an input sequence and thus the input xt
is initialized, for t = 0, with zeros. Differently, the hidden
state is initialized at stage t = 0 with a transformation of
the embedding z. This transformation, named context vector,
is achieved through a convolutional layer that maps a 256-
dimensional embedding in a 512-dimensional one. At stage
t > 0 the input xt = ht−1 while ht is the hidden state at
previous stage that is updated by the training procedure.

This multi-task strategy, along with the conditional ini-
tialization of the hidden states, forces the AutoEncoder to
learn a meaningful representation (embedding space) where
sequences belonging to different classes are well separated in
the representation space.

Equations from 6 to 9 define the activation ht.

gt = σ(Wgxt + Ught−1) (6)

rt = σ(Wrxt + Urht−1)) (7)

h̃t = tanh(Wxt + U(rt � ht−1)) (8)

ht = (1− gt)ht−1 + gth̃t (9)

Summing up, the output of the decoder is:

(ȳ rec, ȳ fut) = Decφ(z) (10)

where ȳ rec and ȳ fut are the reconstructed and the anticipated
sequences generated from the input x.

The objective of the Recurrent AutoEncoder is a joint
objective function:

LAE = Lrec + Lfut =

‖y rec − ȳ rec‖2 +
∥∥y fut − ȳ fut∥∥2 (11)

where Lrec and Lfut indicate the reconstruction loss and
the future prediction loss, respectively, and denote the mean
square errors between decoder’s generated output sequences
(ȳ rec and ȳ fut ) and the expected target sequences (y rec

and y fut).
The optimal network parameters of encoder z = Encθ(x)

and decoder (ȳ rec, ȳ fut) = Decφ(z) are updated by mini-
mizing the reconstruction error:

(θ∗, φ∗) = minθ,φ LAE (12)



Fig. 1: Deep Learning-based Inertial Sensor Clustering architecture.

B. Stage 2: Clustering Criterion

A parameterized clustering network fµ(.) is connected to
the AutoEncoder embedding layer to estimate the cluster
assignment distributions and to map each z into a soft label.

It uses the similarities between the data representations and
cluster centroids {µj}kj=1 to compute soft cluster assignments,
while its loss enforces the soft assignments to have more strin-
gent probabilities. The initial cluster centroids are obtained
from classical Clustering algorithms on the embedded repre-
sentations z = Encθ(x) after the pre-training of Multi-Task
AutoEncoder, and are initialized only once at the beginning
of the refinement stage.

The clustering network fµ(.) mantains cluster centroids
{µj}kj=1 as trainable weights and maps a set of m embedded
points {zi ∈ Z}mi=1 into soft label Qi = fµ(zi) = (qij)

k
j=1 by

following the Student’s t-distribution [21]:

qij =
(1 + ‖zi − µj‖2)−1∑k
j′=1(1 + ‖zi − µj′‖2)−1

(13)

where qij is the j-th entry of qi, which represents the proba-
bility of zi belonging to cluster j.

By squaring this distribution and then normalizing it, the
auxiliary distribution Pi = (pij)

k
j=1 [10] forces assignments

to have stricter probabilities (i.e., closer to 0 and 1). Pi
helps to improve cluster purity, emphasizing on data points
assigned with high confidence, and to prevent large clusters
from distorting the hidden feature space.
It is defined as:

pij =
q2ij/

∑m
i qij∑k

j′=1(q2ij′/
∑m
i=1 qij′)

(14)

The Cluster Assignment Hardening (CAH) loss LC is de-
fined through minimizing the Kullback-Leibler (KL) diver-

gence [22] between the distribution of soft labels and the
auxiliary target distribution, as:

LC = KL(P ||Q) =

m∑
i

k∑
j

pij log
pij
qij

(15)

Lower the KL divergence value, the better we have matched
the true distribution with our approximation.

The reconstruction loss of the AutoEncoder is joined to the
objective and optimized along with the Cluster Assignment
Hardening loss simultaneously, preserving the local structure
of data generating distribution and avoiding the corruption of
feature space. The final joint optimization criterion is:

L = γLC + LAE (16)

where the coefficient γ ∈ [0, 1] controls the Clustering
objective contribution. The optimal network parameters are
optimized with respect to the global criterion as:

(θ∗, φ∗, ω∗) = min θ,φ,µ L (17)

III. MATERIAL AND METHODS

A. Network Architecture

The recurrent encoder Encθ is a 2-layer bi-directional
ConvGRU with 256 hidden states and the conditional re-
current decoders Decφ use uni-directional connections with
512 hidden states. The bottleneck embedded dimension of
autoencoders is set to 256.

A single layer in the clustering network fµ(.) has been used
to integrate the CAH (Clustering Assignment Hardening).

All experiments share the same network architecture.

B. Optimization Settings

The recurrent AutoEncoder is pre-trained end-to-end in
mini-batches of size 256 for 100 epochs using the Adam



optimizer [23]. The initial learning rate has been set to 10
and, after 70 epochs, decayed by a factor of 10.

A Batch Normalization [24] operation is used in the encoder
fully connected layer to make the training faster and more
stable. Then, the recurrent AutoEncoder is refined with the
clustering objective till the cluster assignment changes among
two consecutive epochs are less than 0.1%.

The coefficient γ is set to 0.1. The cluster centroids are
initialized with k-Means and agglomerative clustering algo-
rithms.

The parameters are maintained constant in all the experi-
ments.

C. Baseline

Four state-of-the-art approaches served as baselines.
1) Deep Embedded Clustering (DEC) [10]: relies on Au-

toEncoders as initialization method and uses k-Means for
clustering. First, the method pre-trains the model using an
input reconstruction loss function (non-clustering loss). Sec-
ond, a clustering algorithm initializes the clustering centers,
without considering the decoder. Then, the model is optimized
using the Cluster Assignment Hardening (CAH) loss, and the
clustering centers are updated at each iteration by minimizing
the Kullback-Leibler (KL) divergence as a loss function.

2) Improved Deep Embedded Clustering (IDEC) [11]:
is a modified version of DEC that preserves the decoder
layer, which is used for clustering loss. The reconstruction
loss of AutoEncoders is added to the objective and optimized
simultaneously with clustering loss, preserving the local data
structure.

3) Deep Convolutional Embedded Clustering (DCEC) [12]:
uses the IDEC algorithm by incorporating a Convolutional
AutoEncoder (CAE). Due to its spatial mapping relationships,
CAE is able to learn deeper and spatial embedded features for
clustering.

4) Deep Sensory Clustering (DSC) [6]: is an alternative
to IDEC. It is based on a recurrent AutoEncoder with two
different decoders: one for input sequence reconstruction and
one for anticipation sequence reconstruction. By using two
decoders the AutoEncoder is forced to learn highly discrimi-
native embedded features that are used to initialize the hidden
state of the decoders.

D. Datasets

The proposed architecture and baselines were evaluated on
three datasets.

1) Human Activity Recognition Using Smartphones Dataset
(UCI HAR) [15]: includes 3-axial linear acceleration, 3-
axial angular velocity, and gyroscope sensor data. The signals
were recorded with a Samsung Galaxy S II smartphone at a
constant rate of 50Hz, and the activities were performed by
30 volunteers. Each subject performed 6 activities. All the
participants were wearing a smartphone on the waist during
the experiment execution.

2) Skoda Mini Checkpoint Activity Recognition Dataset
(Skoda) [16]: includes 20 sensors (3-axial acceleration) placed
on the left and right upper and lower arm. The signals were
recorded at a sampling rate of 98Hz, and the activities were
performed by 1 volunteer who executed 19 times each activity.
The dataset contains 10 activities

3) mHealth Dataset (MHEALTH) [17]: includes 3-axial ac-
celeration from the chest sensor, 2 electrocardiogram signals,
3-axial acceleration from the left-ankle sensor, 3-axial accel-
eration from the right-lower-arm sensor, 3-axial magnetometer
from the left-ankle sensor, 3-axial magnetometer from the
right-lower-arm sensor, 3-axial gyroscope from the left-ankle
sensor, 3-axial gyroscope from the right-lower-arm sensor. The
recorded activities are 12 and are performed by 10 volunteers.
All sensors were recorded at a sampling rate of 50Hz.

Datasets were initially rescaled using per-channel normal-
ization. Then, the signals have been divided in windows with
an overlap between subsequent segments of 50%.
For UCI HAR and MHEALTH, a window of 2.56s was
used, while for Skoda, a window of 2s. Furthermore, in
MHEALTH, the data relative to electrocardiogram signals have
been removed as the other datasets had no data of this type.

After the pre-processing phase, the first 50% of sensory
measurements in each sample represents the input sequences.
Consequently, the temporally inverted sequence of the input
is used as the target sequence for the reconstruction task. The
remaining sensory measurements are considered as the target
sequence for future prediction.

E. Evaluation Metrics

All clustering methods are evaluated by Clustering Ac-
curacy (ACC) [25] and Normalized Mutual Information
(NMI) [26], widely used in unsupervised learning scenarios.
Both metrics expect values in the range [0, 1], with 1 being
the perfect clustering and 0 being the worst.

The Clustering Accuracy (ACC) takes a cluster assignment
and a ground truth assignment and then finds the best matching
between them. We used the Hungarian algorithm [27] to
compute the best mapping (see Equation 18).

ACC = maxn

∑n
i=1 1{li = m(ci)}

n
(18)

where li is the true label, ci the cluster assignment, and m
ranges over all possible one-to-one mappings between clusters
and labels.

The Normalized Mutual Information (NMI), between
ground-truth labels and the labels obtained by clustering,
determines the class labels’ entropy reduction, assuming the
cluster labels are known. It is used for determining the quality
of the clustering and is defined in Equation 19.

NMI(y, c) =
2I(y, c)

H(y) +H(c)
(19)

where y is the true label, c is the obtained cluster label, I(., .)
is the mutual information and H(.) is the entropy.



TABLE I: Clustering performances in terms of NMI and ACC on the three datasets achieved by DISC and state-of-the-art
methods. The first group of rows shows the performance of traditional clustering techniques applied on raw data. The second
group of rows shows the results achieved by DISC and state-of-the-art AutoEncoders combined with traditional clustering
techniques. The last group of rows shows the comparison between DISC and the end-to-end deep clustering methods.

UCI HAR Skoda MHEALTH Average
Train Test Train Test Train Test Train Test

NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

Traditional Clustering on Input Data Space

k-Means 49.36 45.04 45.90 40.69 38.54 39.18 36.93 38.59 41.85 43.95 42.14 44.41 43.25 42.72 41.66 41.23
AC-Average 1.18 19.16 1.8 18.29 1.51 13.88 18.38 14.37 12.12 10.35 9.63 10.19 4.93 14.46 9.94 14.28

AC-Complete 3.45 19.56 19.22 31.69 33.29 31.32 31.86 28.07 23.49 42.10 30.02 13.74 20.07 30.99 27.03 24.50
AC-Ward 40.73 42.26 47.71 43.26 41.79 41.35 36.99 33.19 48.07 48.26 48.54 48.60 43.53 43.96 44.41 41.68

Traditional Clustering on proposed Recurrent AutoEncoding Space

DSC k-Means 51.93 60.19 45.49 55.62 53.75 47.56 50.64 42.62 54.86 43.96 55.75 48.24 53.51 50.57 50.62 48,82
DSC AC-Average 45.18 37.57 46.41 34.61 18.88 16.96 38.59 30.22 34.54 20.47 47.01 29.26 32.86 25.00 44.00 31.36

DSC AC-Complete 40.66 40.03 40.81 43.67 32.55 32.47 41.57 35.93 42.23 35.05 44.42 36.51 38.48 35.85 42.26 38.70
DSC AC-Ward 75.27 74.78 52.83 60.33 55.81 51.51 54.41 45.96 61.07 48.91 57.04 46.28 64.05 58.40 54.76 50.85

(ours) DISC k-Means 54.84 55.27 48.27 54.62 50.65 47.83 47.87 43.10 65.14 55.27 64.88 54.04 56.88 52.76 53.67 50.59
(ours) DISC AC-Average 43.82 39.17 41.26 35.12 29.74 28.82 29.63 24.12 30.80 13.69 31.24 13.16 34.79 27.23 34.04 24.13

(ours) DISC AC-Complete 37.77 44.12 38.91 40.62 35.48 34.62 44.13 37.31 46.58 36.22 50.21 30.24 39.94 38.32 44.41 36.06
(ours) DISC AC-Ward 64.21 63.14 51.75 60.77 52.85 47.92 54.10 43.45 68.85 58.31 70.98 59.52 61.97 56.46 58.94 54.58

End-to-End Deep Clustering

DEC [10] 55.57 49.93 55.20 49.10 46.86 41.02 46.58 41.08 50.52 43.71 51.68 45.11 50.98 44.89 51.15 45.10
IDEC [11] 55.76 51.78 54.43 51.02 49.65 46.70 48.93 40.56 51.28 42.59 52.34 44.76 52.23 47.02 51.90 45.45

DCEC [12] 52.77 48.39 53.12 48.88 42.90 39.56 45.51 42.24 44.15 23.51 45.13 24.29 46.61 40.15 47.92 38.47
DSC (k-Means) [6] 64.75 64.54 61.58 61.28 56.91 50.97 57.01 50.28 62.65 57.19 63.06 56.85 61.43 57.56 60.55 56,13

DSC (Ward) [6] 76.43 78.79 71.25 75.41 56.97 52.90 59.06 53.48 59.42 51.57 60.91 53.33 64.27 61.08 63.74 60.74
(ours) DISC (k-Means) 85.72 92.08 80.81 87.99 52.93 54.45 52.93 54.45 68.15 53.96 69.38 54.83 68.93 66.83 67.71 65.76

(ours) DISC (Ward) 85.47 81.86 81.91 79.40 54.91 54.57 55.93 53.45 63.23 50.74 61.29 48.82 67.87 62.39 66.38 60.56

IV. EXPERIMENTS RESULTS

Table I shows the clustering performance in terms of NMI
and ACC on the UCI HAR, Skoda, and MHEALTH datasets
achieved by the proposed and state-of-the-art methods.

We used as traditional clustering methods k-Means [28]
and Agglomerative Clustering (AC) [29], with three different
linkage types (i.e., Average, Complete, and Ward).

The first group of rows shows the performance of traditional
clustering techniques applied on the raw data. The second
group of rows shows the results achieved by our architecture
DISC and state-of-the-art- AutoEncoders combined with tradi-
tional clustering techniques. The last group of rows shows the
comparison of DISC method with the state of the art. Boldface
font stands for best results.

Overall the results confirm the effectiveness of deep clus-
tering approaches against traditional clustering approaches on
input space data and AutoEncoding space. On average, our
proposal performs better with respect to the state-of-the-art.

DSC (Ward) performs slightly better (on average of about
3%) than our proposal in terms of NMI only on the Skoda
dataset. Our method overcomes the best method in the state
of the art of about 10% in terms of NMI and ACC on both
UCI HAR and MHEALTH. Improvements are mainly related
to the use of convolutional GRU instead of simply GRU.

Figure 2 shows the progression of the learned feature
space from the initial setup to the final clustering-oriented
embedding space for the UCI HAR dataset. The progression
is achieved by firstly using the Principal Component Analysis

(PCA) [30] to reduce the embedding from 256 to 50 dimen-
sions, and then by using the t-Distributed Stochastic Neighbor
Embedding (t-SNE) [21] method applied for mapping 50-
dimensional data into 2-dimensional data.

The proposed architecture discovers well-defined and sepa-
rated clusters of activity segments with strong correspondence
to the ground-truth labels. In particular, three activities (walk-
ing, walking upstairs, and walking downstairs) are correctly
delimited, while the others (sitting, standing, and lying) are
well delimited but more dispersed, due to the high number of
subjects in the dataset, which increase the inter-variability of
activities.

V. CONCLUSIONS AND FUTURE DIRECTIONS

The paper presents DISC, a deep-learning-based clustering
architecture that learns highly discriminative spatio-temporal
representations with reconstruction and future prediction tasks
on multi-dimensional inertial signals. The architecture includes
a recurrent encoder ConvGRU, two conditional decoders
GRU, and a clustering criterion to predict unlabelled human
activities-related signals.

The proposed architecture has been compared with state-of-
the-art approaches in both traditional and DL-based clustering
approaches, demonstrating its effectiveness on three HAR
datasets.

We plan to include DISC within the Continuous Learning
Platform (CLP) [31] framework. CLP is a platform that
semi-automatically integrates heterogeneous labeled data and
provides them in a homogeneous form. Integrating DISC



Fig. 2: Feature space progression of the UCI HAR Dataset with DISC (k-Means initialization).

into CLP would allow the dataset to be also populated with
unlabeled signals that are collected with consumer devices.
Moreover, DISC can be also be employed in the early stages
of a personalization strategy and thus allowing the recognition
of ADL to a never seen user [32].
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