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Abstract—Video content adaptation has become a popular
application layer approach to reduce the decoding complexity
and the associated energy consumption of video playback. In this
context, this paper proposes an encoding algorithm to generate
less complex HEVC bit streams with minimal impact to the
coding efficiency. The experimental results reveal a -17.27 %
average decoding complexity reduction and up to -24.91 % energy
reduction for openHEVC based software decoding with only -0.73
dB BD-PSNR loss.

I. INTRODUCTION

V IDEO decoding and presentation are considered as two
of the most energy consuming operations for resource

constrained mobile hand-held Consumer Electronic (CE) de-
vices (e.g., smart phones, tablets etc.). Moreover, the pop-
ularity of High Definition (HD) and Ultra High Definition
(UHD) video contents and the proliferation of mobile video
consumption have made video playback an evermore challenge
for the mobile CE devices. The energy consumption of a
CE device during media playback is tightly coupled with the
complexity of the content as well as the codec. Therefore, the
recently introduced High Efficiency Video Coding (HEVC)
standard [1] sufficiently caters the bandwidth requirements
for high resolution videos, yet, at the same time demand
significant amount of computational and energy resources [2]
for the real-time processing of the complex high frame rate HD
and UHD video contents. Therefore, reducing the decoding
complexity of HEVC bit streams has become a compelling
challenge which needs to overcome, especially in the case of
resource constrained CE devices [3].

Traditionally, energy reductions in the video decoding de-
vices are achieved by either improving the efficiency of the
radio receiver interface, modifying the decoding operations or
by modifying the media content to reduce the complexity of
the decoding process [3]. The latter being in the domain of
video coding algorithms, consists of simplistic approaches that
alter the basic coding parameters such as the Quantization
Parameter (QP), frame resolution, frame rate, etc. [4], but have
a significant impact on the perceived video quality. More state-
of-the-art solutions manipulate the motion compensation filters
and the in-loop filtering operations introduced in the HEVC
to reduce the decoding complexity [5], [6], or adopt Dynamic
Voltage and Frequency Scaling (DVFS) [7] techniques to
reduce the decoder’s power consumption at the hardware
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level. However, in general, the state-of-the-art methods in the
literature do not exploit the variations of the intricate com-
plexity levels that exist between different decoding operations
to determine the optimum coding parameters that minimize
the decoding complexity and thereby the decoder’s energy
consumption in tandem with the coding efficiency. In this con-
text, this paper proposes a novel encoding algorithm that uses
its awareness of the decoding complexity of HEVC coding
features to reduce the computational resource requirements of
the decoder with minimal impact on the coding efficiency.

The remainder of the paper is organized as follows. Section
II performs a comprehensive analysis on the decoding com-
plexity, and distortion parameters which is thereafter utilized in
the novel encoding algorithm proposed in Section III. Finally,
Section IV and V present the experimental results and the
concluding remarks, respectively.

II. DECODING COMPLEXITY–DISTORTION ANALYSIS

The selection of a coding mode that is both optimum in
terms of the decoding complexity, rate and distortion requires
the encoder to be aware of the impact of the coding mode on
all three parameters for the video content under consideration.
Thus, estimating the decoding complexity incurred at the
decoder within the encoding loop is crucially challenging.
In this context, the generic decoding complexity estimation
models introduced in our previous works [8], [9] can be
utilized and are integrated within the encoder.

Next, the complex relationship that exists between the
decoding complexity, rate and distortion needs to analyzed
and modelled. In this context, the investigations carried out in
[10] [11] define the relationship between the bit rate and the
distortion, which does not sufficiently characterize the impact
of decoding complexity on the coding efficiency. Hence, this
section first introduces a novel approach followed in this work
to analyze the relationship between video distortion and the
decoding complexity.

A. Decoding Complexity-Distortion Model

In order to analyze the relationship between the distortion D
and the decoding complexity C, the complete parameter space
of both parameters must be first observed. An example of
the typical decoding complexity-distortion behaviour observed
is illustrated in Fig. 1(a). In general, it is observed that the
distortion tends to monotonically increase with decreasing
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Fig. 1. (a) The typical decoding complexity-distortion behaviour observed for
a particular QP. (b) A representation of the normalized decoder complexity and
distortion for a particular QP. The depicted tangent to the curve in (b) indicates
the λc which results in equal trade-off between the decoder complexity and
distortion.

decoding complexity, thus, the relationship between the two
parameters is therefore best characterized by,

D = αC−β , (1)

where α and β are content dependent parameters. Thus, for a
particular content and coding scenario, the trade-off between
the D and the C can be expressed in terms of the slope of the
distortion-decoding complexity curve, given by

λc , −∂D
∂C

= αβC−β . (2)

Expressing the decoding complexity-distortion trade-off as a
Lagrangian optimization problem, an optimization function
can therefore be formulated as

min
p∈P

JCD

∣∣∣ JCD , D(p) + λcC(p), (3)

where λc represents the Lagrangian parameter. For the general
case however, where the relationship in (1) is unknown, a
generic λc is computed as described next.

B. Computing λc
Observing the decoding complexity-distortion behavior in

Fig. 1(a), it is clear that for a particular QP, λc ∈ [0,∞)
represents a space where decoding complexity and distortion
can be traded-off against each other. Thus, the decoding com-
plexity and distortion values that result from an experimental
sweep for a range of λc values in the optimization function
in (3) for QP ∈ {0, . . . , 51} with different test sequences are
further analyzed. Next, the optimum λc for a particular QP
is computed such that it corresponds to the value of λc that
results in an equal trade-off of the normalized distortion and
the normalized decoding complexity as illustrated in Fig. 1(b).
Fig. 2 illustrates the behavior of the optimum λc for different
values of QP, and the respective relationship is given by

λc =

{
8.739× 10−5 · e0.1327·QP Intra frames
0.001393 · e0.09023·QP Inter frames.

(4)

The decoding complexity-distortion trade-off modelled
above can now be used together with the bit rate trade-
off factor to develop a decoding complexity-rate-distortion
optimized coding mode selection algorithm as described in
the following section.

(a) Intra frames (b) Inter frames

Fig. 2. The λe vs QP relationship.
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(a) α = 0.7, δ = 13.79
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(b) α = 0.8, δ = 5.73

Fig. 3. The typical behavior of ∆D, ∆C, and ∆R parameters for two
different combinations of α and δ values for “Kimono” sequence at QP=30. A
curve indicates the variation of respective parameters for a particular α (i.e.,
α = {0.7, 0.8}) over a range of associated δ values. The α and δ values
indicated below each sub-figure correspond to the ∆C and ∆R values at
∆D = 0.

III. DECODING COMPLEXITY-RATE-DISTORTION
OPTIMIZED ENCODING

Preparing an encoded bit stream that is optimum in terms of
decoding complexity and coding efficiency require an in depth
analysis of the impact of the individual parameters. Thus, the
Lagrangian cost function for this case can be expressed as,

min
p∈Popt

JCRD

∣∣∣ JCRD , D(p) + λ̄rR(p) + λ̄cC(p), (5)

where λ̄r and λ̄c are the bit rate and decoding complexity
trade-off parameters, respectively. However, obtaining optimal
values for λ̄r and λ̄c directly from (5) is not straightforward,
and the experimental approach described next is adopted to
this end.

First, the general behaviour of the cost function JCRD is
investigated for the range of the two complexity parameters,
where λ̄r , αλr and λ̄c , δ λc for α ∈ {0, . . . ,∞} and δ ∈
{0, . . . ,∞}. Note that λr and λc in [10] and (3) respectively
are used for this purpose. In this study, 50 frames of each test
sequence are encoded using HM16.0 reference encoder and
the results are used to infer the general behaviour of JCRD in
the full parameter space of λ̄r and λ̄c

Next, in order to determine a suitable operating point in this
parameter space, the rate, distortion and decoding complexity
at each operating point is compared with the respective values
for each obtained when using the rate-distortion Lagrangian
cost function in [10]. To facilitate this, the percentage differ-
ences of each parameter, i.e., ∆R, ∆D and ∆C, given by

∆Γ = 100× ΓRD − ΓCRD

ΓRD
, (6)

is used. Here, Γ represents the distortion D, bit rate R, and
decoding complexity C, while ΓRD and ΓCRD correspond
to the scenarios where the cost functions in [10] and (5),
respectively, are applied.



TABLE I
SIMULATION ENVIRONMENT

Parameter value

Encoding configurations HM16.0 [12], random access
Quantization Parameters 22,27,32,37
Machine Intel x86 Core i7-6500U
Operating system Ubuntu 16.04
Decoders HM 16.0 [12], openHEVC [13]
Decoding complexity measurement callgrind/valgrind [14]
Decoder’s energy consumption Linux power measurement tools
Frequency governors Linux ondemnad, DVFS [7]

Fig. 3 illustrates a subset of these results for a single
sequence. Here, the differences in the behaviour for the
different frame types and (α, δ) pairings can be observed.
It can also be observed that distortion for example deviates
significantly from that of the RD optimized value for extreme
(α, δ) combinations. Next, since one of the objectives of this
work is to minimize the impact on distortion, a subspace of
the parameter space of α and δ is derived that satisfies the
condition ∆D = 0. However, from Fig. 3, for the different
(α, δ) combinations satisfying ∆D = 0, variations in ∆R
values can still be observed. Thus, the operating values for
(α, δ) are derived by finally minimizing ∆R in the subspace
of parameters satisfying ∆D = 0.

A generic set of scaling factors for (α0, δ0) are obtained as
the average of the parameters obtained for the individual test
sequences, and is given by

(α0, δ0) =

{
0.9, 0.68 Intra frames
0.9, 0.33 Inter frames

. (7)

Thus, the rate and decoding complexity trade-off factors in (5)
are now become λ̄r = α0 λr and λ̄c = δ0 λc, respectively.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed algorithm is implemented in the HM 16.0
reference software, where the complexity models in [9] [8]
perform the decoding complexity estimations and the proposed
Lagrangian cost function performs the coding mode selection.
The simulation environment and the measurement tools uti-
lized are illustrated in the Table I.

The performance of the proposed and state-of-the-art algo-
rithms are evaluated by measuring the complexity reduction
achieved by the different bit streams at the decoder. To
this end, the percentage decoding complexity reduction, and
corresponding energy reduction is measured as,

∆ξ = 100× ξρ − ξHM

ξHM
, (8)

where, ξ ∈ C,E represent the decoding complexity and energy
consumption, respectively. In this context, the ξHM and ξρ
correspond to the decoding complexity or energy consumption
of the bit streams generated by the HM reference encoder, and
the proposed and state-of-the-art algorithms, respectively. The
impact on the coding efficiency is measured in BD-PSNR [15]
which illustrates the impact on video quality for a given bit
rate.

A. Performance Evaluation and Analysis

Modification of the motion compensation filters in the de-
coder (MC) and the intermittent skipping of the loop filter (LF)
in the decoder, proposed by Nogues et al. [16], contributes
significantly to reduce the decoding complexity. However,
this impacts visual quality considerably, mainly due to the
distortions introduced by the modified motion compensation
filtering operations and the propagation of these errors to
future frames. In comparison the proposed algorithm suffers
from less BD-PSNR reductions due to it being operated on the
encoder-side which determines the type of the motion vector
(integer-pel vs. fractional-pel) based on the optimization cost
function in (5); thus, requiring no changes to the decoding
process itself. In addition, skipping the loop filter on the
other hand, as in [16], reduces the decoding complexity with
minimal impact on quality, and can also be implemented
when decoding the proposed bit stream. For example, the
experimental results presented in the Table II illustrate the ∆C
improvements that can be achieved for the proposed algorithm
in this manner albeit for a marginal BD-PSNR loss.

The encoding algorithm proposed by He et al. [6] attempts
to reduce the complexity of the filtering operations during
motion compensation (PUM) and the de-blocking (DBLK)
performed by the decoder. In comparison to [16], a much
lower coding loss is observed, since the required motion vector
and filtering decisions are made by the encoder side. More
importantly, the decoder complexity-efficient mode selection
is only limited to the PU level motion vectors, thus, the ∆C
achieved is relatively small when compared to the proposed
algorithm and [16]. Finally, the trade-off factors being QP ag-
nostic and the lack of a detailed complexity estimation model
in its optimization process results in relatively lower decoder
complexity reductions. In contrast, the proposed algorithm
demonstrates considerable improvements in ∆C with minimal
impact on the BD-PSNR due to its more comprehensive
assessment and selection of trade-off factors for both the bit
rate and the decoding complexity. This is aided by the use of
a more detailed and accurate decoder complexity estimation
model that is based on the HEVC coding features, which yields
more accurate decoding complexity estimates for complexity-
rate-distortion optimization.

Finally, the observed reduction in energy consumption when
using the openHEVC software decoder with different DVFS
schemes and bit streams is reported in Table III. Here, when
compared to the HM 16.0 generated bit streams, the proposed
algorithm demonstrates on average -7.79% decoding energy
reduction when using the Linux kernel’s ondemand DVFS
governor. Thus, the effectiveness of the proposed method’s
complexity reduction, in terms of the impact on energy
consumption, is quite apparently beneficial. Moreover, the
effectiveness of using an application specific DVFS governor
[7] for video playback is evident in the experimental results
shown in the Table III. The complexity reduction by the
proposed algorithm’s bit streams allow the DVFS algorithm
to select much lower CPU operating frequencies that lead to



TABLE II
DECODING COMPLEXITY REDUCTION PERFORMANCE OF THE PROPOSED ALGORITHM

Proposed Proposed He et al. [6] Nogues et al. [16]

Sequence
(Model only) (Model + LF [16]) (PUM + DBLK) (MC+LF)

∆C†

(%)
∆C‡

(%)
BD-

PSNR
∆C†

(%)
∆C‡

(%)
BD-

PSNR
∆C†

(%)
∆C‡

(%)
BD-

PSNR
∆C†

(%)
∆C‡

(%)
BD-

PSNR

Band -39.89 -13.59 -0.80 -51.94 -21.99 -1.08 -6.26 -6.84 -0.81 -22.48 -11.56 -0.29
Beergarden -29.85 -12.53 -0.41 -40.31 -19.28 -0.66 -7.68 -7.15 -0.42 -21.49 -9.94 -0.40
Cafe -40.69 -13.09 -0.33 -52.42 -20.77 -0.52 -13.82 -9.87 -0.29 -21.22 -11.13 -0.26
Dancer -40.84 -20.47 -0.89 -49.49 -27.01 -0.64 -21.00 -13.03 -0.68 -34.35 -9.82 -0.46
GTFly -43.97 -20.46 -0.86 -54.93 -28.69 -1.04 -21.51 -10.80 -1.33 -36.89 -11.79 -0.83
Kimono -42.73 -21.41 -0.35 -52.03 -29.72 -0.62 -21.34 -14.95 -0.59 -33.39 -10.52 -0.37
Musicians -39.75 -18.95 -1.92 -50.02 -26.77 -2.11 -19.09 -10.25 -1.42 -35.86 -10.39 -0.78
Parkscene -42.65 -20.69 -0.56 -46.68 -27.37 -0.67 -22.07 -13.72 -0.58 -35.56 -9.52 -0.49
Poznan St. -37.22 -14.30 -0.48 -48.62 -21.58 -0.48 -11.47 -9.41 -0.15 -20.08 -11.42 -0.25
Average -39.73 -17.27 -0.73 -49.60 -24.79 -0.86 -16.02 -10.66 -0.69 -29.03 -10.67 -0.45

† ∆C achieved using the HM 16.0 reference decoder.
‡ ∆C achieved using the openHEVC decoder.

TABLE III
ENERGY CONSUMPTION PERFORMANCE OF THE PROPOSED ALGORITHM

Sequence Proposed +
ondemand

HM 16.0 +
DVFS [7]

Proposed +
DVFS [7]

∆E (%) ∆E (%) ∆E (%)

Band -9.36 -12.55 -24.34
Beergarden -13.14 -22.14 -24.91
Cafe -10.66 -17.78 -16.96
Dancer -13.71 -16.60 -30.32
GT Fly -5.79 -9.26 -16.21
Kimono -6.61 -16.17 -23.16
Musicians -6.17 -10.42 -13.21
Park scene -3.37 -15.84 -23.23
Poznan St. -1.35 -6.30 -11.26
Average -7.79 -14.11 -20.40

greater energy efficiency.

V. CONCLUSION

The increasing demand for high resolution video content
and the complexity of encoded bit streams have made the
decoder energy reduction a compelling research challenge. To
this end, reducing the complexity of the encoded bit stream
is seen as a potential application layer solution to reduce
the complexities associated with the decoder operations. In
this context, this paper introduces an encoding algorithm for
HEVC to prepare bit streams with minimal decoding complex-
ity while keeping coding efficiency loss to a minimum. The
experimental results reveal decoding complexity reductions
of -39.73%, and -17.27% with only -0.73 dB BD-PSNR for
the HM 16.0 reference and openHEVC decoders, respectively.
In addition, the energy consumption analysis reveals that the
proposed algorithm can reduce the device’s energy consump-
tion -7.79% for the openHEVC software decoder such as
openHEVC. Moreover, utilizing an application specific DVFS
governor improves the energy consumption performance of
the proposed algorithm further, achieving -20.40% reductions.
Future works will focus on introducing decoder energy-aware
adaptive video streaming solutions.
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