
PlayNPort: A Portable Wireless Music Player and
Text Reader System

Lakhan Shiva Kamireddy∗, Dharmik Thakkar∗, Lakhan Saiteja K†
∗VLSI and Embedded Systems Group, Department of Electrical and Computer Engineering, University of Colorado

Boulder, CO 80303, USA, Email: {lakhan.kamireddy, dharmik.thakkar}@colorado.edu
† Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur

West Bengal 721302, India, Email: lakhansaiteja@gmail.com

Abstract—Portable Consumer Electronics has made a mark
in the industry. With the ease of use at an accessible price
range, they have experienced significant growth in the market.
Our idea is to develop a portable wireless music player and
text reader using a Cortex-M series microcontroller and bare-
metal programming techniques. We chose to use an SD card as
the storage device. The resulting electronic device is similar to
a consumer grade music player available in a car. The system
comprises an MCU, an MP3 encoder/decoder, an LCD, an audio
output jack, an SD card and a remote control. We also present
various challenges involved in developing the system and solutions
we used to overcome the challenges. The intricacy of the work
lies in the fact that the system was developed to be consumer-
centric by providing a rich User Experience. It can be used as
a personal entertainment system in a car.

I. INTRODUCTION

With a plethora of embedded devices, the ubiquitous nature
of these systems is felt across the consumer electronics in-
dustry. One such portable electronic device is a music player.
A variety of music players are commercially available. These
are usually developed by several teams, each developing a set
of features. Then they are assembled, packaged and marketed
to the consumer as a product in the market. However, we
are curious to learn what it takes to build a consumer grade
electronic device from scratch, by putting ourselves into the
shoes of a system hardware designer, a firmware engineer, and
an algorithm designer.

The idea of this paper is to present the development of a
complete embedded system in the lab, and understand the pro-
cesses, development methodologies involved and challenges in
implementing a complete system. We developed PlayNPort,
a portable wireless music player, and text reader. It gives
complete control of the system to the user through a custom
remote. Its features comprise play/pause, play next/previous
song, read a text, exit to menu. We implemented the system
on a printed circuit board (PCB) and made use of off the shelf
electronic components, a TI MSP432, decoder ICs and an SD
Card from a retail store. In this paper, we explained the system
design and implementation methodology.

The paper is organized into the following sections: Section
II introduces the Board Design. In Section-III, we intro-
duce the communication subsystem implementation Section-
IV presents Firmware design. Challenges faced in development

Fig. 1. Block Diagram of the Embedded System

are presented in Section-V. Conclusion and Future work is
presented in Section-VI.

II. BOARD DESIGN

Fig 1. presents a block-level view of the embedded device.
The system’s brain is an ARM Cortex M4F microcontroller.
Following sections present board level design & components
involved.

A. LCD Interface

We have used a character LCD [1] to display the menu and
messages on the screen. The character LCD only supports a
5V/0V logic level. The MSP432 General Purpose IO (GPIO)
pins are capable of producing 3.3V/0V logic levels. We used
bidirectional voltage level converters to convert the voltages
back and forth.

B. SD Card Interface

We used an SD card breakout board. The SD card can
be operated either in SD mode or SPI mode. For us, SPI
mode was more suitable as we wanted more control over the
card. An SD card has an inbuilt SD controller with an array

ar
X

iv
:1

80
9.

00
40

6v
1 

 [
cs

.O
H

] 
 2

 S
ep

 2
01

8



of NAND flashes. We connected the Master-In Slave-Out
(MISO), Master-Out Slave-In (MOSI) and Serial Clock
(SCLK) pins to port pins 3.5, 3.6, 3.7 on the MSP432 that
correspond to eUSCI B2 module [2].

C. IR Module

We used an IR module to give a user the control of the
embedded system wirelessly using a custom IR remote that
uses a lithium coin cell battery. Internally, it makes use of
a microcontroller IC, which is a 4-bit RISC microcontroller
with a built-in IR LED drive pin.
Remote control was used for IR transmission using an IR
emitter LED on the head of the remote [3]. The remote has
9 buttons, each corresponding to a specific command. These
include power, A, B, C, up, left, right, down and center
buttons. These buttons are enough to give user controls like
music play/pause, previous/next song, volume up/down and
exit to menu options.

D. MP3 decoder and 3.5 mm jack

We chose to use the VS1063 MP3 decoder/encoder and
codec to decode the mp3/wav format files stored on the SD
card. The VS1063 consists of an inbuilt low-power DSP core,
ROM memories, 16 kb instruction RAM, and 80 kb data RAM
[4]. We used the SPI module and the common voltage buffer
GBUF. The TRRS 3.5 mm jack breakout board contains Tip,
Ring 1, Ring 2, Sleeve pins. All the TRRS pins were connected
to the respective contacts on the male jack.

III. COMMUNICATION SUBSYSTEM IMPLEMENTATION

A. Serial Peripheral Interconnect (SPI)

SPI is used to establish communication between devices.
SPI runs in a master/slave setup. It’s capable of being run
in full duplex mode [5]. When compared to Inter IC (I2C)
Communication, SPI attains better speeds, often capable of
reaching 20 Mbps. We configured the TI MSP432 as the
master, SD Card and VS1063 IC as slaves. We used Enhanced
Universal Serial Communication Interface (eUSCI) module on
the MSP432 for data transfer. In synchronous mode, eUSCI
can connect the device to an external system through either
three or four pins. We operate in 3-pin mode to keep matters
simple. SPI mode is selected when the USYNC bit is set and
is controlled using UCMODEx bits [6].

We have an option to choose LSB-first or MSB-first data
transmit and receive. In SPI, data shift and data latch are done
on opposite clock edges. Hence, there are 4 different operating
modes. Mode 0 (Clock Phase (CKPH) = 0, Clock Polarity
(CKPL) = 0) means latch on a positive edge, then shift on the
next negative edge. Mode 1 (CKPH = 0, CKPL = 1) means
shift on positive edge, then latch on the next positive edge.
Mode 2 (CKPH = 1, CKPL = 0) means shift on negative
edge, then latch on the next positive edge. Please refer to the
figure in [6] for SPI modes in MSP432.

The choice of mode of operation must be made appropri-
ately by referring to the datasheet of the slave device (SD
card and VS1063 IC) otherwise it may lead to data corruption.
Along with this, bit rate and LSB (or MSB) first choices should
also be made appropriately.

SPI mode can be controlled by four sets of registers [5].
1) General controls and bit clock generation registers
2) SPI data transmit control registers.
3) SPI data receiving control registers.
4) SPI interrupt related control registers.

In the following section, we discuss some important configu-
ration registers.

eUSCI Bx control word 0 register, UCBxCTLW0 is a
general control register which is 16-bit wide [7]. Its bits can
be set accordingly to configure settings like CKPH, CKPL,
MSB-first, transfer data character length, master mode select,
3 or 4 pin mode select.

eUSCI Bx Bit rate control word register, UCBxBRW is a bit
rate clock generation register which is 16-bit wide [7]. Its bits
can be set accordingly to configure bit rate. UCBRx stores
a pre-scaler value to divide the selected CKSE BRCLK to
calculate the desired frequency of SPI clock UCLK. Equation
1. presents the formula used in the calculation.

fuclk = fBitClock = fBRCLK/UCBRx (1)

This is the bit transmit-receive rate.
The operational principle of eUSCI Bx module is simple.

When data is moved to UCBxTXBUF register, known as the
transmit data buffer, eUSCI module initiates the data transfer.
The data in the UCBxTXBUF register is then moved to the
TXS register when it is empty, initiating the data transfer
as configured by the UCMSB setting [6]. The data on the
UCBxSOMI line is shifted into the RXS register on the
opposite clock edge.

When a complete character is received, the received data
is moved from RXS register to the UCBxRXBUF. Data has
to be read from UCBxRXBUF when the UCBRXIFG flag
is set. A set on the transmit interrupt flag UCTXIFG only
indicates that data has been moved from the UCBxTXBUF
register to the TXS register and the UCBxTXBUF register
is ready for new data [6]. It does not indicate a complete
RX/TX transaction. To receive data into the eUSCI in master
mode, dummy data must be written into the UCBxTXBUf
register (in our case 0xFFh) because both transmit and receive
operations occur simultaneously.

B. NEC Protocol for Wireless IR Communication
The NEC is a standard protocol using pulse distance en-

coding of the bits. Each pulse is 560s long. Logic bit 1 takes
2.25ms to transmit and logical 0 takes 1.125ms [8].

A message starts with an Automatic Gain Control (AGC)
pulse. A command is transmitted only once. A repeat code
is transmitted every 110ms for as long as the key remains
pressed. This repeat code is a 9ms high-speed AGC burst
followed by a 2.25ms void space and a 560s pulse [8].



IV. FIRMWARE DESIGN

Firmware for this project comprises drivers for each of the
new hardware interfaces (SD card, Audio Codec, IR decoder)
and porting the existing drivers (character LCD drivers) for
8051 [10] onto MSP432 and developing application logic for
playing the songs, music control (volume control, play/pause,
previous/next songs) and LCD text reader application. The
following sections outline the firmware we developed for
PlayNPort.

A. SPI Driver

These drivers involve writing and reading registers of eU-
SCI B module. To save development time we coded the func-
tions using polling technique which checks the corresponding
interrupt flag for successful completion of data transfer. These
can be made interrupt based by adding a circular buffer to
prevent data corruption. Interrupt-based techniques improve
efficiency while enabling CPU to sleep in low energy modes.
A point to note here is that the driver to receive bytes makes
use of the transmit driver. In SPI, the master has to send 0xFF
as (dummy) data to generate a clock signal for the slave to
transmit data.

TABLE I. SPI Driver functions

Function Description

spi init
Initializes SPI module by defining clock
source, bitrate, MSB/LSB first mode,
master/slave mode, synchronous mode.

Transmit Transmits data
rcvr spi Receives a byte
rcvr spi multi Receives multiple bytes.

B. SDHC drivers

SD Card is a Non-Volatile Memory (NVM). SD cards
respond to a set of predefined commands, that are specified by
the SD card association. Six registers are defined within the
card interface namely Operating Conditions Register (OCR),
Card identification register (CID), Card specific data (CSD),
RCA, Driver state register (DSR), SD card configuration reg-
ister (SCR) [9]. These can be accessed only by corresponding
commands.
We configured the SD card to be accessed in SPI mode
[14]. All data tokens to the SD card are 8-bit and al-
ways byte aligned to the CS signal. In our SPI drivers,
we implemented methods to receive SD card response (re-
ceive response), wait for the card to be ready (card ready),
select and deselect the card (select, deselect), configure GPIO
and SPI modules (power on), receive a data packet from
SD card (rcvr datablock), send a specific command to SDC
(send cmd), send reset command and initialize SD in SPI
mode (disk initialize), get SDC status (disk status), read SDC
sectors (disk read), device timer function (disk timeproc).

Fig. 2. A. Codes B. IR signals received for A, B, C, <,∧, > button press

The following are steps to successfully initialize the SDHC
[9].

1) CMD0, argument: 0x0, CRC: 0x95 and the response we
got was 0x01.

2) CMD8, argument: 0x000001AA, CRC: 0x87 and the
response we got was 0x01.

3) a) CMD55, argument: 0x0, CRC: 0x65, and the response
we got was 0x01. b) ACMD41, argument: 0x40000000,
CRC: 0x78, if the response if 0x0 we are OK, if it is
0x01 we go to step 3.

After performing an SD card sector write, we get one of
the following responses [10].

1) 010 − > Data accepted
2) 101 − > Data rejected due to CRC error
3) 110 − > Data rejected due to write error and bit 0 is a

one

C. FAT file system drivers

A filesystem is the collection of many methods and data
structures that an operating system needs to exercise control
over the storage and retrieval of data. The file system used
on the MMC/SD Card is FAT. The MMC/SDC specifications
define the FAT type as FAT32 for 4GB to 32GB. As we use
a 16 GB SD Card High Capacity (SDHC), the FAT type is
FAT32. Only a FAT volume can co-exist on the card along
with an FDISK partition.

We have ported the generic FAT file system [11], FatFs [10]
into our application and implemented the MSP432 platform-
specific methods. The resultant file system drivers are used to
control the SDHC. We implemented the following methods.
The method f mount is used to register/unregister the work
area of the volume. f open method is used to create/open a
file. f close is used to close a file. f read is a method used to
read data.

D. Audio decoder drivers

To enable VS1063 IC [12] for audio decoding operation,
we wrote certain drivers making use of the SPI methods



we implemented. Table 2. presents the functions and their
descriptions below.

TABLE II. Audio Decoder Driver functions

Function Description

Spiinit

Initializes SPI and GPIO modules.
It sets initial SPI
clock frequency as 2MHz
with MSB first and Mode 2.

WriteSpiByteSDI Writes Serial Data Interface
(SDI) data of the codec.

WriteSdi

Writes multiple
Serial Data Interface
(SDI) bytes. Returns 0 on success.
Returns -1 if the number of
bytes is greater than 32

ReadSci Reads Serial Command Interface
(SCI) registers.

WriteSci Writes Serial Command Interface
(SCI) registers.

VSTestInitHardware
Hardware Initialization for
VS1063. Configures CS, Reset and
DREQ pins.

VSTestInitSoftware

Software Initialization for VS1063.
Configures SMOD register and
chip select for command
and data interfaces by enabling
SM SDISHARE, performs
a quick sanity check by
writing two registers and
reading them for validity check,
sets clock frequency to
a higher clock, sets volume,
sets WRAM address and
finally loads latest
VS1063 Patches package.

E. IR Transmission, Reception and Decoding
The NEC IR transmission protocol uses pulse length

encoding of the message bits. When a key is pressed on
the remote control, the message transmitted consists of the
following. A start bit, which is recognized by a 9ms leading
pulse burst. Then follows a 4.5 ms space. Then follows 8-bit
address for the receiving device. Then follows 8-bit logical
inverse of the address. This follows 8-bit command. Then
follows 8-bit logical inverse of the command. Then follows
a 562.5 s pulse burst to signify the end of the message
transmission [8]. As we see, 32 bits have to be read after the
start bit is received.

F. IR Decoding Logic
We used the MSP432 timer for decoding the IR codes.

The timer is configured to make use of the SMCLK clock

source and is configured to run in continuous up counting
mode, whenever needed. Otherwise, it is halted temporarily,
and its counts are reset to zero. A falling edge is initially
detected using an interrupt. An interrupt is generated whenever
a falling edge is detected on a port pin. Whenever the interrupt
service routine is executed, the timer starts counting. If a start
condition is detected, then we execute the program for storing
the timer values in an array. The algorithm is described as
follows. After every bit read, we halt the timer, clear the timer
register values, start the timer in continuous mode.

Algorithm 1 Store timer data algorithm
1: procedure DATASTORE
2: DetectStartCond
3: Wait till end of start bit
4: top:
5: for i = 0, i < 32 do
6: HaltTimer
7: Clear Time Register
8: StartTimer in continuous mode
9: timer[i]← timerVal

10: i++

11: RaiseDataRecvFlag

We continuously poll for data received flag in our program,
when the flag is raised, we decode the array to a command.
The decode logic is presented in Algorithm 2 [15]. Button
A: Starts playing music. Enters music mode. In this mode,
the user has options to play/pause, play next/previous song,
increase/decrease the volume. Button B: Starts reading the text
file. Enters reading mode. In this mode, the user has an option
to scroll down by choosing down arrow button. Button C: We
exit the current mode and go back to the menu.

Algorithm 2 IR Decode algorithm
1: procedure CHARACTERDECODE
2: Poll for data received flag
3: Match each timer value to a bit
4: DataRecvd:
5: if bit[0 : 16] == 0x10EF then
6: DecodeRemainingBits
7: MatchToACommand
8: else
9: UnrecognizedCommand

10: ClearDataRecvFlag

G. LCD Driver

We have written methods for LCD driver to initialize
it, read data, poll LCD busy flag, put command/data on
LCD’s data lines, display a character/string, go to desired
DDRAM/CGRAM address, print main menu, scroll through
text file, clear screen, read the text file from SD card to
be displayed on LCD, populate text/music files, display a
custom character, display custom character for play, pause,
next, previous song. Initially, some of these methods were



written for 8051. Then we ported them to MSP432 platform
by making appropriate code tweaks.

V. CHALLENGES

We faced many challenges in making the system functional
and consumer friendly. Some of the problems and our solutions
to overcome these are presented in the following sections.

A. Issue mounting FAT file system

Initially, when we attempted to execute f mount(), it
returned FR DISK ERR. After hours of debugging, we
found that it was the following check that didn’t pass.
if(ld word(fs− > win+BS 55AA)! = 0xAA55)return3;
This checked for last two bytes (byte 511 and 512) of sector
0 to be equal to 0xAA55. Upon researching, we found that it
is the signature of a Master Boot Record (MBR). We realized
that somehow our sector 0 was corrupted. The solution was
that, instead of using quick format option while formatting
the SD card, we perform a complete format. Then f mount
returned FR OK.

B. Software initialization of VS1063 Audio Decoder

Software initialization of VS1063 [12][13] included a sanity
check in which it writes some data to registers and reads
the same data for verification. This check failed due to data
corruption, and when we analyzed it using signal analyzers,
we found that the clock polarity and clock phase settings were
misconfigured. We reconfigured them, and it started working.

C. VS1063 not responding to SDI data writes

Ideally, as soon as one starts writing valid data to the SDI,
SDI decodes it to generate audio output. However in our
case, all we could hear was some noise. Eventually, we found
out that chip select for sending data is very different from
chip select for sending commands. We fixed it by modifying
firmware appropriately.

D. Music plays in fast mode

Initially, the SPI clock frequency is set to 2MHz for
initialization. This led to the misbehavior. After initialization,
we reduced the clock frequency to 120kHz, and it started to
play just fine.

VI. CONCLUSION

In this paper, we have developed PlayNPort, a portable
wireless music player, and text reader. We made use of off
the shelf electronic components, MSP432, decoder ICs and
a PCB. We relied upon various datasheets, application notes
and community resources in the process. By writing bare-metal
firmware code, we achieved full control over the system. Thus,
we were able to provide a rich user experience, by giving a
user the options to play/pause, play next/previous song, scroll
down while reading a text document. To improve the system,
we can use a graphical LCD instead of a character LCD. As
we tasked ourselves with building a complete system under
budget, we chose a minimal configuration system. The total
cost of the system is under 70$.

As we know that IR is not the latest technology, in future,
the system could be built using Bluetooth low energy (BLE)
modules. IR needs a direct line of sight with the sensor. By
going for Bluetooth we eliminate this need. We could also
explore other VCD options that run at 3.3V, so we eliminate
the use of voltage converters. We could go for an LCD
that supports SPI communication to save many pins on the
microcontroller that we consumed for data lines.

VII. ACKNOWLEDGEMENT

We would like to thank Prof. Linden McClure for providing
us with the opportunity to work in the Embedded Systems
Design lab at the University of Colorado Boulder. We would
also like to thank our colleagues for being supportive through
our endeavor. We would also like to thank the ECE department
at CU Boulder.

REFERENCES

[1] Dot Matrix Liquid Crystal Display Controller Datasheet, Hitachi, pp
167-226, 2010.

[2] Using MSP432 serial modules, Online, 2015, Accessed from
http://www.samlewis.me/2015/05/using-msp432-eUSCI/.

[3] IR Receiver Modules for Remote Control Systems, Vishay Semiconduc-
tors, pp 1-7, 2008.

[4] VS1063a Encoder and Audio Coded circuit, VLSI Solution, pp 1-93, v
1.31, 2017.

[5] Serial Peripheral Interface (SPI) User Guide, Texas Instruments, pp 1-
51, 2012.

[6] Bai Ying, Microcontroller Engineering with MSP432: Fundamentals
and Applications, CRC Press, 2016.

[7] Enhanced Universal Serial Communication Interface (eUSCI) SPI
Mode, SLAU424F, 2012, Texas Instruments.

[8] NEC IR Remote Control Interface, Al-
tium Techdocs, Online, 2017, Accessed from
https://techdocs.altium.com/display/FPGA/NEC+Infrared+Transmission+Protocol.

[9] Sandisk microSDHC OEM Product Manual, pp 1-25, Western Digital
Inc., 2016.

[10] Elm, Chang, How to use MMC/SSD, 2010, Accessed from http://elm-
chan.org/docs/mmc/mmc e.html.

[11] Elm, Chang, FAT Filesystem, 2010, Accessed from http://elm-
chan.org/docs/fat e.html.

[12] VS1063 AppNote: Playback And Recording, VLSI Solution, pp 1-7, v
1.10, 2016.

[13] VS1063a Patches: VLSI Solution Audio Decoder/Encoder, VLSI Solu-
tion, pp 1-16, v 2.01, 2017.

[14] Stefan Schauer, Christian Speck, App Note: Interfacing the MSP430
With MMC/SD Flash Memory Cards, Texas Instruments, pp 1-5, 2008.

[15] K Lakhan Shiva, 2017, Wireless Music Player and
Text Reader using TI MSP432, Accessed from
https://github.com/lakhanshiva/SDCardController

http://www.samlewis.me/2015/05/using-msp432-eUSCI/
http://elm-chan.org/docs/mmc/mmc_e.html
http://elm-chan.org/docs/mmc/mmc_e.html
http://elm-chan.org/docs/fat_e.html
http://elm-chan.org/docs/fat_e.html

	I Introduction
	II Board Design
	II-A LCD Interface
	II-B SD Card Interface
	II-C IR Module
	II-D MP3 decoder and 3.5 mm jack

	III Communication Subsystem Implementation
	III-A Serial Peripheral Interconnect (SPI)
	III-B NEC Protocol for Wireless IR Communication

	IV Firmware Design
	IV-A SPI Driver
	IV-B SDHC drivers
	IV-C FAT file system drivers
	IV-D Audio decoder drivers
	IV-E IR Transmission, Reception and Decoding
	IV-F IR Decoding Logic
	IV-G LCD Driver

	V Challenges
	V-A Issue mounting FAT file system
	V-B Software initialization of VS1063 Audio Decoder
	V-C VS1063 not responding to SDI data writes
	V-D Music plays in fast mode

	VI Conclusion
	VII Acknowledgement
	References

