
uTalk: Bridging the Gap Between Humans and AI
Hussam Azzuni∗§, Sharim Jamal∗§, and Abdulmotaleb Elsaddik∗†

∗Mohamed Bin Zayed University of Artificial Intelligence
Masdar City, Abu Dhabi, UAE

Email: {hussam.azzuni, sharim.jamal}@mbzuai.ac.ae
†School of Electrical Engineering and Computer Science

University of Ottawa
Ottawa, ON, Canada K1N 6N5

Email: elsaddik@uottawa.ca

Abstract—Large Language Models (LLMs) have revolutionized
various industries by harnessing their power to improve produc-
tivity and facilitate learning across different fields. One intriguing
application involves combining LLMs with visual models to create
a novel approach to Human-Computer Interaction. The core idea
of this system is to create a user-friendly platform that enables
people to utilize ChatGPT’s features in their everyday lives. uTalk
is comprised of technologies like Whisper, ChatGPT, Microsoft
Speech Services, and the state-of-the-art (SOTA) talking head sys-
tem SadTalker. Users can engage in human-like conversation with
a digital twin and receive answers to any questions. Also, uTalk
could generate content by submitting an image and input (text
or audio). This system is hosted on Streamlit, where users will be
prompted to provide an image to serve as their AI assistant. Then,
as the input (text or audio) is provided, a set of operations will
produce a video of the avatar with the precise response. This
paper outlines how SadTalker’s run-time has been optimized
by 27.69% based on 25 frames per second (FPS) generated
videos and 38.38% compared to our 20FPS generated videos.
Furthermore, the integration and parallelization of SadTalker
and Streamlit have resulted in a 9.8% improvement compared
to the initial performance of the system.

Index Terms—Interactive System, Conversational AI, Content
Creation, Human-Computer Interaction, Digital Twins, LLM,
User Experience

I. INTRODUCTION

Large language models (LLMs) such as OpenAI’s ChatGPT
[1], Google’s Bard, and Meta’s LLaMa [2] have revolution-
ized the way we access information. These models leverage
extensive data training to perform various tasks such as recog-
nition, generation, translation, and summarization. Different
approaches for disseminating this knowledge are necessary.
For example, SpeechGPT [3] is an LLM with inherent cross-
modal conversational skills. AudioGPT [4] enhances LLMs to
process complex audio information and engage in spoken con-
versations. FaceChat [5] is a promising approach to creating
dynamic face-to-face conversation utilizing ChatGPT. Our ap-
proach is similar as we both tackle avatar-based ChatGPT for a
more engaging conversation. However, our method focuses on
optimizing and integrating SadTalker with various software,
towards achieving a user-friendly implementation streamlin-
ing the information retrieval process. This paper presents
a comprehensive system that combines various Application

§Equal contribution

Programming Interface (API) software and open-source codes
to create an interactive virtual avatar capable of engaging in
informative conversations. The system follows a multi-step
process: First, Whisper API allows the transcription of the
user’s spoken question, while having the option to provide
a text input based on their preference. Then, the obtained
text and a predetermined prompt are fed into ChatGPT. The
additional prompt ensures the precision of the answers. The
response generated by ChatGPT is converted into speech using
the Speech Studio within Azure Cognitive Services. Finally,
the resulting audio and the selected avatar image are fed
to SadTalker to create a digital twin [6] in the form of a
talking portrait answering the user’s question. Alternatively,
the input, whether text or audio, could be given directly to
generate videos for content creation. Our framework provides
an immersive experience that enables users to engage in
personalized conversations with avatars of their choice. Ad-
ditionally, it can be utilized for creating chatbots, automating
customer service interactions, building educational platforms,
developing personal assistants, and creating translation tools
that break down language barriers. Our contributions can be
summarized as follows:

• Framework with an integrated and optimized SadTalker
and APIs for Human-Computer interactive avatar.

• Optimizing the run-time of SadTalker by ≈ 27.69%
• User Interface (UI) offering audio and text inputs for

conversing with AI or creating content.
• Providing FPS adjustment feature for video generation.
• Applying the context of the two previous questions and

answers enhances the user experience.

II. PROFILING THE OVERALL SCRIPT

Profiling the script is essential to identify code bottlenecks
and improve its performance and speed. In this case, cProfile
identifies the main time-consuming blocks within the code.
The elapsed times may overlap and not add up to the overall
time. The time needed to generate a video given a 7-second
audio clip is 40.59 seconds, based on a NVIDIA Geforce
RTX 3090Ti and a 12th Gen i9-12900 Intel CPU. The list
below shows the bottlenecks with the number of calls written
afterward:

• animate.py (generate) = 34.95s (1)

ar
X

iv
:2

31
0.

02
73

9v
2 

 [
cs

.H
C

] 
 1

3 
D

ec
 2

02
3



Time
The metaverse is like a
giant virtual playground

where you can play,
hang out, and connect

with others from
anywhere in the world

input text

input audio

Can you explain to me the
metaverse in layman terms?

Can you explain to me the
metaverse in layman terms?

User

User Feature
Request

Azure Cognitive Services
Text to Speech

waveform SadTalker

Text input
Audio input

Content Creation
Conversation

ChatGPT

Fig. 1. uTalk pipeline consists of two main features: Content Creation and conversing with a digital twin. Both processes begin with the user providing an
input, either in the form of audio or text. The input is then processed generating a waveform that is given to SadTalker to generate the video.

• mimwrite = 24.30s (2)
• face-enhancer.py = 23.94s (176)
• utils.py (enhance) = 22.80s (175)
• face-enhancer.py (paste-faces-to-input-images) = 12.53s (175)
• make-animation.py = 9.86s (1)
• Gaussian blur = 3.75s (350)
During cProfile’s analysis, multiple bottlenecks are iden-

tified within the system. First, optimizing some functions is
crucial as it is performed for every frame, creating a substantial
overall bottleneck. This is achieved by removing unnecessary
lines of code that do not contribute majorly to the final result.
Second, ”mimwrite” is time-consuming, so we replaced it with
a more efficient function from OpenCV.

III. FRAMEWORK

uTalk is a Human-Computer Interaction (HCI) system that
utilizes algorithms to create videos based on an image and a
statement provided by the user. Fig. 1 shows an abstract view
of the complete framework. Initially, the user is prompted to
provide an image that will serve as their AI avatar. Subse-
quently, the user has two options: Users can ask a question
via audio or text to receive a response from ChatGPT. Alter-
natively, the audio or text input provided can be used directly
to generate an avatar-speaking video. The whole process is
hosted on Streamlit, allowing users to watch the generated
videos easily. As the system is comprised of multiple software
components, we will carefully explain each component and
any necessary software adjustments.

A. Speech to Text
Whisper API [7], developed by OpenAI, is an Automated

Speech Recognition (ASR) system that transcribes audio files
into text. It comes in various sizes, ranging from whisper-tiny,
with 39 million parameters, to whisper-large-v2, with 1550
million parameters. Our system uses whisper-tiny to expedite
the transcription process. We have incorporated a minimum
requirement of two words to be obtained from whisper API to
avoid silent inputs. If such an issue occurs, an error message
is displayed to alert the user.

B. ChatGPT and Prompt Engineering
Our system uses ChatGPT API, specifically GPT 3.5 text-

davinci-003 model, for answering questions. We provide an

additional prompt to ensure brief responses, which helps the
LLM avoid over-explaining, improving the overall speed. Ad-
ditionally, we maintained context throughout the conversation,
ensuring a coherent and meaningful exchange of information.

C. Text to Speech

uTalk utilizes a text-to-speech (TTS) library within the
Speech Studio component in Azure Cognitive Services. This
library supports 140 languages and dialects, making it conve-
nient for both English and non-English speakers.

D. SadTalker

SadTalker [8] is a state-of-the-art system that produces real-
istic talking head videos by combining image and audio inputs.
It comprises multiple components, including ExpNet, which
can precisely capture facial expressions from audio signals,
and PoseVAE, which can generate head movements. The final
video is created by mapping the 3D motion coefficients to
3D facial key points. SadTalker is the major bottleneck within
uTalk; thus, we modified its code and improved its integration
within the system to improve its run-time.

1) Removing Redundant Code: The first step towards
optimizing our model is the removal of unnecessary libraries
or code that does not contribute to the overall performance. We
began by removing the tqdm library and its integration in the
code base, as it only served to monitor progress. Furthermore,
we removed all intermediate values saved and loaded during
the four stages.

2) Adjustable FPS: The code initially generates videos
with 25FPS. However, we added adjustable FPS output as
a feature to reduce the output FPS without reducing the
user experience. A subjective study shows the opinion of 29
participants about nine generated videos with varying FPS
from 16 to 24. The study’s primary objective is to measure
how people perceive the smoothness of AI-generated videos
with different FPS.

3) Enhancing Facexlib Efficiency: SadTalker utilizes vari-
ous models with various input sizes, resizing between 256x256
and 512x512 as deemed necessary, introducing an overhead as
resizing hundreds of frames is time-consuming. This is solved
by modifying the code to ensure that ”FaceRestoreHelper”



TABLE I
THIS IS A COMPARISON OF RUN-TIME BETWEEN SADTALKER AND OUR MODIFICATIONS. RESULTS ARE BASED ON A 5-RUN AVERAGE AND A 7-SECOND

AUDIO CLIP. THE RESULTS PROVIDED ARE A PERCENTAGE REPRESENTING THE REDUCTION IN RUN-TIME.

Model Modifications FPS Run-time (seconds)Tqdm Removal Facexlib Optimization Removed Intermediate Values Replace Mimsave
SadTalker X X X X 25 40.637 ± 0.320
Proposed mod1 ✓ X X X 25 39.930 ± 0.116 (-1.74%)
Proposed mod2 ✓ ✓ X X 25 31.182 ± 0.526 (-23.27%)
Proposed mod3 ✓ ✓ ✓ X 25 31.438 ± 0.579 (-22.64%)
Proposed mod4 (uTalk) ✓ ✓ ✓ ✓ 25 29.385 ± 0.284 (-27.69%)

resizes the code to 256x256 instead of the original 512x512,
significantly reducing the run-time without compromising the
video quality. We also eliminated functions that did not notice-
ably impact the final performance, such as adding Gaussian
noise for each frame, causing overhead run-time.

4) Integration of SadTalker with Streamlit: The integra-
tion between SadTalker and Streamlit is essential for optimiz-
ing the system’s performance. We have successfully separated
the operations into two isolated modules, one for initializing
the models and the second for video generation. The modular
code is then seamlessly integrated into our Streamlit app. We
then take advantage of Streamlit’s caching capabilities to pre-
load the initialization of models along with the Whisper and
ChatGPT API right when the Streamlit web app is loaded for
the first time. This approach ensures that these heavy tasks are
executed only once and cached for future use. As a result, we
have cut down on both response time and computational load,
making the system faster and more resource-efficient.

E. User Interface

The user interface of our system prioritizes simplicity,
ensuring convenience for the user. Fig. 2 demonstrates the
User Interface (UI). It contains two tabs depending on the
application needed: conversing with an AI assistant or gen-
erating videos using the input. Either way, the process starts
with an uploaded image, and then the user will be prompted
to provide text or audio as input to generate the video. Finally,
the generated video is shown on the streamlit web application.

IV. RESULTS AND DISCUSSION

We have performed a series of incremental experiments to
enhance the overall performance and integration of the system,
ensuring the effectiveness of each method. All experiments use
a Windows 11 machine, with an SSD running the operating
system (OS), an NVIDIA Geforce RTX 3090Ti, and a 12th
Gen i9-12900 Intel CPU.

A. SadTalker Optimization

First, we removed the tqdm library as it is mainly used
for tracking progress, which does not affect the overall re-
sult. This removal led to a reduction in the overall time
from 40.637 seconds to 39.930 seconds. Second, most code
optimization occurred while speeding up facexlib library by
importing gfpGAN within our code base, resulting in finding
multiple bottlenecks. Firstly, we modified the resizing of
the restored face from 512x512 to 256x256 as the overall

performance is not affected noticeably, resulting in a much
faster inference. Second, with paste-faces-to-input-images, two
Gaussian blur functions are removed as they increase the
run-time without any noticeable effect on the performance.
Finally, as our implementation is forwarded towards real-
time performance, we replaced the detection model within
the faceRestorerHelper from retinaface-resnet50 to retinaface-
mobile0.25. These changes resulted in a drastic improvement
in the speed, going from 39.930 seconds to 31.182 seconds.
Third, the initial model saves all intermediate values until it
generates the video, then deletes it all. However, instead of
that, we changed the code not to save any of the values except
the final output videos. Even though it should result in an
improvement, we saw a minor increase in run-time. Finally,
based on our initial bottleneck profiling, mimsave is a time-
consuming process; thus, we modified the code to integrate
openCV instead of mimwrite to output the final generated
video. This change improved the overall performance from
31.438 seconds to 29.385 seconds. So all in all, Table I
summarized the comparison, showing that we could reduce
the run-time by 27.69%.

B. FPS importance

A subjective study is conducted across a diverse group to
quantify the perceived smoothness of AI-generated videos with
varying FPS. This study helps in understanding the threshold
between smoothness and choppiness. This study involved 29
participants who watched nine videos with FPS ranging from
16 to 24. The order of the videos has been randomized to elim-
inate potential bias. The participants of this study consisted of
55.2% of GenZ age demography (1997-2012) and 44.8% of
Millennial age demography (1981-1996). Table II shows the
results based on the subjective study. We want to note that one
participant could not rate the 23FPS video, so that rating was
excluded. A variety of conclusions are obtained these results.
Generally, videos with less than 18 FPS were less smooth. All
the others performed reasonably well, especially the videos
with 20, 23, and 24 FPS. Although the study was designed to
observe the impact of FPS, it is worth noting that the videos
with 17 and 22 FPS had lower mean scores than the others.
These low scores might be due to generated head movements
or the participants’ preferences. The study suggests that 20FPS
generated videos are comparable to 23FPS, showing that it is
possible to provide a 14.88% speedup compared to the original
25FPS as shown in Table III without affecting the perceived
quality.



Fig. 2. uTalk consists of two available tabs. The ChatGPT tab (left) generates videos responding to the question provided. On the other hand, the second tab
(right) utilizes the input directly to generate video without the use of an LLM for response generation.

TABLE II
SUBJECTIVE STUDY SHOWS THE AVERAGE RATING AND ITS STANDARD

DEVIATION (SD) OF 9 VIDEOS FROM 1 (VERY POOR) TO 5 (VERY GOOD)
BASED ON THE SMOOTHNESS OF THE AI-GENERATED VIDEOS.

FPS Mean Score (SD) Min Max FPS Mean Score (SD) Min Max
16 2.83 (1.10) 1 5 21 3.14 (1.03) 1 5
17 2.21 (1.21) 1 5 22 2.97 (1.15) 1 5
18 3.48 (0.87) 1 5 23 3.71 (1.15) 1 5
19 2.83 (1.10) 1 5 24 3.62 (1.08) 1 5
20 3.66 (1.01) 1 5 - - - -

C. Framework Integration

The integration of Sadtalker with Streamlit yielded notable
gains in computational speed, particularly in the context of
parallel operations. This parallelism comes from modularizing
our framework into initialization and generation modules. We
evaluated the performance based on a five-time run by running
both the initial framework (without initialization) and with
initialization. By pre-loading and initializing the models at the
onset of the Streamlit application, we saw a marked reduction
in average video generation time. The time taken to produce a
7-second video with 25FPS was reduced from 33.19 seconds
with a standard deviation of 1.14 seconds to 29.94 seconds
with a standard deviation of 1.11 seconds. This shows a 9.8%
reduction in run-time, enhancing the user experience.

V. CONCLUSION

This work proposes uTalk, a framework that integrates an
optimized version of SadTalker with various algorithms, such
as Whisper API, ChatGPT, and TTS via Azure Cognitive
Services, all within a UI hosted on Streamlit. The interface
comprises two primary functionalities: First, generating a
response video through ChatGPT as the user provides an audio
or text input. Second, instead of utilizing ChatGPT, we gener-
ate a video of the avatar speaking the input. Throughout this
work, we explore how SadTalker is optimized to enhance the
overall run-time, benefitting the user experience. Additionally,

TABLE III
RUN-TIME COMPARISON BASED ON THE FRAMES PER SECOND (FPS)

Model FPS Run-time (seconds) Model FPS Run-time (seconds)
Experiment 1 25 29.385 ± 0.284 Experiment 6 20 25.041 ± 0.104
Experiment 2 24 28.525 ± 0.199 Experiment 7 19 24.196 ± 0.217
Experiment 3 23 27.833 ± 0.137 Experiment 8 18 23.026 ± 0.131
Experiment 4 22 26.842 ± 0.189 Experiment 9 17 22.134 ± 0.131
Experiment 5 21 25.899 ± 0.301 Experiment 10 16 21.241 ± 0.137

we conducted a subjective study to find the optimal FPS of AI-
generated videos, concluding that using 20FPS will reduce the
overall run-time without a noticeable effect on video quality.
Ultimately, the user interface combines all these features to
guarantee a seamless experience for conversing with a digital
twin or creating content.

REFERENCES

[1] OpenAI, “Chatgpt: Openai language model,” Chat conversation, 2023,
version 3.5. [Online]. Available: https://openai.com

[2] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,
B. Rozière, N. Goyal, E. Hambro, F. Azhar et al., “Llama: Open and
efficient foundation language models,” arXiv preprint arXiv:2302.13971,
2023.

[3] D. Zhang, S. Li, X. Zhang, J. Zhan, P. Wang, Y. Zhou, and X. Qiu,
“Speechgpt: Empowering large language models with intrinsic cross-
modal conversational abilities,” arXiv preprint arXiv:2305.11000, 2023.

[4] R. Huang, M. Li, D. Yang, J. Shi, X. Chang, Z. Ye, Y. Wu, Z. Hong,
J. Huang, J. Liu et al., “Audiogpt: Understanding and generating speech,
music, sound, and talking head,” arXiv preprint arXiv:2304.12995, 2023.

[5] D. Alnuhait, Q. Wu, and Z. Yu, “Facechat: An emotion-aware face-to-face
dialogue framework,” arXiv preprint arXiv:2303.07316, 2023.

[6] A. El Saddik, “Digital twins: The convergence of multimedia technolo-
gies,” IEEE multimedia, vol. 25, no. 2, pp. 87–92, 2018.

[7] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and
I. Sutskever, “Robust speech recognition via large-scale weak supervi-
sion,” arXiv preprint arXiv:2212.04356, 2022.

[8] W. Zhang, X. Cun, X. Wang, Y. Zhang, X. Shen, Y. Guo, Y. Shan, and
F. Wang, “Sadtalker: Learning realistic 3d motion coefficients for stylized
audio-driven single image talking face animation,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 8652–8661.

https://openai.com

	Introduction
	Profiling the overall script
	Framework
	Speech to Text
	ChatGPT and Prompt Engineering
	Text to Speech
	SadTalker
	Removing Redundant Code
	Adjustable FPS
	Enhancing Facexlib Efficiency
	Integration of SadTalker with Streamlit

	User Interface

	Results and Discussion
	SadTalker Optimization
	FPS importance
	Framework Integration

	Conclusion
	References

