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Abstract—Natural Language Inference (NLI) or Recognizing
Textual Entailment (RTE) is the task of predicting the entailment
relation between a pair of sentences (premise and hypothesis).
This task has been described as “a valuable testing ground
for the development of semantic representations” [1], and is
a key component in natural language understanding evaluation
benchmarks. Models that understand entailment should encode
both, the premise and the hypothesis. However, experiments by
Poliak et al. [2] revealed a strong preference of these models
towards patterns observed only in the hypothesis, based on
a 10 dataset comparison. Their results indicated the existence
of statistical irregularities present in the hypothesis that bias
the model into performing competitively with the state of the
art. While recast datasets provide large scale generation of
NLI instances due to minimal human intervention, the papers
that generate them do not provide fine-grained analysis of the
potential statistical patterns that can bias NLI models. In this
work, we analyze hypothesis-only models trained on one of
the recast datasets provided in Poliak et al. [2] for word-level
patterns. Our results indicate the existence of potential lexical
biases that could contribute to inflating the models’ performance.

Index Terms—natural language inference, bias detection, en-
tailment

I. INTRODUCTION

Advancements in Natural Language Processing (NLP) allow

for more natural communication between people and compu-

tational devices. This natural communication brings a list of

desired tasks and requirements to understand and test. One

of such desired tasks is an ability to computationally infer

information, in a way that is similar to human inference. In

this paper we explore a narrow subset of inferences that are

used in natural language, namely entailment and contradiction.

A. Natural Language Inference

Natural Language Inference (NLI) in general, and its subset,

Recognizing Textual Entailment (RTE) in particular, is the

task of predicting the entailment relation (using three labels:

entailment, neutral, contradiction) between a pair of sentences.

The first sentence in the pair is usually referred to as premise,

and the second sentence is referred to as hypothesis, see

TABLE I for examples. In an RTE task, given a text, T, and a

hypothesis, H: “T entails H if, typically, a human reading T

would infer that H is most likely true” [2, 3]. This task has been

described as “a valuable testing ground for the development

of semantic representations” [1], and is a key component in

natural language understanding evaluation benchmarks. Many

studies have focused on the modelling of NLI label prediction

using different datasets, for example, human elicited SNLI

dataset [1], human judged SciTail dataset [4] and recast dataset

SPR [5]. Models that perform well are considered to have

achieved a level of language understanding. But do they,

really?

TABLE I
EXAMPLE OF AN RTE/NLI TASK INSTANCE

Premise Hypothesis Label

“The brown cat ran” “The animal moved” ENTAILMENT

“A woman is reading

with a child”
“A woman is sleeping” CONTRADICTION

B. Motivation

Matching human level of inference by a computational

device is not an easy task, and determining how to measure

the level or degree of inference is difficult. Yet, it is essential

for the task of explainable AI or any system that can claim

any level of ‘knowledge’ or reasoning ability, which underlies

natural language understanding and human-like communica-

tion. Consider the following sentences: A cat ran towards a

tree. When the animal moved, the birds sitting on the tree

flew away. A human usually has no problem understanding

that the animal refers to the cat in the previous sentence, that

moves refers to the act of running, and, finally, that animal

moving is inferred from the running cat. Moreover, running

cat and moving animal refer to exactly the same event with

exactly the same participant of this event. A well-functioning

natural language system has to exhibit the same level of
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understanding in detecting the same events that may be talked

about using different words, and detect contradictions allowing

it to conclude that it is not the same event. One way to test

such understanding is by introducing a pair of sentences, such

as about the running cat and moving animal, and asking for the

system to identify relation(ship) between these two sentences.

For the task of such relation identification, an ideal lan-

guage understanding system should encode both premise and

hypothesis to infer the relation label. However, while some

models achieved high accuracy, it is questionable whether

those models are merely picking up statistical irregularities in

the datasets instead of “understanding” natural language or the

actual logical relationship between the two sentences. In other

words, a model that has a high accuracy by predicting irregu-

larities may end up showing a low performance in another NLI

task, as the featured irregularities may not be included in every

testing set. If a model is trained with a dataset that contains

many irregularities, this model cannot be generalized to other

datasets since it doesn’t pick up background knowledge of real

world but patterns of irregularities. More importantly, a model

that learns statistical irregularities is not a reliable real world

model (which would be indicated by its lack of generalization

to other datasets).

To demonstrate issues with models that perform well on

the task without understanding its meaning, Poliak et al.

[2] proposed a model that encoded only the hypothesis and

ignored the premise to infer the entailment relation between

pairs of sentences. They referred to this as a “hypothesis

baseline”1. With this baseline being introduced to diagnose

datasets, the authors found that the existence of statistical ir-

regularities present in the hypothesis could bias the model into

performing competitively with the state of the art performance.

For example, the occurrence of negation words such as nobody

was found to be highly indicative of ”contradiction” on the

SNLI dataset. Poliak et al.’s analysis suggests that (a) there

are potential irregularities in the datasets that shouldn’t affect

semantic inference, and (b) future models should outperform

the hypothesis-only baseline rather than the majority baseline2

to show competence in understanding language.

In this work, we augment results shown by Poliak et al.

[2] and analyze hypothesis-only models trained on a specific

recast (i.e., with minimal human intervention) dataset, namely

the Semantic Proto-Roles dataset, provided in [5], for word-

level patterns. The purpose of this work is to explore additional

lexical biases that could contribute to inflating the models’

performance on NLI tasks, thus potentially being “right for

the wrong reasons” [6]. Our goal here is not to show state-of-

the-art performance, but rather highlight how lexical heuristics

that have nothing to do with semantic inference can be picked

up by models trained on datasets that do not control for them.

1A baseline is a method to create the simplest possible predictions in
machine learning. It can be used to evaluate the performance (e.g. accuracy)
of a dataset. In this case, the prediction is based only on hypothesis.

2The majority baseline is determined by using the majority class as the
default classification.

II. RELATED WORK

It is tempting to talk about natural language inference in

terms of sentence understanding and truth of a sentence. If

one were to do that, work going back to 1970s [7], if not

earlier, would have to be reviewed. The discussion could start

with lexical semantics and include quantification, entailment

and subsumption, ambiguity, common sense, and many more

(see [8] for an overview). We could talk about the truth of

sentences, such as Bertrand Russell’s The present king of

France is bald – what exactly is its truth value and does

it mean when there is no kings in France, presently? One

could follow the line of arguments in formal semantics and

explore sentence understanding as a set of of conditions or

situations under which the sentence is true. Arguably, however,

it is much harder than what is intended by NLI. As Wang

and Jiang [9] pointed out, “existing solutions to NLI range

from shallow approaches based on lexical similarities [10] to

advanced methods that consider syntax [11], perform explicit

sentence alignment [12] or use formal logic [13].” However,

none of these are concerned with the factual information, only

to what is stated in the sentence.

Confounding factors in NLI [14], other natural language

and machine learning-based applications have recently been

studied as well. As pointed out by [14], statistical irregularities

present in datasets result in higher-than-expected performance

in video sentiment analysis [15], visual question answering

[16] and medical applications [17].

A. Hypothesis Only Baselines

Apart from proposing and building the hypothesis-only

baseline model, Poliak et al. [2] tested it on the different NLI

datasets which were categorized on the basis of their con-

struction: (1) human-elicited (hypothesis and labels generated

by humans); (2) human judged (hypothesis generated auto-

matically with human annotated labels); and (3) automatically

recast datasets (minimal human intervention). Important to this

paper are the recast datasets, where hypothesis-premise pairs

were generated automatically using heuristics from the tasks

they were constructed from. Specific examples of typical recast

datasets are: Semantic Proto-Roles (SPR), Definite Pronoun

Resolution (DPR) and FrameNet Plus (FN+). These are further

expanded on in the next section.

The hypothesis-only baselines proved to be strong bench-

marks to compare against newly models due to their per-

formance on each of the NLI datasets. Their strong perfor-

mance indicated that they might be ”learning” patterns in the

datasets that are external to true NLI. The authors specifically

analyzed the presence of specific words, grammaticality, and

lexical semantics. The analysis of the conditional probability

of the occurrence of specific labels in SNLI datasets given

specific word revealed that such human elicited datasets may

be biased to many label-specific terms if the data are not

properly controlled. From the analysis of the grammaticality

on the recast FrameNet Plus dataset, the authors found positive

correlation between grammaticality and NLI labels — higher

grammaticality hypotheses tend to be labeled as ENTAILED.



From the analysis of lexical semantics, a relatively high

accuracy was found in property-driven hypotheses in the SPR

dataset. Collectively, these findings suggest positively that

patterns external to true language understanding do exist in

currently used NLI datasets.

B. Recast Semantic Proto-Role Dataset

The idea of “recasting semantic resources into a unified

evaluation framework” was proposed by White et al. [5]. The

authors described the FraCaS dataset [18], which was con-

structed based on semantic fine-grained probes. This was fol-

lowed by SNLI dataset, constructed with human elicited text-

hypothesis pairs. In contrast, datasets such as FraCaS would

not be properly designed for NLI task that requires large-scale

data-driven computational semantics, for it is not practical for

experts to author enough examples. The results of applying

recasting strategy on three datasets – SPR [19], FN+ [20] and

DPR [21] – suggested that a general approach of “converting

semantic classification examples to annotated textual inference

pairs” to train RTE models can be used as an automatic way

that can remove human in the data generation loop. DPR is

a dataset that was originally constructed to resolve complex

case of definite pronoun [21]. White et al. [5] replaced the

pronoun of each sentence with its correct and incorrect referent

to produce hypothesis from DPR dataset. FN+ is an expanded

version of FrameNet, constructed using crowdsourcing to filter

out incorrect paraphrases manually [20]. The recast version

of FN+ was further edited with crowdsourced judgements to

generate entailed and non-entailed hypotheses.

The original SPR dataset decomposes semantic roles into 16

finer-grained properties, shown in TABLE II-B. For example,

given the role property “instigation”, the system looks for

whether a predicate’s argument likely caused a given pred-

icated situation. For purposes of recasting the dataset into

an NLI form, judges were provided with the question “How

likely or unlikely each property was to hold of the argument

in the context of the predicate” and were asked to estimate the

likelihoods on a five-point scale from 1 (very unlikely) to 5

(very likely). The scale was used to categorize the predictions,

with a score from 1-3 resulting in “not entailed” label and a

score of 4-5 would result in“entailed” label, the “neutral” label

was not considered in this dataset.

III. METHODOLOGY AND EXPERIMENT

Hypothesis baselines trained on the SPR dataset 3 perform

considerably better than majority baselines and were shown to

be comparable with the state of the art performance which at

the time was a modified InferSent [22] method. The InferSent

method uses a encoder based on BiLSTM architecture with

different pooling strategies to obtain sentence representation

for each input sentence and a multi-layer perceptron classifier

to predict the NLI tag. The fact that a model that only

encodes the hypothesis performs as well as the state of the art

emphasize issues in both NLI models, and NLI datasets — is

3The SPR data can be found at https://github.com/decompositional-
semantics-initiative/DNC/raw/master/inference is everything.zip

TABLE II
QUESTIONS POSED TO SPR ANNOTATORS [5]

Role property How likely or unlikely is it that...

instigation ARG caused the PRED to happen?

volition ARG chose to be involved in the PRED?

awareness
ARG was/were aware of being involved in
the PRED?

sentient ARG was/were sentient?

change of location ARG changed location during the PRED?

exists as physical ARG existed as a physical object?

existed before ARG existed before the PRED began?

existed during ARG existed during the PRED?

existed after ARG existed after the PRED stopped?

change of possession ARG changed possession during the PRED?

change of state
ARG was/were altered or somehow changed
during or by the end of the PRED?

stationary ARG was/were stationary during the PRED?

location of event ARG described the location of the PRED?

physical contact
ARG made physical contact with someone or
something else involved in the PRED?

was used ARG was/were used in carrying out the PRED?

pred changed arg The PRED caused a change in ARG

the model merely picking up statistical patterns in the dataset

to show good results? To further explore whether statistical

patterns are present in this dataset, we propose a method that

consists of two types of analysis on the recast SPR datset in

our preliminary research.

A. Proposed Method

This project aims to explore potential statistical irregularities

that could bias the performance of NLI models. We focus

specifically on recast datasets. The driving idea is that, by

analyzing an automatically generated datasets from external

tasks with minimal human intervention, we expect to see

more biases that may not be spotted in datasets with human

intervention.

Since proto-roles in hypotheses are distributed over the two

labels in the SPR dataset, we are interested in whether they are

responsible for the increased performance of the hypothesis-

only model, which would be quantified as the proto-role bias.

1) Chi-Square Test: To test the association between NLI

labels and proto-roles, we use the chi-square test:

χ2 =

n∑

i=1

(Oi − Ei)
2

Ei

(1)

where

χ2 = Pearson’s cumulative test statistic

Oi = the number of observations in each proto-role

Ei = the expected count in each proto-role

n = the number of proto-roles

The chi-square test of independence examines whether the

observed pattern between variables provides enough evidence

to support the independence of two variables, and thus, is

appropriate for the task. Our null hypothesis is that there is no

association between NLI labels and proto-roles. We conduct

the chi-square test at α = .05 level.



2) Proto-Role bias: We determine the proto-role bias, or

the majority baseline for each proto-role by the conditional

probability of the majority label l given the proto-role pr.

A predictive bias would be captured if a specific majority

baseline is significantly high. Poliak [2] described such words

as “give-away” words that should be removed for a uniform

distribution of the majority baseline across labels. These words

have a great potential to affect the overall accuracy on NLI.

The majority baseline for a given pr, majpr is:

majpr =
count(l, pr)

count(pr)
, (2)

where count(pr, l) describes the number of sentences that are

majority-labelled and contain the proto-role and count(pr) is

the number of sentences containing that proto-role.

For instance, sentence, The increasing caused a change in

14 members will be counted as an instance for the proto-

role “instigation”. If there are 60 such hypotheses labelled

“entailed” out of 100 in total, the proto-role bias for the

“instigation” proto-role would be 0.6.

3) Proto-role Bias Calculation: We compute the overall

proto-role bias in the dataset by summing the majority base-

lines for every pr (for N proto-roles):

Overall Proto-role Bias =

∑N

pr majpr × count(pr)

count(total)
(3)

Given 100 instances of the proto-role “instigation” and 100

instances of the proto-role “awareness”, if 110 (40 I, and 70

A) instances are labelled as “non-entailed”, then the overall

majority baseline accuracy would be 110

200
= .55, however, if we

consider the proto-role bias described in equations (2) and (3),

then the proto-role bias for each individual proto-role would

be 0.6 (for “instigation”), and 0.7 (for “awareness”), giving us

the overall proto-role bias (and equivalently, the accuracy) of
0.6×100+0.7×100

200
= 0.65.

When controlled for biases within individual proto-roles,

we get improved accuracy measures, which is indicative of

potential artifacts in the dataset that such hypothesis only

models can pick up on, leading to an inflated sense of

performance of the model.

While the above analysis only investigates the proto-roles

in the hypotheses, There could be lexical biases due to many

other such “give-away” words. For both “entailed” and “not-

entailed” labels, we rank words in their hypothesis sentences

according to their frequency within each label and report the

top 10 most frequent words. By applying the same conditional

probability function, we can explore other highly biased lexical

irregularities other than specific proto-roles.

TABLE III
SPR DATASET STATISTICS

Train Dev Test

Entailed 43,148 5,313 5,341

Not-entailed 80,707 9,983 10,115

Total 123,855 15,296 15,456

B. Dataset Description

The SPR dataset is split into train, dev and test sets, the

statistics of which are presented in TABLE III. The two NLI

labels used in this dataset are “entailed” and “not-entailed”.

As is the case with several previous NLI datasets [1, 23], the

assumption that both premise and hypothesis refer to the same

single event holds here as well. In this dataset, the “neutral”

relation is not considered.

IV. RESULTS AND DISCUSSION

We performed chi-square test for independence between

NLI labels and proto-roles on each of the train, dev, and

test sets in SPR. From TABLE IV, we find no independence

between NLI labels and proto-roles (p < .05 for train, dev, and

test sets). It is likely that the occurrence of a proto-role would

impact the prediction of the relation label if the frequency

of each proto-role in the dataset is not uniformly distributed

across the relation labels.

TABLE IV
RESULTS OF CHI SQUARE TEST

Train Dev Test

χ
2 30,632 3897.1 3,781.1

df 15 15 15

p < 2.2e-16 < 2.2e-16 < 2.2e-16

The results in TABLE V depicts a general picture comparing

the proto-role bias to the majority baseline. Here, we compute

the accuracy for a model that follows from our proto-role bias

quantification, i.e., the model predicts the relation label that

occurs the most within instances of that proto-role (calculated

from the training set). We call this model a “Proto-Role Biased

Model” (PRBM). We find the accuracy of PRBM to be higher

than the majority baseline in all three splits, indicating that

a model can get a higher score than predicting the majority

label by simply predicting irregularities within proto-roles.

TABLE V
OVERALL MAJORITY BASELINE AND PROTO-ROLE BIAS

Train Dev Test

MAJ 0.6635 0.6527 0.6544

PRBM 0.7460 0.7492 0.7473

Upon further inspection, we see that the performance of

PRBM on the SPR dataset is not consistent across different

proto-roles. TABLE VI indicates that there are highly biased

proto-roles such as “stationary” that gives a score of 0.96,

which suggests the existence of certain proto-roles that are

heavily indicative of a particular entailment level.

Besides proto-roles biases, our research reveals lexical

biases toward non-entailment labels. We present the top 5

frequent words in the dev split of the dataset in TABLE VII.

The probabilities of “not-entailed” label given the top 5

frequent words illustrate that those frequent words could lead

to a higher accuracy on predicting “not-entailed” label.



TABLE VI
PROTO-ROLE BIAS

Proto-Role Property Train Dev Test

Instigation 0.6327 0.6308 0.6335

Volition 0.6463 0.6496 0.6449

Awareness 0.6108 0.5994 0.6087

Sentient 0.7618 0.7626 0.7547

Change of location 0.9292 0.9320 0.9327

Exists as physical 0.6583 0.6538 0.6594

Existed before 0.6562 0.6590 0.6480

Existed during 0.8601 0.8567 0.8468

Existed after 0.6999 0.7291 0.6967

Change of possession 0.9340 0.9446 0.9389

Change of state 0.6375 0.6485 0.6522

Stationary 0.9631 0.9634 0.9627

Location of event 0.9200 0.9121 0.9172

Physical contact 0.8544 0.8692 0.8582

Was used 0.5391 0.5272 0.4482

Pred changed arg 0.6333 0.6485 0.6511

TABLE VII
LEXICAL ANALYSIS FOR NOT-ENTAILED CASES

Word P(l|w) Freq

market 0.7326 211

that 0.8189 208

stock 0.6612 201

company 0.6471 176

they 0.6324 172

In contrast, words are more uniformly distributed in hy-

potheses that are labelled “entailed”. As illustrated in TA-

BLE VIII, the top frequent words “stock”, “they”, “company”,

“some” and “making” all appear in the hypotheses for less

than 50 percent of time. However, it is not conclusive to state

that there is no observed word that could bias the “entailed”

prediction. As there are three out of five words that are

overlapped in both tables, it is reasonable to speculate that

the pattern does exist to predict lexical irregularities in low

frequency.

TABLE VIII
LEXICAL ANALYSIS FOR ENTAILED CASES

Word P(l|w) Freq

stock 0.3388 103

they 0.3676 100

company 0.3529 96

some 0.4178 94

making 0.3571 90

V. CONCLUSION AND FUTURE WORK

The task of NLI requires understanding and representing

semantic and commonsense knowledge in a manner that allows

inference between pairs of events. Existing models for NLI,

e.g. neural networks, show desirably high performance on such

tasks but the extent to which they actually utilize semantic

knowledge as opposed to pattern matching is unclear. This

work contributes to the growing literature of diagnosing model

performance by highlighting certain specific patterns that

might be “learned” by a model, which have nothing to do with

semantic knowledge. Specifically, we built on the hypothesis-

only baseline method proposed by [2] to diagnose word-

level (lexical) biases in an existing NLI dataset (SPR). Our

experiments show that the presence of statistical irregularities,

due to the differences in distribution of entailment labels

over proto-roles, could allow NLI models to show greater

performance due to factors external to what is required to

perform inferences over texts. This is accomplished by first

showing non-zero dependence between proto-role frequences

and entailment labels, and then measuring performance by

controlling for proto-roles. Our analysis is further augmented

by showing other lexical irregularities that could contribute to

NLI models’ performance. We emphasize that such patterns

can lead the model to predict the true label based on the cor-

responding lexical features on the basis of frequency instead

of testing true semantic knowledge.

We hope our findings could provide an insight for NLI

datasets developers and users to avoid exploitable irregular-

ities. In the future, we will explore biases in such datasets to

understand factors that might contribute to the models’ per-

formance. A deeper dive into whether or not existing models

actually exploit such lexical biases would be a worthwhile

endeavor to pursue. To do so will involve examining model

output based on biased and unbiased/debiased examples of

NLI instances.
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