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Abstract— A modular relative Jacobian is recently derived
and is expressed in terms of the individual Jacobians of
stand-alone manipulators. It includes a wrench transformation
matrix, which was not shown in earlier expressions. This paper
is an experimental extension of that recent work, which showed
that at higher angular end-effector velocities the contribution
of the wrench transformation matrix cannot be ignored. In
this work, we investigate the dual-arm force control perfor-
mance, without necessarily driving the end-effectors at higher
angular velocities. We compare experimental results for two
cases: modular relative Jacobian with and without the wrench
transformation matrix. The experimental setup is a dual-arm
system consisting of two KUKA LWR robots. Two experimental
tasks are used: relative end-effector motion and coordinated
independent tasks, where a force controller is implemented in
both tasks. Furthermore, we show in an experimental design
that the use of a relative Jacobian affords less accurate task
specifications for a highly complicated task requirement for
both end-effectors of the dual-arm. Experimental results on
the force control performance are compared and analyzed.

Index Terms— Dual-arms, relative Jacobian, modular,
wrench transformation matrix, force control, single manipu-
lator control

I. INTRODUCTION

A relative Jacobian is used to control the dual-arm as a
single manipulator (with one end-effector). This approach
drastically increases the dimension of the combined null
space, as compared to controlling each individual manip-
ulators separately. For example, when each manipulator of
a dual-arm has seven degrees-of-freedom (7-DOF) and are
controlled in full Cartesian space individually, the combined
null space has only 2-DOF. However, through the use of
a relative Jacobian, the relative motion between the two
end-effectors is considered such that at full Cartesian space
control between the two end-effectors, an 8-DOF combined
null space results.

The use of relative Jacobian [1], [2] has recently gained
renewed attention because of the increased studies in dual-
arms control [3]–[9], to name a few. Two major advantages
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Fig. 1. The KUKA dual-arm manipulator setup. The right arm (robot B)
end-effector holds the tool, while the left arm (robot A) end-effector is the
reference end-effector. Axes zR and yR are the relative position axes located
at the robot A end-effector frame, while zF and yF are the force sensor axes
located at the force sensor frame. The tool end-effector exerts a normal force
on the table (along zF ), while the two end-effectors move relative to each
other (horizontally along zR).

can be enumerated: (1) all the principles of single manipu-
lator control can be applied to dual-arm manipulators, and
(2) a dramatic increase in the null-space dimension. The
first formulations of the relative Jacobian [1], [2] analytically
computed it based on the assigned kinematic chain between
the two end-effectors. In order to simplify its implemen-
tation, one approach is to express the relative Jacobian in
modular form, that is, in terms of the Jacobian of each stand-
alone manipulator.

Just recently, a newly derived modular relative Jacobian
[10] reveals a wrench transformation matrix, which was
not shown in previous expressions [11]–[13] or were in an
unsimplified, non-compact form [14]–[16]. This new and
recent expression drastically simplifies the relative Jacobian
implementation because one only needs to consider the
individual Jacobians for each manipulator, and then arrives
at the relative Jacobian of the combined manipulators by
performing corresponding Jacobian transformations as shown
in [10]. In the same work, it was analytically proven that the
exclusion of the wrench transformation matrix may result
in an end-effector motion, for a null space motion when
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Fig. 2. Schematic diagram of the frame assignments for the dual-arm
in Fig. 1. The tool end-effector (frame S3) is expressed with respect
to the reference end-effector (frame S2). The corresponding position and
orientation transformations are shown in the diagram. The Jacobian for robot
A is denoted JA and the Jacobian for robot B is denoted JB.

the wrench transformation is included. Furthermore, it was
experimentally shown that at higher end-effector velocities,
the effect of the wrench transformation matrix cannot be
ignored.

This work extends the experimental investigation in [10]
by evaluating a dual-arm force controller, without necessary
driving the end-effectors at higher velocities. We investigate
two cases: a modular relative Jacobian with (newly derived)
and without (previously derived) the wrench transformation
matrix. We perform two experimental tasks: relative end-
effector motion and coordinated independent tasks. Both
force and motion controllers [17]–[19] are implemented in
full relative operational space for both experimental task
executions. More recent studies on cooperative manipula-
tion include trajectory planning for manipulation of flexible
structure [20], manipulation and transportation of aerial
robots [21], [22], decomposition frameworks with unilateral
thrusters [23], and cooperative dual-arm mobile manipulation
[24].

II. THEORETICAL BACKGROUND

To express the modular relative Jacobian JR of a dual-arm,
we let the Jacobian of the left arm (reference end-effector) to
be JA, and the Jacobian of the right arm (tool end-effector)
to be JB, as shown in Fig. 2. From the same figure, the
position ip j and rotation iR j are expressed with respect to
the indicated reference frames. Thus the modular relative
Jacobian as derived in [10] can be expressed as

JR =
[−2Ψ3

2Ω1 JA
2Ω4 JB

]
(1)

where

2Ψ3 =

[
I −S(2p3)
0 I

]
and iΩ j =

[iR j 0
0 iR j

]
. (2)

The matrix 2Ψ3 is the wrench transformation matrix ex-
pressed in the indicated reference frames, while the matrix

iΩ j is a rotation matrix in the corresponding reference
frames. The symbol S(p) is a skew-symmetric matrix with
input vector p, that is,

S(p) =

⎡
⎣ 0 −pz py

pz 0 −px
−py px 0

⎤
⎦ . (3)

Previous expressions [11]–[13] of the modular relative Jaco-
bian J′R assumes the wrench transformation matrix 2Ψ3 to be
an identity matrix. In this work, we compare the dual-arm
force and motion control performance in using JR and J′R.

For mobile manipulators, the relative Jacobian JRT was
derived in [10] as,

JRT =
[−2Ψ3

2Ω0 JbA −2Ψ3
2Ω1 JA

2Ψ3
2Ω0 JbB

2Ω4 JB
]

(4)
where JbA is the Jacobian of the mobile base A and JbB is
the Jacobian of the mobile base B. The frame assignment
is the same as in Fig. 2 but the frames S1 and S4 are now
moving.

III. IMPLEMENTATION

To implement the proposed relative Jacobian to the KUKA
dual-arm, we define the corresponding terms in (1). We
denote the position and orientation of the robot A end-
effector with respect to its own base as pA,RA; and the
robot B end-effector position and orientation with respect
to its own base as pB,RB. Then the following assignments
are true: 1R2 = RA, 1p2 = pA, 4R3 = RB, and 4p3 = pB.

From (2), we can get

2Ω3 =

[
RT

A 0
0 RT

A

]
and 2Ω4 =

[
RT

A
1R4 0
0 RT

A
1R4

]
(5)

and from [10], we can express the relative position between
the end-effectors 2p3 as

2p3 = RT
A

1p4 +RT
A

1R4 pB −RT
A pA (6)

where the reference frames S1 and S4 (function of 1p4,
1 R4

and are normally static) are dependent on how robots A and
B are mounted on the shoulders of the torso.

A. Torso Mounting

The shoulder mounting of our torso has a 60-degree
inclination from the horizontal and another 30-degree ro-
tation around the normal to the inclined plane. From this
shoulder configuration, the orientation 1R4 and position 1p4
are defined as

1R4 = Rz,−30 Ry,−120 Rz,150 (7)

and
1p4 = Rz,−30 Ry,−150 pbases (8)

where pbases = [0,0,0.22]T m. The symbol Ri,a denotes
rotation of a degrees around the i-th axis.



B. Gravity Compensation

Due to the change in the configuration of the base mount-
ing, the KUKA robot need to be corrected in terms of the its
gravity compensation vector g = [0,0,9.81]T . The modified
gravity compensation for the right arm is

gright = Rz,30 Ry,−60 g (9)

and the left arm is

gle f t = Rz,−30 Ry,−60 g. (10)

This results into gright = [−7.36,−4.25,4.91]T and
gle f t = [−7.36,4.25,4.91]T m/s2.

C. Torque Controller

We use the KUKA Controller 30, defined as each-axis
controller. To implement a force and motion controller on
the KUKA, its impedance controller is given as

τcmd = JT (kc(xFRI −xmsr)+FFRI)+D(dc)+ fdynamics(q, q̇, q̈)
(11)

where τcmd is the commanded torque to the robot joints, JT

is the manipulator Jacobian, kc is the motion control pro-
portional gain, xFRI is the desired end-effector position and
orientation, xmsr is the measured end-effector position and
orientation, FFRI is the force/torque input, dc is the motion
damping gain, and fdynamics(q, q̇, q̈) is the robot dynamics
model. From the variables in (11), the fast research interface
(FRI) of KUKA (which is its programming interface), only
allows modification of kc, xFRI , FFRI , and dc.

To overwrite the KUKA controller, we set xFRI = xmsr (or
kc = 0). The force and motion controller is then assigned to
FFRI , and the values of dc are set at the default values. From
(11), the resulting KUKA controller then becomes

τ = JT FFRI (12)

such that (11) becomes

τcmd = τ +D(dc)+ fdynamics(q, q̇, q̈). (13)

Thus for each robot A and B manipulators, the corresponding
KUKA controller is set to τA = JT

AFFRI A and τB = JT
BFFRI B.

These terms are then added to their corresponding damping
and dynamics terms to get the commanded torque for each
manipulator. To implement the dual-arm controller, the con-
troller torques for both robots are set at,

[
τA
τB

]
= JT

R FR +(I− JT
R JT+

R ) [JA 0]T FN (14)

where FR is the controller for both motion and force in the
relative operational space, and FN is the motion controller in
the null space.
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Fig. 3. Force sensor feedback expressed at the reference end-effector
frame. The normal force exerted by the tool end-effector is along the yR-
axis, while both end-effectors are moving horizontally along the table in a
relative motion with respect to each other. Case JR is shown in subfigure
A, while case J′R is shown in subfigure B.

IV. EXPERIMENT I: RELATIVE END-EFFECTOR MOTION

The KUKA dual-arm platform posed two major challenges
to our force and motion control experimental results. First,
it does not give access to any low-level real-time controller.
And second, to simultaneously control the two robots, we
can only achieve a maximum sampling frequency 125 Hz
(8 ms). Because of these limitations, the force and motion
controller gains were not optimally tuned. However given
these constraints, the performed experiments still showed
comparative results (although non-optimal) between the use
of JR and J′R that substantiate the effect of the wrench
transformation matrix in the force control performance. A
hybrid force/motion controller is implemented all throughout
the experiments.

In the first experiment, we refer to Fig. 1 for the controller
setup. In the relative operational space, the two end-effectors
will move with respect to each other along the table (along
zR-axis), while the tool end-effector will exert a normal
force on the table (along zF -axis). To achieve this, force
is controlled along the relative yR-axis, with a desired force
of −20 N. A desired sinusoidal motion along the relative
zR-axis is specified as

zR des = A(cos(ωt)− cos(ωt −φ)) (15)

where A = 0.5 m is the desired amplitude, ω = 0.15π rad/s
is the desired angular frequency, t is current time, and
φ = 10 degrees is the desired phase shift, which determines
the magnitude of the incremental step size. The remaining
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Fig. 4. Relative position error of tool end-effector motion with respect to
the reference end-effector: case JR is shown in subfigure A and case J′R is
shown in subfigure B.

relative axes are in motion control, specified to maintain the
initial position and orientation. Proportional position gains
are set at 200 while proportional orientation gains are at
100. Proportional force gain is set at 0.2.

Fig. 3 showed the force control performance between JR
(subfigure A) and J′R (subfigure B). The xR- and yR-axes are
controlled in motion and are showing force feedback along
those directions to be approximately the same. With a desired
force along yR set to −20 N, JR exerted an average range of
around [−4,−12] N, while J′R only exerted an average range
of around [−4,−10] N. A maximum normal force of −2 N
difference with JR case being closer to the desired force.
Thus even with a non-optimal controller, the effect of the
wrench transformation matrix showed better performance in
force control. We believe that at a higher sampling frequency
(around 1 kHz, that is eight times faster than the current
setup), the force control performance comparison can be
better.

Relative position error between the tool and reference end-
effectors are shown in Fig. 4 for JR (subfigure A) and J′R
(subfigure B). Along the xR-axis, the desired position is the
initial position just before the task execution. In both JR and
J′R cases, the error is approximately the same. Along the
yR-axis, position is not controlled because this is the force
control direction. However, the error value with respect to
the initial position can be indicative on how well the force
controller is performing, with the JR case having 0.1 m less
error than J′R. Along the zR-axis, the average error of the JR
case is around 0.22 m, while for the J′R case it is around
0.18 m, a difference of around 0.04 m, with JR case being
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+x+xR

Robot B Robot A

Fig. 5. The KUKA dual-arm manipulator performing a coordinated
independent task: robot B opening and closing a cabinet door by moving
along the yR, and robot A exerting a normal force (along yR) on the other
cabinet door while moving along an oscillatory motion along zR.

slight higher. This slightly higher position error in the JR
case can be attributed to the fact that the controller gains
were not optimally set and are therefore much more sensitive
to noise and disturbances. The higher normal force exertion
along the yR-axis in the JR case created higher friction that
resists the motion of the tool end-effector and subsequently,
a bigger disturbance to the motion control in the zR direction,
resulting into a slightly higher relative position error along
zR.

V. EXPERIMENT II: COORDINATED INDEPENDENT TASKS

The second experiment is for robot B to open and close a
cabinet door, while robot A exerts a normal force on the
other cabinet door and moving in an oscillatory manner.
This experiment is designed to show two things: (1) the
ease of implementing motion for the reference end-effector,
and (2) the capability of the relative Jacobian to show
seemingly independent tasks, but were performed through
relative motion (or force).

A. Experimental Design

We note that robot B (reference/gripper) end-effector is in
the null-space of the dual-arm manipulator, thus its absolute
location can be arbitrary. This makes the opening and closing
of the door task much easier to implement. Because the
reference end-effector grips the cabinet door handle (and
its absolute location is arbitrary), a human can open and
close the cabinet door and the reference end-effector will
be compliant to this motion, that is, it will keep gripping
the cabinet door and the rest of the robot arm will move to
accommodate such an end-effector displacement.

The ease of implementation has two aspects. First, we
only need to specify the oscillatory displacement along the
yR-axis for the gripper end-effector, without specifying any
desired displacement along the zR-axis to accommodate the
arc movement of the door handle in the operational space.
Second, given a specified amplitude of oscillation, the start
location of the oscillatory motion can be arbitrary because
once the gripper hits the maximum allowable displacement
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Fig. 6. Force sensor feedback expressed with respect to the reference
end-effector frame for the coordinated independent tasks experiment. The
normal force exerted on the other cabinet door is along yR. Case JR is
shown in subfigure A and case J′R is shown in subfigure B.

(cannot push further against the cabinet) along the yR-axis,
the tool end-effector moves to adjust the relative motion be-
tween the two end-effectors. However, the tool end-effector
is force controlled (no motion control) along the yR-axis, so
it will not move but will keep on exerting a normal force on
the other cabinet door.

The second point of the experimental design is the inde-
pendence of the task execution despite using relative motion
between the end-effectors. The tool end-effector is force
controlled along the yR-axis, while moving in an oscilla-
tory motion along the zR-axis (compared to the oscillatory
movement of the gripper end-effector along yR). Thus both
tool and gripper end-effector will appear oscillating along
two independent axes, while the tool end-effector exerts a
normal force on the other cabinet door. Although the tool
end-effector’s oscillating motion along zR needs to adjust to
the small displacement of the gripper in this direction (due
to the arc movement of the door handle), this motion is not
critical to the tool end-effector’s task execution.

B. Experimental Results

While the gripper end-effector is opening and closing
one cabinet door, the tool end-effector is oscillating on the
surface of the other cabinet door and exerting a normal force
on the surface. The normal force feedback in shown in Fig. 6.
Again, because KUKA does not allow access to a low-level,
real-time controller and the sampling frequency is at 125 Hz,
the force control is expected to be non-optimal. To keep the
tool end-effector to maintain contact during task execution,
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Fig. 7. Relative position errors between tool end-effector and reference
end-effector during coordinated independent tasks experiment. The JR case
is shown in subfigure A, while J′R case is shown in subfigure B.

we specify a desired normal force of −30 N. For case JR,
it is able to exert a normal force in the average range of
around [0,−11] N (subfigure A), while case J′R is within
the average range of around [2,−5] N (subfigure B) and
losing surface contact. As seen in these results, with a much
more complicated task execution between the end-effectors, a
much more superior force control response was shown by JR,
exerting around double the maximum force compared to J′R.
At the same time, the latter case consistently loses contact as
indicated by an offset non-contact force of around 2 N. (This
offset force value was set just before task execution, and
enhances visualization of the non-contact case. This implies
that the actual normal force exerted is slightly higher the
force reading. It is noted that the offset is present in both
cases, but not necessarily equal in value.) And because J′R
case consistently loses contact during the oscillatory motion,
it has lesser value of the range of force along the xR and zR
axes compared to the JR case.

The relative position errors during the coordinated inde-
pendent tasks are shown in Fig. 7, with case JR in subfigure
A and case J′R in subfigure B. The yR-axis is force controlled
and is therefore not controlled in position, such that in both
cases the position errors along this axis are comparable.
The xR axis is fixed (distance from the floor) during task
execution, and so the relative position errors along this axis
is comparable for both cases. Lastly, the error range along
the zR-axis is slightly higher in JR than J′R. Considering the
non-optimality of the controller settings, there is a greater
disturbance in JR because of the greater frictional force



during oscillatory motion. This is true because of the bigger
exertion of the normal force, as well as being consistently in
contact with the surface of the door cabinet, as compared to
the J′R case that kept on losing contact with the door surface.

VI. CONCLUSION

This paper has shown the contribution of the wrench trans-
formation matrix to the force control using modular relative
Jacobian. It clearly indicated its influence by resulting into
a more accurate force control performance even at low end-
effector velocities. Two experiments were performed to show
the difference in performance with and without the wrench
transformation matrix. In both experiments, the tool end-
effector was required to exert a normal force on a surface,
while both tool and reference/gripper end-effectors moved
with respect to each other. Experimental results showed that
the case with the wrench transformation matrix included
has superior force control performance, with a difference of
2 N and 5 N in maximum force exerted in each respective
experiment. As the task became much more complicated, the
superiority of the force control performance with the wrench
transformation matrix became much more evident, doubling
its maximum exerted force compared to the case without
this matrix. Furthermore, this paper also showed the ease
of implementing two independent tasks, through the use of
relative Jacobian: opening and closing a door on one end-
effector, and exerting a normal force with oscillatory motion
on the other end-effector. This complicated task execution
could have required more accurate task specifications if
these tasks were implemented independently with dedicated
controllers for each end-effector. Lastly, we believe that the
experimental difference will be much more pronounced given
better controller setup, that is, with access to low-level, real-
time controller and at a much higher sampling frequency.
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movements of a dual-arm system considering obstacle removing,”
Robotics and Autonomous Systems, 2014.

[10] R. S. Jamisola and R. G. Roberts, “A more compact expression of
relative jacobian based on individual manipulator jacobians,” Robotics
and Autonomous Systems, 2014.

[11] P. Chiacchio, S. Chiaverini, and B. Siciliano, “Task-oriented kinematic
control of two cooperative 6-dof manipulators,” in American Control
Conference, 1993, 1993, pp. 336–340.

[12] B. Cao, G. I. Dodds, and G. W. Irwin, “Redundancy resolution
and obstacle avoidance for cooperative industrial robots,” Journal of
Robotic Systems, vol. 16, no. 7, pp. 405–417, 1999.

[13] J. Lee, P. Chang, and R. S. Jamisola, “Relative impedance control for
dual-arm robots performing asymmetric bimanual tasks,” Industrial
Electronics, IEEE Transactions on, vol. 61, no. 7, pp. 3786–3796,
2014.

[14] J.-D. Choi, S. Kang, M. Kim, C. Lee, and J.-B. Song, “Two-
arm cooperative assembly using force-guided control with adaptive
accommodation,” in Intelligent Robots and Systems, 1999. IROS ’99.
Proceedings. 1999 IEEE/RSJ International Conference on, vol. 2,
1999, pp. 1253–1258.

[15] L. Ribeiro, R. Guenther, and D. Martins, “Screw-based relative jaco-
bian for manipulators cooperating in a task,” in ABCM Symposium
Series in Mechatronics. v3, 2008, pp. 276–285.

[16] W. Owen, E. Croft, and B. Benhabib, “A multi-arm robotic system for
optimal sculpting,” Robotics and Computer-Integrated Manufacturing,
vol. 24, no. 1, pp. 92–104, 2008.

[17] R. S. Jamisola, D. N. Oetomo, M. H. Ang, O. Khatib, T. M. Lim,
and S. Y. Lim, “Compliant motion using a mobile manipulator: an
operational space formulation approach to aircraft canopy polishing,”
Advanced Robotics, vol. 19, no. 5, pp. 613–634, 2005.

[18] R. S. Jamisola, A. A. Maciejewski, and R. G. Roberts, “Failure-tolerant
path planning for kinematically redundant manipulators anticipating
locked-joint failures,” Robotics, IEEE Transactions on, vol. 22, no. 4,
pp. 603–612, 2006.

[19] R. S. Jamisola, P. Kormushev, A. Bicchi, and D. G. Caldwell,
“Haptic exploration of unknown surfaces with discontinuities,” in
Intelligent Robots and Systems (IROS), 2014 International Conference
on. IEEE/RSJ, 2014, pp. 1255–1260.

[20] L. A. Weitz, J. Doebbler, K. E. Johnson, and J. E. Hurtado, “Trajectory
planning for the cooperative manipulation of a flexible structure by
two differentially-driven robots,” Journal of Intelligent and Robotic
Systems, vol. 58, no. 2, pp. 149–163, 2010.

[21] N. Michael, J. Fink, and V. Kumar, “Cooperative manipulation and
transportation with aerial robots,” Autonomous Robots, vol. 30, no. 1,
pp. 73–86, 2011.

[22] J. Fink, N. Michael, S. Kim, and V. Kumar, “Planning and control
for cooperative manipulation and transportation with aerial robots,”
The International Journal of Robotics Research, vol. 30, no. 3, pp.
324–334, 2011.

[23] W. Li and M. W. Spong, “Decomposition frameworks for cooperative
manipulation of a planar rigid body with multiple unilateral thrusters,”
Nonlinear Dynamics, pp. 1–16, 2014.

[24] S. Erhart, D. Sieber, and S. Hirche, “An impedance-based control
architecture for multi-robot cooperative dual-arm mobile manipu-
lation,” in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on. IEEE, 2013, pp. 315–322.


